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a b s t r a c t

Westudy themutual information estimation formixed-pair randomvariables. One random
variable is discrete and the other one is continuous. We develop a kernel method to
estimate the mutual information between the two random variables. The estimates enjoy
a central limit theorem under some regular conditions on the distributions. The theoretical
results are demonstrated by simulation study.
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1. Introduction

The entropy of a discrete random variable X ∈ Rd with countable support {x1, x2, . . .} and pi = P(X = xi) is defined to be

H(X) = −

∑
i

pi log pi,

and the (differential) entropy of a continuous random variable Y ∈ Rd with probability density function f (y) is defined as

H(Y ) = −

∫
Rd

f (y) log f (y)dy.

If d ≥ 2, H(X) or H(Y ) is also called the joint entropy of the components in X or Y . Entropy is a measure of distribution
uncertainty and naturally it has application in the fields of information theory, statistical classification, pattern recognition
and so on.

Let PX , PY be probabilitymeasures on some arbitrarymeasure spacesX andY respectively. Let PXY be the joint probability
measure on the space X ×Y . If PXY is absolutely continuous with respect to the product measure PX × PY , let

dPXY
d(PX×PY )

be the
Radon–Nikodym derivative. Then the general definition of the mutual information (e.g., Gao et al., 2017) is given by

I(X, Y ) =

∫
X×Y

dPXY log
dPXY

d(PX × PY )
. (1)
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If two random variables X and Y are either both discrete or both continuous then the mutual information of X and Y can be
expressed in terms of entropies as

I(X, Y ) = H(X) + H(Y ) − H(X, Y ). (2)

However, in practice and application, we often need to work on a mixture of continuous and discrete random variables.
There are several ways for themixture. (1) One random variable X is discrete and the other random variable Y is continuous;
(2) A random variable Z has both discrete and continuous components, i.e., Z = X with probability p and Z = Y with
probability 1 − p, where 0 < p < 1, X is a discrete random variable and Y is a continuous random variable; (3) a random
vector with each dimension component being discrete, continuous or mixture as in (2).

In Nair et al. (0000), the authors extend the definition of the joint entropy for the first case mixture, i.e., for the pair of
random variables, where the first random variable is discrete and the second one is continuous. Our goal is to study the
mutual information for that case and provide the estimation of the mutual information from a given i.i.d. sample {Xi, Yi}

N
i=1.

In Gao et al. (2017), the authors applied the k-nearest neighbor method to estimate the Radon–Nikodym derivative and,
therefore, to estimate the mutual information for all three mixed cases. In the literature, if the random variables X and Y
are either both discrete or both continuous, the estimation of mutual information is usually performed by the estimation of
the three entropies in (2). The estimation of a differential entropy has been well studied. An incomplete list of the related
research includes the nearest-neighbor estimator (Kozachenko and Leonenko, 1987; Tsybakov and van der Meulen, 1994;
Leonenko et al., 2008); the kernel estimator (Ahmad and Lin, 1976; Joe, 1989; Hall, 1987; Hall and Morton, 1993) and the
orthogonal projection estimator (Laurent, 1996, 1997). Basharin (1959) studied the plug-in entropy estimator for the finite
value discrete case and obtained the mean, the variance and the central limit theorem of this estimator. Vu et al. (2007)
studied the coverage-adjusted entropy estimator with unobserved values for the infinite value discrete case.

2. Main results

Consider a randomvector Z = (X, Y ).We call Z amixed-pair ifX ∈ R is a discrete randomvariablewith countable support
X = {x1, x2, . . .} while Y ∈ Rd is a continuous random variable. Observe that Z = (X, Y ) induces measures {µ1, µ2, . . .}
that are absolutely continuous with respect to the Lebesgue measure, where µi(A) = P(X = xi, Y ∈ A), for every Borel set
A in Rd. There exists a non-negative function g(x, y) with h(x) :=

∫
Rd g(x, y)dy be the probability mass function on X and

f (y) :=
∑

i gi(y) be the marginal density function of Y . Here, gi(y) = g(xi, y), i ∈ N. In particular, denote pi = h(xi), i ∈ N. We
have that

fi(y) =
1
pi
gi(y)

is the probability density function of Y conditioned on X = xi. In Nair et al. (0000), the authors gave the following regulation
of mixed-pair and then defined the joint entropy of a mixed-pair.

Definition 2.1 (Good Mixed-pair). A mixed-pair random variables Z = (X, Y ) is called good if the following condition is
satisfied:∫

X×Rd
|g(x, y) log g(x, y)|dxdy =

∑
i

∫
Rd

|gi(y) log gi(y)|dy < ∞.

Essentially, we have a good mixed-pair random variables when restricted to any of the X values, the conditional
differential entropy of Y is well-defined.

Definition 2.2 (Entropy of a Mixed-pair). The entropy of a good mixed-pair random variable is defined by

H(Z) = −

∫
X×Rd

g(x, y) log g(x, y)dxdy = −

∑
i

∫
Rd

gi(y) log gi(y)dy.

As gi(y) = pifi(y) then we have that

H(Z) = −

∑
i

∫
Rd

gi(y) log gi(y)dy

= −

∑
i

∫
Rd

pifi(y) log pifi(y)dy

= −

∑
i

pi log pi

∫
Rd

fi(y)dy −

∑
i

pi

∫
Rd

fi(y) log fi(y)dy

= −

∑
i

pi log pi −
∑

i

pi

∫
Rd

fi(y) log fi(y)dy

= H(X) +

∑
i

piH(Y |X = xi).

(3)



A. Beknazaryan, X. Dang and H. Sang / Statistics and Probability Letters 148 (2019) 9–16 11

We take the convention log 0 = 0 and log 0/0 = 0. From the general formula of the mutual information (1), we
get that

I(X, Y ) =

∫
X×Rd

g(x, y) log
g(x, y)dxdy
h(x)f (y)dxdy

dxdy

=

∑
i

∫
Rd

gi(y) log
gi(y)
pif (y)

dy

=

∑
i

∫
Rd

gi(y) log gi(y)dy −

∑
i

∫
Rd

gi(y) log pidy −

∑
i

∫
Rd

gi(y) log f (y)dy

=

∑
i

∫
Rd

pifi(y) log[pifi(y)]dy −

∑
i

pi log pi

∫
Rd

fi(y)dy −

∫
Rd

f (y) log f (y)dy

=

∑
i

pi log pi

∫
Rd

fi(y)dy +

∑
i

pi

∫
Rd

fi(y) log fi(y)dy −

∑
i

pi log pi −
∫
Rd

f (y) log f (y)dy

= −H(Z) + H(X) + H(Y ) = H(Y ) −

∑
i

piH(Y |X = xi) := H(Y ) −

∑
i

Ii.

(4)

Let (X, Y ), (X1, Y1), . . . , (XN , YN ) be a random sample drawn from a mixed distribution with discrete component having
support {0, 1, . . . ,m}, and let pi = P(X = i), 0 ≤ i ≤ m with 0 < pi < 1,

∑
pi = 1. Also suppose that the continuous

component has pdf f (y). Denote p̂i =
∑N

k=1 I(Xk = i)/N , 0 ≤ i ≤ m, and let

Īi = −p̂i

[
Np̂i

]−1 N∑
k=1

I(Xk = i) log fi(Yk)

= −N−1
N∑

k=1

I(Xk = i) log fi(Yk)

(5)

and

H̄(Y ) = −N−1
N∑

k=1

log f (Yk) (6)

be the estimators of Ii = piH(Y |X = i), 0 ≤ i ≤ m, and H(Y ) respectively, where fi(y) is the probability density
function of Y conditioned on X = i, 0 ≤ i ≤ m. Denote a = (1, −1, . . . ,−1)⊺. Let Σ be the covariance matrix of
(log f (Y ), I(X = 0) log f0(Y ), . . . , I(X = m) log fm(Y ))⊺.

Theorem 2.1. a⊺Σa > 0 if and only if X and Y are dependent. For the estimator

Ī(X, Y ) = H̄ −

m∑
i=0

Īi (7)

of I(X, Y ) we have that
√
N(Ī(X, Y ) − I(X, Y )) → N(0, a⊺Σa) (8)

given that X and Y are dependent. Furthermore, the variance a⊺Σa can be calculated by

a⊺Σa = var
(
log f (Y )

)
+

m∑
i=0

piEi[log fi(Y )]2 −

m∑
i=0

p2i
(
Ei[log fi(Y )]

)2
− 2

m∑
i=0

pi[Ei log fi(Y ) log f (Y ) − Ei log fi(Y )E log f (Y )]

− 2
∑

0≤i<j≤m

pipj[Ei log fi(Y )][Ej log fj(Y )],

(9)

where Ei is the conditional expectation of Y given X = i, 0 ≤ i ≤ m.
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Proof. First of all, a⊺Σa ≥ 0 since Σ is the variance covariance matrix. If a⊺Σa = 0 then

var

(
log f (Y ) −

m∑
i=0

I(X = i) log fi(Y )

)
= a⊺Σa = 0

and log f (Y ) −
∑m

i=0 I(X = i) log fi(Y ) ≡ C for some constant C . But

log f (Y ) −

m∑
i=0

I(X = i) log fi(Y ) =

m∑
i=0

I(X = i) log
f (Y )
fi(Y )

.

Hence log f (Y )
fi(Y )

≡ C . Then fi(y) = cf (y) for some constant c > 0 and for all 0 ≤ i ≤ m. But f (y) =
∑m

i=0 pifi(y) =

cf (y)
∑m

i=0 pi = cf (y). Hence, c ≡ 1 and fi(y) = f (y) for all 0 ≤ i ≤ m. Then X and Y are independent. On the other
hand, if X and Y are independent, then fi(y) = f (y) for all 0 ≤ i ≤ m. Therefore, log f (Y ) −

∑m
i=0 I(X = i) log fi(Y ) = 0 and

a⊺Σa = 0. Hence, a⊺Σa = 0 if and only if X and Y are independent.
Notice that the vector (H̄(Y ), Ī0, . . . , Īm)⊺ is the sample mean of a sequence of i.i.d. random vectors

{(log f (Yk), I(Xk = 0) log f0(Yk), . . . , I(Xk = m) log fm(Yk))⊺}Nk=1

with mean (H(Y ), I0, . . . , Im)⊺. Then, by central limit theorem, we have

√
N

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝

H̄
Ī0
...

Īm

⎞⎟⎟⎟⎠−

⎛⎜⎜⎝
H
I0
...

Im

⎞⎟⎟⎠
⎞⎟⎟⎟⎠ → N(0̄, Σ),

and, given a⊺Σa > 0, we have (8). By the formula for variance decomposition, we have

var
(
I(X = i) log fi(Y )

)
= E

{
var[I(X = i) log fi(Y )|X]

}
+ var

{
E[I(X = i) log fi(Y )|X]

}
= E

{
I(X = i)var[log fi(Y )|X]

}
+ var

{
I(X = i)E[log fi(Y )|X]

}
= E

{
I(X = i)

m∑
j=0

varj(log fj(Y ))I(X = j)
}

+ var
{
I(X = i)

m∑
j=0

Ej(log fj(Y ))I(X = j)
}

= vari[log fi(Y )]E
{
I(X = i)

}
+
(
Ei[log fi(Y )]

)2
var

{
I(X = i)

}
= pivari[log fi(Y )] + (pi − p2i )

(
Ei[log fi(Y )]

)2
= piEi[log fi(Y )]2 − p2i

(
Ei[log fi(Y )]

)2
,

(10)

0 ≤ i ≤ m. Here vari is the conditional variance of Y when X = i, 0 ≤ i ≤ m. By similar calculation,

Cov
(
I(X = i) log fi(Y ), I(X = j) log fj(Y )

)
= −pipj[Ei log fi(Y )][Ej log fj(Y )],

(11)

for all 0 ≤ i < j ≤ m, and

Cov
(
I(X = i) log fi(Y ), log f (Y )

)
= pi[Ei log fi(Y ) log f (Y ) − Ei log fi(Y )E log f (Y )].

(12)

Thus, the covariancematrixΣ of (log f (Y ), I(X = 0) log f0(Y ), . . . , I(X = m) log fm(Y ))⊺ and therefore a⊺Σa can be calculated
by the above calculation (10)–(12). We then have (9). ■

We consider the case when the random variables X and Y are dependent. Note that in this case a⊺Σa > 0 and we have
(8). However, Ī(X, Y ) is not a practical estimator since the density functions involved are not known.

Now let K (·) be a kernel function in Rd and let h be the bandwidth. Then

f̂ik(y) =

{
(Np̂i − 1)hd

}−1∑
j̸=k

I(Xj = i)K {(y − Yj)/h}
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Table 1
True value of the mutual information and the mean value of the estimates.
Mixture t(3, 0, 1) t(3, 0, 1) t(3, 0, 1) pareto(1, 2)

t(12, 0, 1) t(3, 2, 1) t(3, 0, 3) pareto(1, 10)

MI 0.011819 0.20023 0.102063 0.201123
Mean of estimates 0.01167391 0.1991132 0.1014199 0.2010447
(a⊺Σa/N)1/2 0.0006617 0.0025 0.0018 0.0023
Sample sd 0.0006616724 0.002345997 0.001819982 0.002349275

are the ‘‘leave-one-out’’ estimators of the functions fi, 0 ≤ i ≤ m, and

Îi = −N−1
N∑

k=1

I(Xk = i) log f̂ik(Yk) (13)

are estimators of Ii = piH(Y |X = i), 0 ≤ i ≤ m. Also

Ĥ = −N−1
N∑

k=1

log f̂k(Yk) (14)

is an estimator of H(Y ), where

f̂k(y) =

{
(N − 1)hd

}−1∑
j̸=k

K {(y − Yj)/h}

=

{
(N − 1)hd

}−1∑
j̸=k

[

m∑
i=0

I(Xk = i)]K {(y − Yj)/h}

=

m∑
i=0

Np̂i − 1
N − 1

f̂ik(y).

(15)

Theorem 2.2. Assume that the tails of f0, . . . , fm are decreasing like |x|−α0 , . . . , |x|−αm , respectively, as |x| → ∞. Also assume
that the kernel function has appropriately heavy tails as in Hall (1987). If h = o(N−1/8) and α0 · · · , αm are all greater than 7/3 in
the case d = 1, greater than 6 in the case d = 2 and greater than 15 in the case d = 3, then for the estimator

Î(X, Y ) = Ĥ −

m∑
i=0

Îi, (16)

we have
√
N(Î(X, Y ) − I(X, Y )) → N(0, a⊺Σa). (17)

Proof. Under the conditions in the theorem, applying the formula (3.1) or (3.2) from Hall and Morton (1993), we have

Ĥ = H̄ + o(N−1/2), Î0 = Ī0 + o(N−1/2), . . . , Îm = Īm + o(N−1/2).

Together with Theorem 2.1, we have (17). ■

We may take the probability density function of Student-t distribution with proper degree of freedom instead of the
normal density function as the kernel function. On the other hand, if X and Y are independent then I(X, Y ) = Ī(X, Y ) = 0
and we have that Î(X, Y ) = o(N−1/2).

3. Simulation study

In this section we conduct a simulation study with m = 1, i.e., the random variable X takes two possible values 0 and 1,
to confirm the main results stated in (17) for the kernel mutual information estimation of good mixed-pairs. First we study
some one dimensional examples. Let t(ν, µ, σ ) be the Student t distribution with degree of freedom ν, location parameter
µ and scale parameter σ and let pareto(xm, α) be the Pareto distribution with density function f (x) = αxα

mx
−(α+1)I(x ≥ xm).

We study the mixture for the following four cases: (1) t(3, 0, 1) and t(12, 0, 1); (2) t(3, 0, 1) and t(3, 2, 1); (3) t(3, 0, 1) and
t(3, 0, 3); (4) pareto(1, 2) and pareto(1, 10). For each case, p0 = 0.3 for the first distribution and p1 = 0.7 for the second
distribution.

The second row of Table 1 lists the mathematica calculation of the mutual information (MI) as stated in (4) for each case.
The third row of Table 1 gives the average of 400 estimates based on formula (16). For each estimate, we use the probability
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Fig. 1. The histograms with kernel density fits of M = 400 estimates. Top left: t(3, 0, 1) and t(12, 0, 1). Top right: t(3, 0, 1) and t(3, 2, 1). Bottom left:
t(3, 0, 1) and t(3, 0, 3). Bottom right: pareto(1, 2) and pareto(1, 10).

density function of the Student t distribution with degree of freedom 3, i.e. t(3, 0, 1), as the kernel function. We also have
simulation study with kernel functions satisfying the conditions in the main results and obtained similar results. We take
h = N−1/5 as the bandwidth for the first three cases and h = N−1/5/24 for the last case. The data size for each estimate is
N = 50,000 in each case. The Pareto distributions pareto(1, 2) and pareto(1, 10) have very dense area on the right of 1. This
is the reason that we take a relatively small bandwidth for this case. To apply the kernel method in estimation, one should
select an optimal bandwidth based on some criteria, for example, to minimize the mean squared error. It is interesting to
investigate the bandwidth selection problem from both theoretical and application viewpoints. However, it seems that the
study in this direction is very difficult. We leave it as an open question for future study. It is clear that the average of the
estimates matches the true value of mutual information.

We apply mathematica to calculate the covariance matrix Σ of

(log f (Y ), I(X = 0) log f0(Y ), I(X = 1) log f1(Y ))⊺

and, therefore, the value of a⊺Σa for each case by formulae (10)–(12) or (9). The values of a⊺Σa are 0.02189236, 0.3092179,
0.1540501 and 0.2748102 respectively for the four cases. The fourth row of Table 1 lists the values of (a⊺Σa/N)1/2

which serves as the asymptotic approximation of the standard deviation of the estimator Î(X, Y ) in the central limit
theorem (17). The last row gives the sample standard deviation from M = 400 estimates. These two values also have
good match.

Figs. 1 and 2 show the histograms with kernel density fits and normal Q–Q plots of 400 estimates for each case. It is clear
that the values of Î(X, Y ) follow a normal distribution.

We study two examples in the two dimensional case. Let tν(µ, Σ0) be the two dimensional Student t distribution with
degree of freedom ν, mean µ and shape matrix Σ0. We study the mixture in two cases: (1) t5(0, I) and t25(0, I); (2) t5(0, I)
and t5(0, 3I). Here I is the identity matrix. For each case, p0 = 0.3 for the first distribution and p1 = 0.7 for the second
distribution. Table 2 summarizes 200 estimates of the mutual information with h = N−1/5 and sample size N = 50,000
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Fig. 2. The Q–Q plots ofM = 400 estimates. Top left: t(3, 0, 1) and t(12, 0, 1). Top right: t(3, 0, 1) and t(3, 2, 1). Bottom left: t(3, 0, 1) and t(3, 0, 3). Bottom
right: pareto(1, 2) and pareto(1, 10).

Table 2
True value of the mutual information and the mean value of the estimates.
Mixture t5(0, I) t5(0, I)

t25(0, I) t5(0, 3I)

MI 0.01158 0.202516
Mean of estimates 0.0112381 0.2022715
(a⊺Σa/N)1/2 0.0006577826 0.002312909
Sample sd 0.0008356947 0.002315134

for each estimate. We take t3(0, I) as the kernel function. Same as the one dimensional case, we apply mathematica to
calculate the true value of MI and (a⊺Σa/N)1/2 which is given in formula (9). Fig. 3 shows the histograms with kernel
density fits and normal Q–Q plots of 200 estimates for each example. It is clear that the values of Î(X, Y ) also follow a normal
distribution in the two dimensional case. In summary, the simulation study confirms the central limit theorem as stated
in (17).
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Fig. 3. The histograms and Q–Q plots ofM = 200 estimates. Left: t5(0, I) and t25(0, I). Right: t5(0, I) and t5(0, 3I).
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