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ABSTRACT
Bivariate Pareto distributions have proven very useful in modeling lifetime data,
hydrology, competing risk data, and many other datasets. In this paper, we explore
Kendall tau and Gini correlations in the bivariate Pareto distributions, comparing
with the popular Pearson correlation and robust quadrant correlation. It is interest-
ing to establish the fact that zero of those correlations mutually imply independence
in this family. We derive the variance of the asymptotic normality for each sample
correlation via the influence function approach. When the second moment is finite,
we demonstrate that the symmetric Gini correlation is asymptotically efficient as
well as relatively efficient among finite samples. However, Kendall tau is more ap-
pealing in terms of compromising efficiency and robustness.
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1. Introduction

The Pareto distribution is a skewed and heavy-tailed distribution. It’s named for Ital-
ian economist Vilfredo Pareto, who noticed the economic phenomenon that 80% of
his country’s wealth was distributed among 20% of its people. The Pareto distribu-
tion is used often in economics to model the distribution of incomes, city populations,
and many other non-negative socio-economic issues. The Pareto distribution family
has since been expanded to include many different types of Pareto distributions. The
Pareto distribution of the second kind (also known as the Lomax distribution) is used
frequently to model lifetime data in many applied sciences. As Lindley and Singpur-
walla (1986, [11]) pointed out, using the univariate Pareto model to measure two
lifetimes of components of a system is often inaccurate due to the influence of the
common environment and its impact on the two components’ correlations. For this
reason, they introduce the Lindley-Singpurwalla bivariate Pareto distribution (LSBP).
In this paper, our goal is to study correlations in a generalized bivariate Pareto dis-
tribution (SNBP), introduced by Sankaran and Nair (1993, [16]) that contains the
Lindley-Singpurwalla bivariate Pareto as a special case. There are many applications
of this bivariate Pareto distribution. For example, Nadarajah (2009, [12]) used a dis-
tribution equivalent to the LSBP as a model for drought. Sankaran and Kundu (2014,
[15]) proposed using the SNBP distribution to model life tests of appliances, and also
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suggested this distribution is an effective model of competing risk data. Rootzén and
Tajvidi (2006, [14]) proposed multivariate generalized Pareto distributions for model-
ing extreme values.

When using a bivariate model as a joint distribution of two components, it is often
useful to measure the correlation between the two components. Correlation coefficients
are an important tool used in many fields to measure the association between two
variables. While there are many proposed measures of correlation, the most widely
known is probably the Pearson correlation. For the Normal distribution, the Pear-
son correlation is known to be the most statistically efficient measure of correlation.
The drawback of the Pearson correlation coefficient is its high sensitivity to outliers.
We look at influence functions as a measure of the correlation’s robustness [7]. The
influence function for the Pearson correlation is unbounded, indicating the lack of ro-
bustness of this measure [5]. Also, the Pearson correlation requires the second moment
assumption and hence it may not even exist for some Pareto distributions [6].

Without any moment assumption, the Kendall tau is a rank-based measure of as-
sociation, useful for measuring monotonic relationships. It has a bounded influence
function [4], making it more robust than the Pearson correlation coefficient. Another
robust measure of correlation we consider is the quadrant correlation. This correla-
tion involves centering around a coordinate-wise median and then it is defined as the
difference of the probability in the first and third quadrant and the probability in
the second or fourth quadrant. The influence function of the quadrant correlation is
bounded, but it not smooth [22]. So it is more robust than the Pearson correlation,
but not as robust as the Kendall tau.

The final correlations we consider are the Gini correlations. The Gini correlation is
highly related to Gini mean difference and the Gini coefficient. One can find the Gini
coefficient for a Pareto distribution by calculating the Lorenz curve for the Pareto
distribution and doubling the area from the Lorenz curve to the equidistribution line.
Arnold (1983, [1]) used study of the Gini index to show that the Pareto distribution
of the second type (or Lomax), with shape parameter θ, is an accurate model of in-
comes with a wide gap by showing that if θ > 1, the Gini index is greater than 0.5.
The standard Gini covariances and correlations were introduced by [3] as natural bi-
variate extensions of the univariate Gini mean difference. The Gini correlations are
considered a statistical compromise between the Pearson correlation and the Spear-
man correlation, as they are based on covariance of one variable and the rank of
the other. Hence, there are two Gini correlations for each pair of random variables.
The Gini correlations are very useful in measuring association between variables from
heavy-tailed distributions [25]; since they share properties of both the Pearson corre-
lation and the Spearman correlation, they balance robustness and efficiency. Unless
the bivariate distribution is exchangeable up to a linear transformation, the Gini cor-
relations are generally not symmetric in two variables X1 and X2 ([20], [21]), i.e.,
γ(X1, X2) 6= γ(X2, X1). To combat the problem of asymmetry, Sang, Dang and Sang
(2016, [17]) proposed a symmetric Gini correlation based on a joint rank. The other
two symmetric Gini correlations were proposed by Yitzhaki and Olkin (1991, [24]): the
arithmetic mean and the geometric mean, respectively, (γ(X1, X2)+γ(X2, X1))/2 and√
|γ(X1, X2)γ(X2, X1)|. Vanderford et al. (2020, [23]) studied these correlations in de-

tail. It is interesting to find that for the elliptical distributions in which two traditional
Gini correlations and the average symmetric one are all equal, the sample symmetric
Gini correlation is more statistically efficient than the traditional counterparts [23]. In
the heavy-tailed Pareto distributions, we also have two traditional Gini correlations
equal. It is worthwhile to explore their statistical efficiencies. In other words, we would
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like to know whether the symmetric versions have some statistical advantages over the
traditional Gini correlations. We focus on the symmetric Gini that the average of the
two traditional Gini’s. We denote it as rg.

We provide explicit formula for the Gini, Pearson, Kendall tau, and quadrant cor-
relations in the SNBP distribution (of which the formula for the Kendall tau and Gini
correlations appear to have never been published before). We are also able to use influ-
ence functions previously established for each correlation to give information about the
asymptotic distributions of the correlations and calculate asymptotic variances where
possible. We compare the asymptotic efficiencies by considering Fisher consistent cor-
relations under the LSBP distribution. We also look at efficiencies of each estimator in
a finite sample. Finally, we look at real data shown to fit the SNBP distribution and
calculate each correlation coefficient in order to demonstrate a situation in which the
proposed formulas are useful to determine the amount of correlation between variables
in an SNBP distribution.

2. The SNBP distribution

There are several varieties and types of Pareto distributions; this paper will focus on
one bivariate Pareto distribution in particular, what we call the SNBP distribution
introduced by Sankaran and Nair (1993, [16]). This distribution is also called the bi-
variate Lomax distribution. As in the univariate case, the bivariate Lomax distribution
has the Gamma-exponential connection, meaning that it can be derived either from
two independent exponential random variables with parameters jointly from Kibble’s
bivariate Gamma distribution or from Gumbel’s bivariate distribution with parameter
from a Gamma distribution [2]. It has a simple distribution function, but is flexible
enough to include many interesting and useful cases.

More specifically, its joint survival function and cumulative distribution function for
(X1, X2)T from SNBP(α1, α2, δ, θ) respectively are

S(x1, x2) = P (X1 > x1, X2 > x2) = (1 + α1x1 + α2x2 + δα1α2x1x2)−θ, (1)

H(x1, x2) = P (X1 ≤ x1, X2 ≤ x2) = 1− (1 + α1x1)−θ − (1 + α2x2)−θ + S(x1, x2),
(2)

for x1 > 0, x2 > 0, where θ > 0, α1 > 0, α2 > 0 and 0 ≤ δ ≤ θ + 1. Among the
parameters, α1 and α2 are scale parameters, while θ is the shape parameter that
determines the tail heaviness of the distribution. A smaller θ value indicates a heavier
tail.

The SNBP distribution has Pareto II (or Lomax) marginals. That is, Xi (i = 1, 2)
has a Pareto II distribution with distribution function of the form

Fi(xi) = P (Xi ≤ xi) = 1− Si(xi) = 1− (1 + αixi)
−θ,

with

E[Xi] =
1

αi(θ − 1)
, if θ > 1,

V ar(Xi) =
θ

α2
i (θ − 1)2(θ − 2)

, if θ > 2.
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Also for θ > 1, the Gini mean difference (GMD) is

∆(Xi) = E|Xi −X ′i| =
2θ

αi(2θ − 1)(θ − 1)
, (3)

where X ′i is an independent copy of Xi. Hence for θ > 1, the Gini index, defined as
the ratio of the GMD and twice the mean, is θ/(2θ− 1), which is greater than 0.5 and
approaches 1 as θ → 1.

Before we study various correlation measures, let us look at the parameter δ closely.
The parameter, δ, determines the dependence properties of the distribution. If δ = 1,
we have H(x1, x2) = F1(x1)F2(x2) and hence X1 and X2 are independent. If δ > 1, H
is negative quadrant dependent [8]. That is,

P (X1 ≤ x1, X2 ≤ x2) < P (X1 ≤ x1)P (X2 ≤ x2), for all x1 > 0, x2 > 0, (4)

or equivalently,

P (X1 > x1, X2 > x2) < P (X1 > x1)P (X2 > x2), for all x1 > 0, x2 > 0. (5)

This is a negative dependence concept because X1 and X2 are less likely to be small
together or to be large together compared with independent X ′1 and X ′2, where X ′i
has the same distribution of Xi, for i = 1, 2. Similarly, positive quadrant dependence
can be defined if the inequalities in (4) and (5) are reversed. Clearly, SNBP is positive
quadrant dependent when 0 ≤ δ < 1. For the case of δ = 0, we see that the joint pdf
is

fX1,X2
(x1, x2) =

θ(θ + 1)α1α2

[1 + α1x1 + α2x2]θ+2
,

which corresponds to the bivariate Pareto distribution presented by Lindley and
Singpurwalla (1986, [11]), denoted LSBP throughout the remainder of this paper.

3. Correlations in SNBP

We study the Gini, Pearson, Kendall tau, and quadrant correlations in the SNBP dis-
tribution. Since all correlations are invariant under scale changes, they do not depend
on the scale parameters α1 and α2. Without loss of generality, we assume α1 = α2 = 1.
Below, we provide each correlation in the SNBP distribution.

3.1. Pearson correlation

For the SNBP distribution with θ > 2, an explicit form for the Pearson correlation is
given by Lai, et. al (2001, [10]) as

rp =
(1− δ)(θ − 2)

θ2
F (1, 2; θ + 1; 1− δ), (6)

where F (a, b : c, z) is the Hypergeometric function.
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Under the LSBP distribution with θ > 2, the Pearson correlation is simplified to be

rp =
1

θ
. (7)

Properties of the Pearson correlation in SNBP are listed below as remarks. Some of
them are provided by [2].

Remark 1. The Pearson correlation is postive for 0 ≤ δ < 1, negative for 1 < δ ≤ θ+1
and 0 for δ = 1.

Remark 2. The Pearson correlation approaches 0 when θ goes to ∞ for each δ.

Remark 3. For a given θ > 2, the Pearson correlation is decreasing in δ.

Remark 4. For any given θ > 2, rp = 0 mutually implies δ = 1, i.e, X1 and X2 are
independent. This is because F (1, 2; θ + 1; 1− δ) > 0.

3.2. Gini correlations

Gini mean difference ∆, as an alternative to standard deviation, is the expected dis-
tance of two independent random variables from the distribution. It can be represented
as 4 times the covariance between the variable and its cumulative distribution. A nat-
ural bivariate extension, Gini covariance is defined as 4 times the covariance between
one variable and the cumulative distribution of the other. The Gini correlations are
just normalized Gini covariances and defined as

γ1 = γ(X1, X2) =
cov(X1, F2(X2))

cov(X1, F1(X1))
=
cov(X1, F2(X2))

∆(X1)/4

γ2 = γ(X2, X1) =
cov(X2, F1(X1))

cov(X2, F2(X2))
=
cov(X2, F1(X1))

∆(X2)/4
.

The representation of the Gini correlation γ(X1, X2) indicates that it has mixed prop-
erties of those of the Pearson and Spearman correlations. It is similar to Pearson in X1

(the variable taken in its values) and similar to Spearman in X2 (the variable taken
in its ranks). Further the Pearson rp, Spearman rs, and Gini γ1 can be written as

rp(X1, X2) =

∫ ∫
H(x1, x2)− F1(x1)F2(x2)dx1dx2

σ1σ2
,

rs(X1, X2) = 12

∫ ∫
H(x1, x2)− F1(x1)F2(x2)dF1(x1)dF2(x2),

γ(X1, X2) =

∫ ∫
H(x1, x2)− F1(x1)F2(x2)dx1dF2(x2)

cov(X1, F1(X1))
. (8)

It is clear that γ(X1, X2) is invariant under all increasing transformation in X2 and
is invariant under changes of scale and location in X1. Also γ1 = γ2 if (X1, X2) is
exchangeable up to a linear transformation, meaning that (aX1 + b, cX2 + d) has the
same distribution as (X2, X1) for some constants a, b, c, d with a and c > 0. Details
can be found in Yitzhaki and Schechtman (2013, [25]).

Under the SNBP distribution, it is easy to check that γ1 = γ2 since the joint survival
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function in (1) is symmetric in α1x1 and α2x2. Hence, the symmetric Gini correlation
rg = γ1 = γ2. The following theorem provides the formula for the Gini correlations in
the SBNP distribution.

Theorem 3.1. For the SNBP distributions with θ > 1, the Gini correlations are equal
and equal to

γ1 = γ2 =
(1− δ)(2θ − 1)

θ(2θ + 1)
F (1, 2; 2θ + 2; 1− δ),

where F (a, b; c; z) is the hypergeometric function.

When δ = 0, by the result of F (a, b; c; 1) = Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b) , we immediately have the

following corollary.

Corollary 3.2. For the LSBP distributions with θ > 1, the Gini correlations are

γ1 = γ2 =
1

θ
.

From the above corollary and (7), the Gini correlations and Pearson correlation are
all equal to 1/θ, however rp is bounded above by 1/2 while the γ’s are bounded above
by 1.
Proof of Theorem 3.1. Using the result of (8), we have

cov(X1, F2(X2)) =

∫ ∫
H(x1, x2)− F1(x1)F2(x2)dx1dF2(x2)

=

∫ ∞
0

∫ ∞
0

1

(1 + x1 + x2 + δx1x2)θ
− 1

(1 + x1)θ
1

(1 + x2)θ
dx1

θ

(1 + x2)θ+1
dx2 (9)

=
1

θ − 1

∫ ∞
0

(
1

(1 + δx2)(1 + x2)θ−1
− 1

(1 + x2)θ

)
θ

(1 + x2)θ+1
dx2

=
θ(1− δ)
θ − 1

∫ ∞
0

x2

(1 + x2)2θ+1(1 + δx2)
dx2

=
θ(1− δ)
θ − 1

∫ 1

0

y(1− y)2θ−1

1− (1− δ)y
dy (10)

=
θ(1− δ)
θ − 1

Γ(2)Γ(2θ)

Γ(2θ + 2)
F (1, 2; 2θ + 2; 1− δ) (11)

=
1− δ

2(θ − 1)(2θ + 1)
F (1, 2; 2θ + 2; 1− δ)

Equation (10) is due to the substitution of y = x2/(1 +x2). Equation (11) is obtained
by using the integral representation of the hypergeometric function. See page 388 of
the NIST Handbook of Mathematical Functions [13]. Utilizing (3) with α1 = 1 and
the fact that cov(X1, F1(X1)) = ∆(X1)/4, we complete the proof. �

Several conclusions can be drawn about Gini correlations in SNBP distributions
and are stated as remarks below.

Remark 5. The Gini correlations are positive for 0 ≤ δ < 1, negative for 1 < δ < θ+1
and 0 for δ = 1 by (9).
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Remark 6. The Gini correlations approach 0 when θ goes to ∞ since the hypergeo-
metric function F (1, 2; 2θ + 2, 1− δ) is absolutely convergent.

Remark 7. For a given θ > 1, the Gini correlations are decreasing in δ.

Proof of Remark 7. Let us derive the derivative of γ with respective to δ.

∂γ

∂δ
=

2θ − 1

θ(2θ + 1)

(
−F (1, 2; 2θ + 2; 1− δ) + (1− δ)∂F (1, 2; 2θ + 2, 1− δ)

∂δ

)
=

2θ − 1

θ(2θ + 1)

(
−2θ(2θ + 1)

∫ 1

0

t(1− t)2θ−1

1− (1− δ)t
dt− (1− δ)2θ(2θ + 1)

∫ 1

0

t2(1− t)2θ−1

(1− (1− δ)t)2
dt

)
= −2θ(2θ − 1)

∫ 1

0

t(1− t)2θ−1

1− (1− δ)t

(
1 +

(1− δ)t
1− (1− δ)t

)
dt

= −2θ(2θ − 1)

∫ 1

0

t(1− t)2θ−1

(1− (1− δ)t)2
dt < 0.

This completes the proof. �

Remark 8. For any given θ > 1, γ1 = γ2 = 0 mutually implies δ = 1, i.e, X1 and X2

are independent. This is because F (1, 2; 2θ + 2; 1− δ) > 0 for any δ ≥ 0.

3.3. Kendall tau correlation

Two independent pairs of variables (X1, X2) and (X ′1, X
′
2) from the distribution H

are concordant if (X1−X ′1)(X2−X ′2) ≥ 0 and discordant otherwise. The Kendall tau
correlation is defined as

τ = P [(X1 −X ′1)(X2 −X ′2) ≥ 0]− P [(X1 −X ′1)(X2 −X ′2) < 0]

= 2P [(X1 −X ′1)(X2 −X ′2) ≥ 0]− 1,

the difference of probabilities of concordant pairs and discordant pairs. Since P (X ′1 ≤
X1, X

′
2 ≤ X2) =

∫
HdH, we have, for continuous distribution H,

τ = 4

∫
H(x1, x2)dH(x1, x2)− 1 = 4EH(X1, X2)− 1. (12)

Under the SNBP distribution, we have the following theorem.

Theorem 3.3. The Kendall tau correlation, under the SNBP distribution, is

τ =
2θ(1− δ)
(2θ + 1)2

F (1, 1; 2θ + 2; 1− δ), (13)

where F (a, b : c, z) is the hypergeometric function.

With δ = 0, we can immediately obtain the following corollary.

Corollary 3.4. Under the LSBP distribution, the Kendall tau correlation is

τ =
1

1 + 2θ
. (14)
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Proof of Theorem 3.3. From (12), we have

τ = 4

∫
H(x1, x2)dH(x1, x2)− 1

= 4

∫ ∞
0

∫ ∞
0

1

(1 + x1 + x2 + δx1x2)θ
θ[θ(1 + δx1)(1 + δx2) + 1− δ]

(1 + x1 + x2 + δx1x2)θ+2
dx1dx2 − 1

= −1 + 4

∫ ∞
0

∫ ∞
0

(
θ[θ(1 + δx2) + 1− δ]

(1 + x1 + x2 + δx1x2)2θ+2
+

θ2δ(1 + δx2)x1

(1 + x1 + x2 + δx1x2)2θ+2

)
dx1dx2

= −1 + 4

∫ ∞
0

(
θ[θ(1 + δx2) + 1− δ]

(2θ + 1)(1 + δx2)(1 + x2)2θ+1
+

θδ

2(1 + δx2)(2θ + 1)(1 + x2)2θ

)
dx2

= −1 + 4

∫ ∞
0

θ

2(1 + x2)2θ+1
+

θ(1− δ)
2(2θ + 1)(1 + δx2)(1 + x2)2θ+1

dx2

= −1 + 4

(
1

4
+

θ(1− δ)
2(2θ + 1)

∫ ∞
0

1

(1 + δx2)(1 + x2)(2θ+1)
dx2

)
(15)

=
2θ(1− δ)

2θ + 1

∫ 1

0

(1− y)2θ

1− (1− δ)y
dy

=
2θ(1− δ)
(2θ + 1)2

F (1, 1; 2θ + 2; 1− δ)

Similar to the Gini correlation, Kendall tau also has the following properties.

Remark 9. The Kendall tau is positive for 0 ≤ δ < 1, negative for 1 < δ < θ+ 1 and
0 for δ = 1 by (15).

Remark 10. The Kendall tau correlation approaches 0 when θ goes to ∞ since the
hypergeometric function F (1, 1; 2θ + 2, 1− δ) is absolutely convergent.

Remark 11. The Kendall tau correlation is decreasing in δ for any θ > 0 since
∂τ/∂δ < 0.

Remark 12. For any SNBP distribution, τ = 0 mutually implies δ = 1, i.e, X1 and
X2 are independent. This is because F (1, 1; 2θ + 2; 1− δ) > 0 for any δ ≥ 0.

3.4. Quadrant correlation

Rather than considering concordance between two independent pairs like in the
Kendall tau, the quadrant correlation, rQ, examines concordance of the random vari-
ables (X1, X2) with respect to the “center” of the distribution. More specifically,

rQ = 2P ((X1 −Med(X1))(X2 −Med(X2) ≥ 0)− 1

= 4H(Med(X1),Med(X2))− 1 = 4[H(F−1
1 (1/2), F−1

2 (1/2))− 1/4], (16)

where F−1
i (q) = inf{x : Fi(x) ≥ q} for q ∈ [0, 1], the quantile function

of Xi for i = 1, 2. If X1 and X2 are independent, H(F−1
1 (1/2), F−1

2 (1/2)) =
F1(F−1

1 (1/2))F2(F−1
2 (1/2)) = 1/4. Hence by (16), the quadrant correlation can be

interpreted as 4 times the difference between the joint distribution function, H, and
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the product of marginal distributions, F1F2, evaluated at the marginal medians. In
this sense, the quadrant correlation is also called medial coefficient. Using the copula
function C(u, v) = H(F−1

1 (u), F−1
2 (v)), the quadrant correlation is

rQ = 4C(1/2, 1/2)− 1.

For the SNBP distributions, Sankaran and Kundu (2014, [15]) provided the copula
function to be

C(u, v) = u+v−1+[(1−u)−1/θ+(1−v)−1/θ−1+δ((1−u)−1/θ−1)((1−v)−1/θ−1)]−θ.

Hence the quadrant correlation of the SNBP distribution is

rQ = 4(21+1/θ − 1 + δ(21/θ − 1)2)−θ − 1 =
4

[δ22/θ + 2(1− δ)21/θ − (1− δ)]θ
− 1. (17)

With δ = 0, the quadrant correlation of LSBP distribution is 4(21+1/θ − 1)−θ − 1,
which approaches 1 when θ goes to 0. It is easy to check the following remark.

Remark 13. The quadrant correlation, rQ, in the SNBP distributions is strictly de-
creasing in δ for each θ ≥ 0.

This is because

∂rQ(δ, θ)

∂δ
= −4θ((21+1/θ − 1 + δ(21/θ − 1)2)−θ−1(21/θ − 1)2 < 0.

Combining this decreasing property with the result rQ = 0 in the independence case
when δ = 1, we have the following result.

Remark 14. Under an SNBP distribution, rQ > 0 if 0 ≤ δ < 1 and rQ < 0 if
1 < δ ≤ 1 + θ.

Remark 15. The quadrant correlation, rQ, approaches 0 as θ goes to ∞.

Proof of Remark 15. Let us first establish a general result on

lim
n→∞

(ax2/n + bx1/n + c)n = x(2a+b)/(a+b+c), (18)

This can be proven by letting limn→∞(ax2/n + bx1/n + c)n = y and

ln y = lim
n→∞

n ln(ax2/n + bx1/n + c) = lim
n→∞

ln(ax2/n + bx1/n + c)

1/n

= lim
n→∞

ax2/n(−2/n2) lnx+ bx1/n(−1/n2) lnx

(−1/n2)(ax2/n + bx1/n + c)
=

2a+ b

a+ b+ c
lnx.

Plugging a = δ, b = 2(1− δ), c = −(1− δ) and x = 2 in (18), we have

lim
θ→∞

rQ(δ, θ) =
4

limθ→∞[δ22/θ + 2(1− δ)21/θ − (1− δ)]θ
− 1 =

4

4
− 1 = 0. �
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Remark 16. For any SNBP distribution, rQ = 0 mutually implies δ = 1, that is, X1

and X2 are independent. This result can be easily obtained from (17).
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Figure 1. Plots of Gini, Pearson, Kendall, and Quadrant correlations as a function of θ under the SNBP

distribution with different values of δ.

3.5. Correlation Plots

To visualize properties of each correlation measure, we plot Pearson, Gini, Kendall
tau and quadrant correlations against the parameter θ under different values of δ =
0, 0.2, 0.5, 0.9, 1.8 and 3.

Note that since the Gini correlation requires the existence of the first moment, θ
must be greater than 1. For the Pearson correlation, the second moment is required,
and thus we must restrict θ to be greater than 2. Also since δ ≤ 1 + θ is required for
the SNBP distribution, θ must be at least 2 for δ = 3.0 and at least 0.8 for δ = 1.8 as
shown in the Kendall tau and quadrant correlation plots.

From the plots in Figure 1, we see that each correlation is positive for δ =
0, 0.2, 0.5, 0.9 and negative for δ = 1.8, 3.0, which demonstrates the results in Remarks
1, 5, 9, 14.

Each plot also clearly shows each correlation decreasing in δ for each θ value. In other
words, the curve with a larger δ is below the curve with a smaller δ value. Hence, for
each θ value, the largest correlations are achieved in the LSBP distribution, which are
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represented by the blue curve in the plots. For the LSBP distribution, although both
the Gini correlation and Pearson correlation are equal to 1/θ, the Gini correlation can
approach 1 while the Pearson correlation is bounded above by 0.5 due to the different
moment requirements. From the plots, we see that the Kendall tau and quadrant
correlation have an upper bound of 1 when θ goes to 0.

Although all correlations are strictly decreasing in θ for δ = 0, this decreasing
property does not hold uniformly for other values of δ. For δ = 0.2, 0.5, 0.9, we see a
short increase followed by a decrease as θ values increase. For example, we are able
to find that the maximum quadrant correlation when δ = 0.2 is rQ = 0.3717 and
occurs at θ = 0.3372. The maximum quadrant correlation when δ = 0.5 is rQ = 0.1807
and occurs at θ = 0.4406, and the maximum quadrant correlation when δ = 0.9 is
rQ = 0.0294 and occurs at θ = 0.5325. The Kendall tau correlation curves are very
similar to those of the quadrant correlation.

From the plots, it is obvious to see that each correlation curve levels out close to
0 when θ becomes large, as stated in Remarks 2, 6, 10, 15. That means that the
dependence of random variables in light-tailed SNBP distributions is very weak.

4. Asymptotic properties

Let X = {xi}ni=1 = {(xi1, xi2)T }ni=1 be a random sample of size n from the SBNP dis-
tribution. Then each correlation can be estimated by its sample counterpart, denoted
accordingly as r̂p, γ̂1, γ̂2, r̂g, τ̂ and r̂Q. Note that although the two population Gini
correlations and the symmetric (arithmetic mean version) all be the same, their sample
values γ̂1, γ̂2, and r̂g may be different. Using the influence function approach, we are
able to establish asymptotic normality of each sample correlation. Influence functions
also allow us to measure the robustness of an estimator by testing the sensitivity to
small changes in the distribution.

4.1. Influence function approach

Let r be one of the correlation coefficients and r̂ be its corresponding sample estimator.
The influence function of r at x = (x1, x2)T is defined to be the change rate under
infinitesimal point mass contamination as follows.

IF(x; r,H) = lim
ε↓0

r((1− ε)H + εδx)− r(H)

ε
,

where δx denotes the point mass distribution at x. Checking with the regularity
conditions on r, we have the von Mises expansion

r̂ − r =
1

n

n∑
i=1

IF(xi; r,H) + op(n
−1/2). (19)

This representation shows the connection between the IF and the robustness of r,
observation by observation. Further, (19) yields the asymptotic normality of r̂,

√
n(r̂ − r) d→ N(0,EH(IF(X; r,H))2. (20)
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For more details on the influence function approach refer to Hampel et al. (1986, [7]),
or Serfling (1980, [18]). We use this method to establish the asymptotic distribution
of each correlation below.

4.2. Limiting distributions

Without loss of generality, we can assume that α1 = α2 = 1 since both r and r̂ are
invariant under changes of scale. All proofs in this section are reserved in Appendix.

Proposition 4.1. For a sample from SNBP(1, 1, δ, θ) with θ > 4, we have

√
n(r̂p − rp)

d−→ N(0, νp)

with

νp =
(θ − 2)2

θ2

[
(1 +

r2
p

2
)E(u2

1u
2
2)− 2rpE(u3

1u2) +
r2
p

2
E(u4

1)

]
, (21)

where ui = (θ − 1)Xi − 1, i = 1, 2 and the expectations are with respect to the
SNBP(1, 1, δ, θ).

The condition of θ > 4 guarantees the existence of the three expectations in (21).
In general, an explicit derivation of the asymptotic variance won’t be possible and
numerical integration will have to be utilized to evaluate νp. However, in the cases of
δ = 0 and δ = 1, we are able to find the explicit formula given below.

Corollary 4.2. Under LSBP(1, 1, θ) with θ > 4, sample Pearson correlation is asymp-
totically normally distributed as below.

√
n(r̂p − rp)

d−→ N(0, νp),

where

νp =
(θ2 + 2)(θ − 1)2(θ + 1)(θ + 2)

θ4(θ − 4)(θ − 3)
. (22)

From (22), it is obvious that θ > 4 is required for a positive asymptotic variance.
Also vp ↓ 1 as θ increases.

For δ = 1, the SNBP distribution has two independent components, X1 and X2,
with rp = 0. The asymptotic variance of the sample Pearson correlation, r̂p, is 1 as
shown below.

Corollary 4.3. Under SNBP(1, 1, δ = 1, θ) with θ > 4, we have

√
nr̂p

d−→ N(0, 1).

Remark 4 and the above corollary 4.3 enable us to conduct independence tests in
the SNBP distributions.
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Proposition 4.4. For a sample from SNBP(1, 1, δ, θ) with θ > 2, the limiting distri-
bution of the Gini correlation is

√
n(γ̂1 − γ1)

d−→ N(0, νγ)

with

νγ =
(2θ − 1)2

θ2
(Eu2

1v
2
2 − 2γ1Eu2

1v1v2 + γ2
1Eu2

1v
2
1), (23)

where ui = (θ−1)Xi−1, i = 1, 2 and vj = 1−2/(1+Xj)
θ, j = 1, 2, and the expectations

are with respect to the SNBP(1, 1, δ, θ).

For δ = 1 (the independent case) the asymptotic variance νγ can be expressed
explicitly as follows.

Corollary 4.5. Under SNBP(1, 1, δ = 1, θ) with θ > 2, we have
√
nγ̂1

d−→ N(0, νγ),
where

νγ =
(2θ − 1)2

3θ(θ − 2)
.

Note that the other sample Gini correlation, γ̂2, has the same limiting distribution as
γ̂1. This results in the symmetric Gini correlation that takes the arithmetic mean of the
two traditional Gini correlations having more statistical efficiency. More specifically,
under the same conditions and using the same notations of Proposition 4.4, we have

Proposition 4.6. For a sample from SNBP(1, 1, δ, θ) with θ > 2, the limiting distri-
bution of the sample symmetric Gini correlation, r̂g, is

√
n(r̂g − γ1)

d−→ N(0, νg),

where

νg =
(2θ − 1)2

2θ2

(
Eu2

1v
2
2 − 2γ1Eu2

1v1v2 + γ2
1Eu2

1v
2
1 + (1 + γ2

1)Eu1u2v1v2 − 2γ1Eu1u2v
2
1

)
.

(24)

For δ = 1 (the independent case) the asymptotic variance νg can be expressed
explicitly as follows.

Corollary 4.7. Under SNBP(1, 1, δ = 1, θ) with θ > 2, we have
√
nr̂g

d−→ N(0, νg),
where

νg =
7θ2 − 10θ + 1

6θ(θ − 2)
.

It is noted that νg ≤ νγ . For example, for δ = 1 and θ > 2, νg − νγ = −(θ +
1)2/(6θ(θ− 2)) < 0. This means that r̂g is more statistically efficient than γ̂1. Indeed,
this result can be applied to a more general class of distributions.
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Theorem 4.8. Under a bivariate distribution exchangeable up to a linear transfor-
mation with a finite second moment, the symmetric Gini correlation r̂g is more sta-
tistically efficient than any traditional Gini correlation of γ̂1 or γ̂2.

Theorem 4.8 states that a simple average of the two Gini correlations has statistical
advantage in distributions exchangeable up to a linear transformation. This class of
distributions includes the popular elliptical distributions. The conclusion in regards to
the normal distribution studied in [23] is an example of the above result.

For the Kendall tau correlation, we are unable to find an explicit formula for the
asymptotic variance. One must rely on numerical integration techniques to evaluate
variance based on the following result.

Proposition 4.9. For a sample from SNBP(1, 1, δ, θ), as n→∞,

√
n(τ̂ − τ)

d−→ N(0, ντ ),

where

ντ = 4E[4/(1 +X1 +X2 + δX1X2)θ − 2/(1 +X1)θ − 2/(1 +X2)θ + 1− τ ]2. (25)

For δ = 1 (the independent case) the asymptotic variance ντ can be expressed
explicitly as follows.

Corollary 4.10. Under SNBP(1, 1, δ = 1, θ), we have

√
nτ̂

d−→ N(0, 4/9).

An explicit formula for the asymptotic variance of the quadrant correlation coeffi-
cient is derived and its limiting distribution is as follows.

Proposition 4.11. For a sample from SNBP(1, 1, δ, θ), as n→∞,

√
n(r̂Q − rQ)

d−→ N(0, νQ),

where

νQ = 1− r2
Q. (26)

In Propositions 4.9 and 4.11, there are no moment requirements for the limiting
distributions of the Kendall tau and quadrant correlations. In this sense, Kendall tau
and quadrant correlations are more robust than the Gini correlations that require
a second finite moment and the Pearson correlation which requires a finite fourth
moment.

From (26), the asymptotic variance of the sample quadrant correlation is decreasing
with r2

Q and is less than or equal to 1. In the case of δ = 1, rQ = 0 and νQ = 1,
which is the same as νp. This means that the independence test based on the sample
quadrant correlation is asymptotically equivalent to the test based on the sample
Pearson correlation for θ > 4.

For δ 6= 1, νQ < 1 and is smaller than νp in (22). This seems to suggest that un-
der an LSBP distribution, the quadrant correlation is more efficient than the Pearson
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correlation. However, this is not true because the two correlations estimate different
quantities. In order to compare asymptotic efficiency, we must consider Fisher consis-
tent estimators so that they estimate the same parameter.

4.3. Asymptotic relative efficiency

We compare the asymptotic efficiencies of the correlations under the LSBP distri-
bution. We consider Fisher consistent estimators based on different correlations so
that they estimate the same parameter, ρ = 1/θ, and their asymptotic variances are
comparable. Let Hn be the empirical distribution of a random sample of size n from
distribution H. An estimator ρ̂ = ρ̂(Hn) is Fisher consistent for ρ if ρ̂(limn→∞Hn) = ρ.

Under LSBP(1, 1, θ), the Pearson correlation is 1/θ, hence the corresponding sample
Pearson correlation, r̂p, is Fisher consistent and denoted ρ̂p. The same is true for
the various Gini correlations, denoted ρ̂g and ρ̂γ , symmetric Gini and standard Gini,
respectively. For the Kendall tau, by the relationship in (14), we derive the Fisher
consistent estimator ρ̂τ to be ρ̂τ = 2τ̂ /(1 − τ̂), and its asymptotic variance, derived
through the Delta method, is

vτ = 4ντ/(1− τ)4.

For the quadrant correlation rQ = 4(21+1/θ−1)−θ−1 = 4(21+ρ−1)−1/ρ−1 := g(ρ), then
the Fisher consistent estimator based on the quadrant correlation is ρ̂Q = g−1(r̂Q),
and its asymptotic variance is vQ = k(ρ)−2νQ, where

k(ρ) =
∂rQ
∂ρ

=
4

ρ2
(21+ρ − 1)−1/ρ

(
ln(21+ρ − 1)− ln(2)[1 + (21+ρ − 1)−1]

)
.

We compute the asymptotic variance (ASV) of the quadrant correlation, ρ̂Q, and
asymptotic relative efficiencies (ARE) of estimators ρ̂p, ρ̂γ , ρ̂g, and ρ̂τ relative to ρ̂Q,
which are reported in Table 1. The asymptotic relative efficiency of one estimator, ρ̂1,
with respect to another, ρ̂2, is defined by

ARE(ρ̂1, ρ̂2) = ASV (ρ̂2)/ASV (ρ̂1).

When explicit formulas for the asymptotic variances of ρ̂γ , ρ̂g, and ρ̂τ are not available,
numerical integration techniques (the integral or integral2 functions of the “pracma”
package in R) are used to approximate them.

ρ ARE(ρ̂p) ARE(ρ̂γ) ARE(ρ̂g) ARE(ρ̂τ ) ASV(ρ̂Q)

0.100 3.1625 3.2454 3.8278 2.3574 5.1529

0.200 1.2516 3.1197 3.8157 2.2956 6.0552

0.333 N/A 2.5953 3.3355 2.2321 7.3860

0.500 N/A N/A N/A 2.1735 9.2563

1.000 N/A N/A N/A 2.0979 16.4344

Table 1. Asymptotic relative efficiencies (ARE) of estimators ρ̂p, ρ̂γ , ρ̂g , and ρ̂τ relative to ρ̂Q for the LSBP

distribution, with asymptotic variance (ASV(ρ̂Q)) of ρ̂Q.

From Table 1, it is apparent that the ASV of the quadrant correlation increases as
ρ increases. Kendall tau is twice as statistically efficient as the quadrant correlation.
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The ARE of the Pearson correlation is 3.16 for ρ = 0.1, but it reduces dramatically to
1.25 when ρ = 0.2. The ARE of the standard Gini correlation maintains better with
a value of 3.12 when ρ = 0.2 and a value of 2.60 for ρ = 0.3. The symmetric Gini
correlation, ρ̂g, is the most efficient; it is 18%, 22% and 29% more efficient than ρ̂γ for
ρ = 0.1, 0.2, and 0.3, respectively. Although ρ̂g is most efficient, it remains restricted
by the moment requirement. If θ ≤ 2 or ρ ≥ 0.5, the ASV of ρ̂g does not exist, which
explains the appearance of N/A in the table.

5. Finite sample performance

To explore finite sample performance of these correlations, we conduct two simulations
to study finite sample efficiency under LSBP distributions and to compare empirical
power of independence tests based on those correlations.

5.1. Finite sample efficiency

A small simulation is conducted to compare the efficiency of these correlations among
finite samples. Samples of sizes n = 30 and n = 300 were drawn from LSBP distribu-
tions. The R Package “Bivariate.Pareto” was used to generate data from the SNBP
distributions, setting α1 = α2 = 1 and δ = 0. Again, we consider ρ = 1/θ as the
parameter and its Fisher consistent estimators ρ̂p, ρ̂γ , ρ̂g, ρ̂τ , and ρ̂Q.

ρ n ρ̂p ρ̂γ ρ̂g ρ̂τ ρ̂Q

0.10 30 1.1423 (.0122) 1.2222 (.0133) 1.1403 (.0130) 1.6975 (.0315) 1.9733 (.0351)

300 1.2633 (.0204) 1.2539 (.0177) 1.1591 (.0162) 1.4948 (.0199) 2.0080 (.0298)

0.20 30 1.2793 (.0143) 1.2914 (.0150) 1.1969 (.0121) 1.8637 (.0320) 2.0589 (.0302)

300 1.6887 (.0345) 1.3720 (.0188) 1.2465 (.0179) 1.6423 (.0227) 2.4068 (.0314)

0.33 30 1.4534 (.0160) 1.3616 (.0169) 1.2597 (.0167) 2.0999 (.0441) 2.1153 (.0176)

300 2.4106 (.0395) 1.5581 (.0255) 1.3974 (.0223) 1.8451 (.0233) 2.7723 (.0372)

0.50 30 1.6600 (.0176) 1.4437 (.0174) 1.3390 (.0176) 2.4083 (.0300) 2.1238 (.0167)

300 3.3188 (.0402) 1.8175 (.0223) 1.6307 (.0232) 2.0913 (.0199) 3.0728 (.0399)

1.00 30 2.7374 (.0266) 2.0692 (.0289) 2.0163 (.0248) 3.3088 (.0587) 2.1988 (.0296)

300 7.3578 (.0775) 3.5521 (.0337) 3.4862 (.0285) 2.8389 (.0327) 2.6653 (.0490)

Table 2. The mean and standard deviation (in parenthesis) of
√
nRMSE of ρ̂p, ρ̂γ , ρ̂g , ρ̂τ and ρ̂Q under

LSBP distributions.

An estimator ρ̂(m) is calculated for the mth sample (m = 1, 2, ...M), and the root
mean squared error (RMSE) is computed using the formula below.

RMSE(ρ̂) =

√√√√ 1

M

M∑
m=1

(ρ̂(m) − ρ)2.

With M = 3000, the procedure is repeated 30 times to procure the mean and standard
deviation of

√
nRMSE. In Table 2, we display the mean and standard deviation (in

parenthesis) of
√
nRMSE of ρ̂p, ρ̂γ , ρ̂g, ρ̂τ , and ρ̂Q.
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We notice an increasing trend in
√
nRMSEs as ρ increases for each sample size. We

see that ρ̂g outperforms the regular Gini correlation ρ̂γ in all cases, demonstrating the
efficiency advantage of the symmetric Gini correlation. Also, it is the most efficient
among all correlations except in the large sample case when ρ = 1. In this instance,
the quadrant and Kendall tau correlations perform better, and the Pearson correlation
performs the worst. It is interesting to see that the Gini correlations, ρ̂g and ρ̂γ , perform
extremely well in small sample size n = 30. As expected, the quadrant correlation
performs the worst of the measures evaluated here.

5.2. Independence tests

We conduct independence tests based on different correlations. The following null and
alternative hypotheses are considered.

H0 : δ = 1 vs Ha : δ = 0. (27)

The test based on r̂ is to reject independence if r̂ > q1−α
√
νr/n where r̂ represents

one of the sample correlations r̂p, γ̂1, r̂g, τ̂ and r̂Q, while νr is the asymptotic variance
of r̂ under H0 and q1−α is the quantile of the standard normal distribution.

We generate samples of size n = 30 and n = 300 from SNBP(1, 1, δ = 1, θ) and
LSBP(1, 1, θ) for θ = 1, 2, 3, 4, 5 and 10. Empirical size and power of tests are calculated
based on M = 10000 repetitions. The results are listed in Table 3.

Size Power

θ n r̂p γ̂ r̂g τ̂ r̂Q r̂p γ̂ r̂g τ̂ r̂Q

10 30 .0696 .0485 .0517 .0628 .0744 .1626 .1050 .1260 .1169 .1090

300 .0608 .0525 .0527 .0509 .0402 .5003 .4162 .4580 .3603 .1820

5 30 .0712 .0417 .0482 .0630 .0774 .2814 .1809 .2229 .1945 .1640

300 .0598 .0483 .0506 .0540 .0421 .8679 .8185 .8829 .7607 .4230

4 30 N/A .0318 .0384 .0618 .0745 N/A .2107 .2747 .2441 .1851

300 N/A .0440 .0491 .0517 .0431 N/A .9140 .9573 .8930 .5627

3 30 N/A .0172 .0299 .0323 .0704 N/A .2208 .3259 .3297 .2340

300 N/A .0375 .0404 .0525 .0436 N/A .9676 .9922 .9771 .7478

2 30 N/A N/A N/A .0606 .0728 N/A N/A N/A .5027 .3366

300 N/A N/A N/A .0505 .0391 N/A N/A N/A .9996 .9547

1 30 N/A N/A N/A .0609 .0700 N/A N/A N/A .8582 .6395

300 N/A N/A N/A .0510 .0375 N/A N/A N/A 1.000 1.000

Table 3. Empirical size and power of independence tests (with α = 0.05) based on each correlation.

From Table 3, we see that all tests maintain the nominal size 0.05 well, especially
when n = 300. The power of tests increase substantially when sample size n increases
from 30 to 300. Also, there is a clear trend of increasing power as θ decreases. This
is because for large values of θ, the difference between the independent distribution
under H0 and the LSBP distribution under Ha is small, making it harder for the
tests to reject H0; hence, the power of each test is relatively low compared to those
with small values of θ. The Kendall tau test performs much better than the quadrant
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correlation test. Although the quadrant correlation test is asymptotically equivalent to
the Pearson correlation test for θ > 4, its finite sample performance is extremely poor,
about 32% and 46% lower than the power of the Pearson correlation test for θ = 10
and θ = 5, respectively. Again, the test based on the symmetric Gini correlation, r̂g,
is more powerful than the test based on traditional Gini correlation in any case. Also,
the symmetric Gini test performs the best when θ = 3, 4, 5. However, since r̂g requires
the existence of finite second moment, it is not suitable for inferences on bivariate
Pareto distributions with θ ≤ 2. In that case, the Kendall tau is the best, most robust,
choice.

6. Real data analysis

For the purpose of illustrating a situation in which these formulas prove use-
ful for determining correlations in the SNBP distribution, we gather the Palmer
Drought Severity Index (PDSI) for Mississippi and Tennessee for every month
from January 1896 until December 2017. The data is freely accessible at: https :
//www.ncdc.noaa.gov/cag/statewide/time − series/22/pdsi. The PDSI is an often
used measurement of aridity. A negative PDSI corresponds to the occurrence of a
drought, hence we define drought duration as the lengths of negative runs in our PDSI
values. Thus, for all PDSI values, we obtain 90 occurrences of drought in both states.
The longest drought duration in MS occurred from June, 1953 to March, 1957, lasting
44 months, while in TN the longest drought duration was 55 months and continued
from July, 1939 to January, 1944.

Figure 2 shows histograms of drought duration in each state and a scatterplot of
the data. In the histogram plots, we add the kernel smoothing density curves (KSD)
that are estimated using the default settings of the “density” function in R. Marginal
Pareto density curves are added to the histograms and the density contours in the
scatterplot are based on the fitted SNBP model described below.

The model is fitted to the drought duration data using the two stage Maximum Like-
lihood procedure as laid out in [15]. The estimated parameters are α̂1 = 0.0608, α̂2 =

0.0625, θ̂ = 2.6811, and δ̂ = 1.1718. We then implement the bivariate Kolmogorov-
Smirnov goodness of fit test laid out in [9]. The test statistic we get from our data is
0.3074. Based on 2000 test statistics from the Monte Carlo simulation procedure, the
p-value of the test is 0.6735. Hence we can conclude that this data comes from the
SNBP distribution.

Correlations

rp γ1 γ2 rg τ rQ

SNBP model -0.0163 -0.0439 -0.0439 -0.0439 -0.0228 -0.0235

Drought data 0.0717 -0.0170 0.0154 -0.0008 -0.0959 -0.0750

Standard Errors

rp γ1 γ2 rg τ rQ

SNBP model NA 0.1943 0.1943 0.1555 0.0749 0.0999

Jackknife method 0.1294 0.1458 0.1449 0.1346 0.0813 0.1175

Table 4. Sample and population correlations between drought duration of MS and TN. Standard errors of
sample correlations are estimated by the model and by the Jackknife method.
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Figure 2. Drought Durations in MS and TN during 1896 and 2017. (a) Histogram of drought durations in
MS. (b) Histogram of drought durations in TN. (c) Scatter plot with bivariate Pareto density contours.
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With the fitted SNBP model, we are able to compute population correlations and
compare with sample correlations computed from data. For each sample correlation,
we use two methods to estimate its standard error. One is computed from the asymp-
totic variance established previously in Section 4.2. The other is computed using the
Jackknife method. Let r̂(−i) be the jackknife pseudo value of a correlation estimator r̂

based on the sample with the ith observation deleted. Then the jackknife variance is

v̂r =
n− 1

n

n∑
i=1

(r̂(−i) − ¯̂r(·))
2 (28)

where ¯̂r(·) = 1/n
∑n

i=1 r̂(−i). See [19] for more details.
The results are listed in Table 4. From the table, we can see that each sample

correlation is close to its population correlation, indicating that the SNBP model
is a good fit to the data. Standard errors based on the model and nonparametric
jackknife are also close to each other. Note that the asymptotic variance of the Pearson
correlation is not available since it requires θ > 4 but in the fitted model, θ = 2.6811.
From the table, we see that all correlations are close to zero, suggesting independence in
the drought durations of the two states. It is a little surprising to find that geographic
closeness of MS and TN does not necessarily imply a high correlation in the lengths
of droughts in the two states. The formal tests based on each correlation studied in
Section 5.2, using either standard error, clearly confirm independence.

Models AIC BIC

SNBP(α1, α2, δ, θ) 1150.3 1160.3

SNBP(α1, α2, δ = 1, θ) 1142.7 1150.2

ParetoII(α1, θ1)ParetoII(α2, θ2) 1143.5 1153.5

Table 5. Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) for comparison of

three models.

The independence leads us to also look at two independent models. The first is
the SNBP model with δ = 1 and the second is univariate Pareto II modeling of the
drought duration of each state separately. We gather the Akaike Information Criterion
(AIC) and Bayesian Information Criterion (BIC) for comparing those three models
and present the information in Table 5. From the values, we see that the independent
models for drought durations in MS and TN are preferred to the SNBP with δ = 1.172,
the conclusion also supported by each correlation. We also see that the bivariate Pareto
model SNBP(α1, α2, δ = 1, θ) is slightly preferred over modeling each state separately.
It is interesting to see that though the two variables are independent, a joint bivariate
modeling might be beneficial. Sharing a common shape parameter results in a better
modeling of drought durations of the two states.

7. Conclusion

In this paper, we take a close look at correlations in the Sankaran and Nair bivariate
Pareto distribution, which contains the Lindley-Singpurwalla bivariate Pareto as a
special case. These distributions have proven to be very useful in modelling lifetime
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data, hydrology, competing risk data, and many other datasets. When using a bivariate
model as a joint distribution of two components, it is often useful to measure the
correlation between the two components. We provide explicit formulas for the Gini,
Pearson, Kendall tau, and quadrant correlations in the SNBP distribution (of which
the formulas for the Gini and Kendall tau correlations appear to have never been
published before). We show that all correlations considered capture dependence in
the SNBP distributions. That is, zero values of those correlations mutually imply
independence. The parameter δ in the SNBP also allows negative correlations in the
SNBP distributions.

We are able to use influence functions previously established for each correlation to
give information about the asymptotic distributions of the correlations and calculate
asymptotic variances. Pearson correlation is shown to be least robust since it requires a
finite fourth moment for asymptotic variance. Quadrant and Kendall tau correlations
are most robust and have no moment assumptions. Robustness of the Gini correlation
lies somewhere between that of Pearson and that of Kendall tau and Quadrant. We also
consider Fisher consistent correlations in the LSBP distributions in order to compare
asymptotic variances. We find that the quadrant correlation is least efficient. The
symmetric Gini correlation, the simple average of the two traditional Gini correlations,
is more efficient than either traditional one. This result is extended to a more general
class of distributions including elliptical distributions with normal models as a special
case. Finite sample performance comparison has been conducted. Again, quadrant
correlation performs worse than Kendall tau correlation in all cases. The symmetric
Gini correlation is superior to all others when the second moment of the distribution is
finite. In terms of compromising efficiency and robustness, the Kendall tau correlation
proves to be more appealing.

8. Appendix

Proof of Proposition 4.1. Devlin, Gnanadesikan and Kettering (1975, [5]) give the
influence function for the Pearson correlation,

IF((x1, x2)T ; rp, H) =
(x1 − µ1)(x2 − µ2)

σ1σ2
− 1

2
rp[

(x1 − µ1)2

σ2
1

+
(x2 − µ2)2

σ2
2

],

where µi and σi are the mean and standard deviation of Xi for i = 1, 2. Then, for
(X1, X2) ∼ H = SNBP(1, 1, δ, θ),

IF((x1, x2)T ; rp, H)

=
θ − 2

θ

[
((θ − 1)x1 − 1)((θ − 1)x2 − 1)− rp

2
[((θ − 1)x1 − 1)2 + ((θ − 1)x1 − 1)2]

]
.

Let u1 = (θ − 1)X1 − 1 and u2 = (θ − 1)X2 − 1. Then,

νp = E[IF((X1, X2)T ; rp, H)2] =
(θ − 2)2

θ2
E[u1u2 −

rp
2

(u2
1 + u2

2)]2

=
(θ − 2)2

θ2

[
(1 +

r2
p

2
)E(u2

1u
2
2)− 2rpEu3

1u2 +
r2
p

2
Eu4

1

]
.
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The last equation is due to the symmetric role of u1 and u2 in the expectations so
that Eu4

1 = Eu4
2 and Eu3

1u2 = Eu1u
3
2. �

Proof of Corollary 4.2. For a LSBP distribution, we have rp = 1/θ and

Eu2
1u

2
2 =

θ3 − θ2 + 14θ + 4

(θ − 4)(θ − 3)(θ − 2)
, Eu3

1u2 =
3(3θ2 + θ + 2)

(θ − 4)(θ − 3)(θ − 2)
,

Eu4
1 =

3θ(3θ2 + θ + 2)

(θ − 4)(θ − 3)(θ − 2)
.

Then,

νp =
(θ − 2)2

θ4
[(θ2 +

1

2
)E[u2

1u
2
2]− 2θE[u3

1u2] +
1

2
E[u4

1]] =
(θ2 + 2)(θ − 1)2(θ + 1)(θ + 2)

θ4(θ − 4)(θ − 3)
.

�

Proof of Corollary 4.3. For δ = 1, rp = 0 and Eu2
1u

2
2 = Eu2

1Eu2
2 = [Eu2

1]2 =
θ2/(θ − 2)2. Plugging them in (21), we have νp = 1. �

Proof of Poposition 4.4. Vanderford, Sang, and Dang (2020, [23]) proposed the
influence function of the traditional Gini correlation for any nondegenerate bivariate
distribution H with finite first moment,

IF((x1, x2)T ; γ1, H)

=
(x1 − EX1)(F2(x2)− EF2(X2))

cov(X1, F1(X1))
− γ1

(x1 − EX1)(F1(x1)− EF1(X1))

cov(X1, F1(X1))
. (29)

Thus, for (X1, X2) ∼ SNBP(1, 1, δ, θ),

IF((x1, x2)T ; γ1, H)

=
2θ − 1

θ

[
((θ − 1)x1 − 1)(1− 2

(1 + x2)θ
)− γ1((θ − 1)x1 − 1)(1− 2

(1 + x1)θ
)

]
.

Then, with the notations ui = (θ− 1)Xi − 1 and vj = 1− 2(1 +Xi)
−θ for i = 1, 2, we

have

νγ1 = E[IF((X1, X2)T ; γ1, H)2] =
(2θ − 1)2

θ2
E(u1v2 − γ1u1v1)2

=
(2θ − 1)2

θ2
(E[u2

1v
2
2]− 2γ1E[u2

1v1v2] + γ2
1E[u2

1v
2
1]).

�
Proof of Corollary 4.5. For δ = 1, we have γ = 0, Eu2

1v
2
2 = Eu2

1Ev2
2 = θ/(3(θ − 2)).

Plugging in (23), we derive the explicit formula of νγ .
�

Proof of Proposition 4.6. The influence function of symmetric Gini correlation for
H = SNBP(1, 1, δ, θ) is

IF((x1, x2)T ; rg, H) = (IF((x1, x2)T ; γ1, H) + IF((x1, x2)T ; γ2, H))/2.
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Hence, with γ1 = γ2, symmetric roles of u1, u2, and symmetric roles of v1, v2, we have

νg = 1/4E(IF((X1, X2)T ; γ1, H) + IF((X1, X2)T ; γ2, H))2

=
(2θ − 1)2

2θ2

(
E[u2

1v
2
2 − 2γ1u

2
1v1v2 + γ2

1u
2
1v

2
1 + (1 + γ2

1)u1u2v1v2 − 2γ1u1u2v
2
1]
)
.

�
Proof of Corollary 4.7. For δ = 1, we have γ = 0, Eu2

1v
2
2 = Eu2

1Ev2
2 = θ/(3(θ − 2))

and Eu1u2v1v2 = [Eu1v1]2 = θ2/(2θ − 1)2. Plugging in (24), we derive the explicit
formula of νg. �

Proof of Theorem 4.8. From (29), we denote IF((x1, x2)T ; γ1, H) = δ1(x1, x2) and
similarly, IF((x1, x2)T ; γ2, H) = δ2(x1, x2). For a bivariate distribution H with finite
second moments, exchangeable up to a linear combination, we have γ1 = γ2 and
Eδ1(X1, X2)2 = Eδ2(X1, X2)2. Thus, the asymptotic variance of r̂g is

νg =
1

4
E[δ1(X1, X2)2 + δ2(X1, X2)2 + 2δ1(X1, X2)δ2(X1, X2)]

≤ 1

4
E[2δ1(X1, X2)2 + 2δ2(X1, X2)2]

= E[δ1(X1, X2)2] = νγ .

�
Proof of Proposition 4.9. Croux and Dehon (2010, [4]) published the influence
function of the Kendall tau correlation as follows,

IF((x1, x2)T ; τ,H) = 2[2P ((x1 −X1)(x2 −X2) > 0)− 1− τ ].

Then,

ντ = E[IF((X1, X2)T ; τ,H)2]

= E[(2[2P ((X1 −X ′1)(X2 −X ′2) > 0)− 1− τ ])2]

= 4E[2(1 + 2(1 +X1 +X2)−θ − (1 +X1)−θ − (1 +X2)−θ)− 1− τ ]2

= 4E[4(1 +X1 +X2)−θ − 2(1 +X1)−θ − 2(1 +X2)−θ + 1− τ ]2.

�
Proof of Corollary 4.10. For δ = 1, τ = 0 and

ντ = 4E[4(1 +X1 +X2 +X1X2)−θ − 2(1 +X1)−θ − 2(1 +X2)−θ + 1]2

= 4

(
E
[

4

(1 +X1)θ(1 +X2)θ

]2

+ 2E
[

2

(1 +X1)θ

]2

+ 1− 4E
8

(1 +X1)2θ(1 +X2)θ

+4E
4

(1 +X1)θ(1 +X2)θ
− 4E

2

(1 +X1)θ

)
= 4(

16

9
+

8

3
+ 1− 16

3
+ 4− 4)

=
4

9
.
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Proof of Proposition 4.11. Shevlyakov and Vilchevski (2002, [22]) give the influence
function for the quadrant correlation,

IF((x1, x2)T ; rQ, H) = sign[(x1 −med(X1))(x2 −med(X2))]− rQ.

Thus,

νQ = E[sign[(X1 −med(X1))(X2 −med(X2))]− rQ]2

= 1 + r2
Q − 2rQEsign((X1 −Med(X1))(X2 −Med(X2)))

= 1 + r2
Q − 2r2

Q

= 1− r2
Q.

�
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