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Abstract: In this article, we propose the Theil-Sen estimators of parameters in a

multiple linear regression model based on a multivariate median, generalizing the

Theil-Sen estimator in a simple linear regression model. The proposed estimator

is shown to be robust, consistent and asymptotically normal under mild condi-

tions, and super-efficient when the error distribution is discontinuous. It can be

chosen to satisfy the prespecified possible robustness and efficiency. Simulations

are conducted to compare robustness and efficiency with least squares estimators

and to validate super-efficiency. Additionally we obtain a sufficient and necessary

condition which characterizes the symmetry of a random vector.

Key words and phrases: breakdown point, depth function, efficiency, multiple linear

regression model, spatial median.

1. Introduction

In a simple linear model, Theil(1950) proposed the median of pairwise slopes

as an estimator of the slope parameter. Sen (1968) extended this estimator to

handle ties. The Theil-Sen estimator (TSE) is robust with a high breakdown

point 29.3%, has a bounded influence function, and possesses a high asymptotic

efficiency. Thus it is very competitive to other slope estimators (e.g., the least

squares estimators), see Sen (1968), Dietz (1989)) and Wilcox (1998). The TSE

has been acknowledged in several popular textbooks on nonparametric and robust

statistics, e.g., Sprent (1993), Hollander and Wolfe (1973, 1999), and Rousseeuw

and Leroy (1986). It has important applications, for example, in astronomy

by Akritas et al (1995) in censored data, in remote sensing by Fernandes and

Leblanc (2005). Sen (1968) obtained unbiasedness and asymptotic normality

of the estimator for absolutely continuous error distribution and a nonidentical

covariate. Viewed as a generalized L-statistics, its asymptotics can be obtained
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from Serfling (1984). Wang (2005) investigated the asymptotic behaviors of the

TSE when the covariate is random. Peng, Wang and Wang (2005) obtained the

consistency and asymptotic distribution of the TSE when the error distribution

is arbitrary and the asymptotic normality obtained by Sen (1968) follows as a

special case. They showed further that the TSE is super-efficient when the error

distribution is discontinuous at some point.

Despite its many good properties and clear geometric interpretation, the

TSE is vastly under-developed and -used because it is only formulated for a sim-

ple linear model; although statisticians have made their efforts to extend it, see,

e.g., Oja and Niinima (1984), Zhou and Serfling (2006). While the extension

of TSE to a multiple linear model is geometrically apparent and appealing, it is

technically challenging, delaying the generalization and investigation of the prop-

erties. In this article, we propose the use of multivariate medians to generalize

the Theil-Sen estimator of the parameter in a simple linear model to a multiple

linear model in several different ways. Multivariate medians (multidimensional

medians, as also used by some authors) generalize the univariate median and are

a well established notion in the literature, see, e.g., Small (1990).

The proposed estimators contain an integer variable which controls the amount

of robustness and efficiency. The maximal possible robustness (in terms of break-

down point) is attained when the integer variable is chosen to be the number of

the parameters to be estimated; while the maximal efficiency is achieved when

the variable assumes the sample size; any value of the variable taking in be-

tween results in an estimator which gives a compromise between robustness and

efficiency.

Our construction applies to any multivariate median including, of course,

those defined via depth functions. Specifically, a depth-defined multivariate me-

dian is a maximizer of the depth function. The theory of depth functions is

relatively young and is still under its development. Analogous to linear order

in one dimension, statistical depth functions provide a center-outward ordering

of multidimensional data. Tukey (1975) first introduced halfspace depth. Oja

(1983) defined Oja depth. Liu (1990) proposed simplicial depth. Zuo and Ser-

fling (2000a) considered projection depth. Other notions include Zonoid depth

(Koshevoy and Mosler, 1997), generalized Tukey depth (Zhang 2002), and spatial
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depth (Chaudhuri 1996) among others.

Of the various depths the spatial depth is especially appealing because of

its computational ease and mathematical tractability. Its complexity is indeed

polynomial. In contrast, for example, the computational complexity for halfspace

and simplicial depth is O(nd−1 log n) (Rousseeuw and Ruts, 1996); for projection

depth, it is O([
(2(d−1)

d−1

)

/d]2n3), where d is the dimension. This is an NP-hard

problem in high dimensional data (Ghosh and Chaudhuri, 2005).

Thus we shall mainly focus on the spatial-depth-based MTSE’s; although

analogs for some of other depths-based MTSE can be easily obtained. We shall

show that it is robust with a relatively high breakdown point and possesses a

bounded influence function. We shall establish its strong consistency under mild

conditions, super-efficiency for discontinuous error distribution, and asymptotic

normality. We shall conduct simulations to investigate the estimators about its

computation, robustness, effiency, and super-efficiency. It is noteworthy to point

out that the algorithm for computation of the spatial depth-based MTSE is

straightforward. For a sample size of 50, it will take less than half a minute for a

regular desktop computer (CPU 2.00GHz) to compute an MTSE. The codes may

be obtained at the author’s homepage: http://home.olemiss.edu/∼xdang/. For

a large sample size, we suggest to use the stochastic sampling of subpopulation.

More detailed discussion shall be given Section 7.

In the pursuit of robust estimators, the idea behind the Theil’s estimator

(1950) has been the source of extensions and modifications. Oja and Niinima

(1984) explored this idea. For each subset of m elements of the whole n observa-

tions, they define the parameter vector corresponding to the hyperplane passing

through the m data points of the subset. There are n choosing m of them—

pseudo-observations as they called. A robust estimator of the location parameter

is the multivariate median of all the pseudo-observations. As an application to

their developed spatial U-quantile theory, Zhou and Serfling (2006) have given the

MTSE and the asymptotic normality can be derived therein easily though they

have not provided the details. In 2005 we started to consider on extending the

Theil-Sen estimator to a multiple linear model immediately after we finished the

article (Peng, Wang and Wang (2005)). In the early 2006 we have obtained the

manuscript kindly from Zhou and Serfling (2006). We have benefited from their
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wonderful work. But we have our own motivations and approaches to generalize

the TSE to a multiple linear model; thus providing several different extensions

of the Theil-Sen estimator. We have made a thorough study of the proposed

MTSE’s and ameliorated the existing results.

The rest of the article is organized as follows. Section 2 gives the proposed

estimators. Section 3 discusses existence and uniqueness. A theorem charac-

terizing the symmetry of a vector is given. Useful facts for the uniqueness are

collected. Section 4 deals with asymptotic consistency. Two useful theorems on

the convergence of U-statistics are given. Section 5 presents asymptotic normal-

ity and super-efficiency. Two useful theorems on the asymptotic normality of

U-statistics are given. Section 6 is devoted to robustness considerations. The

complexity, breakdown points and influence function are computed. Section 7

reports simulations. We also discuss the relationships of the estimators among

its robustness, efficiency, and computational complexity. Stochastic sampling of

subpopulation is described. Section 8 contains some of the proofs.

2. Proposed Multivariate Theil-Sen Estimators

In this section, we generalize the TSE in two ways and a third is given in

the next section. Consider a multiple linear regression model

Yi = α + X⊤
i β + ǫi, i = 1, ..., n, (2.1)

where α is the intercept and β is a p-dimension parameter, and ǫ1, ..., ǫn, ǫ are

i.i.d. random errors.

We start with a simple linear regression p = 1. Geometrically in order

to estimate the slope β, only two distinct points (Xi, Yi), (Xj , Yj) (Xi 6= Xj ,

say) are needed and an estimator of the slope β is bi,j = (Yi − Yj)/(Xi − Xj).

Alternatively, with every two distinct points, the sum of squares of residuals is

(Yi − α − βXi)
2 + (Yj − α − βXj)

2, which is minimized when α, β satisfy the

equations

Yi − α − βXi = 0, Yj − α − βXj = 0.

The solutions ai,j = Yi−bi,jXi and bi,j = (Yi−Yj)/(Xi−Xj) are the least squares

estimators. A robust estimator β̃n of the slope β is then the median of these least
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squares estimates:

β̃n = Med {bi,j = (Yi − Yj)/(Xi − Xj) : Xi 6= Xj , 1 ≤ i < j ≤ n} ,

where Med {Bj : j ∈ J} denotes the median of the numbers {Bj : j ∈ J}. This is

the well known Theil-Sen estimator which is robust with high breakdown point.

If only the estimation of the slope β is concerned, no identifiability assumption

on the error is needed. In order to estimate the intercept, however, certain iden-

tifiability condition on the error distribution is indispensable. We now assume

Assumption S. The error has a distribution which is symmetric about zero.

This is a sufficient condition and a less restrictive condition is given later.

Then, likewise, the intercept may be estimated by the median of the least squares

estimates:

α̃n = Med {ai,j = (YjXi − YiXj)/(Xi − Xj) : Xi 6= Xj , 1 ≤ i < j ≤ n} .

These result in a componentwise median estimator (α̃n, β̃n) of the parameter

(α, β). It is known that a componentwise median estimator may be a very poor

estimator; for example, the componentwise median of the points (1, 0, 0), (0, 1, 0),

(0, 0, 1) is (0, 0, 0) which is not even on the plane passing through the three points.

To overcome this flaw, we could use the robust β̃n to construct a robust estimator

of the intercept α; for example, Med{Yi − β̃nXi : 1 ≤ i, j ≤ n}. Alternatively, we

may estimate (α, β) simultaneously by the multivariate median:

(α̃n, β̃n) = Mmed {(ai,j , bi,j) : Xi 6= Xj , 1 ≤ i < j ≤ n},

where Mmed {Bj : j ∈ J} stands for the multivariate median of the vectors {Bj ∈
R

d : j ∈ J}, see Sections 1 and 3 for discussion about multivariate medians. We

shall be using the multivariate medians to construct the Theil-Sen estimators of

parameters in a multiple linear regression.

Estimating simultaneous intercept and normal vector. Consider a

multiple linear regression with p ≥ 1. Following the above procedure, first, an

estimator of θ = (α, β⊤)⊤ can be found as the solution to the p + 1 equations

Yi − α − X⊤
i β = 0, i ∈ kp+1 = {i1, ..., ip+1} , (2.2)

where kp+1 is a (p+1)-subset of {1, ..., n} such that (p + 1) × (p + 1) matrix

(Xk : k ∈ kp+1) is invertible. To stress the dependence on the p+1 observations,
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we denote this estimator by θ̂kp+1
. Then a natural extension of the Theil-Sen

estimator from a simple linear regression to a multiple linear regression is the

multivariate median

θ̃n = Mmed
{

θ̂kp+1
: ∀ kp+1

}

.

Note that this θ̂kp+1
is also the least squares estimator of θ based on p + 1

observations {(Xi, Yi) : i ∈ kp+1}. From this point of view and slightly more

generally, one may choose an arbitrary combination of m distinct observations

{(Xi, Yi) : i ∈ km}, where p+1 ≤ m ≤ n, and construct a least squares estimator

θ̂km
. Then a multiple Theil-Sen estimator θ̂n of the parameter θ is naturally

defined to be the multivariate median of all possible least squares estimators:

θ̂n = Mmed
{

θ̂km
: ∀ km

}

. (2.3)

Herein a possible least squares estimator is such that

θ̂k = (X⊤
k Xk)−1X⊤

k Yk, (2.4)

where X⊤
k Xk is assumed invertible with Xk being an (1+p)×m matrix with rows

(1, X⊤
i ) : i ∈ k and Yk = (Yi : i ∈ k)⊤. Here for ease of notation we have written

k = km and hereafter we shall use this notation. We shall point out here that by

choosing the value of m we can achieve any preassigned possible robustness and

efficiency. See more discussion in Section 7. The computation of the estimator

(2.3) is very simple and the codes can be obtained at the author’s homepage, see

Section 1. Also see discussion in Section 6 about about the computation of the

estimator using the stochastic sampling of subpopulation when the sample size

is large.

Estimating the normal vector. If one is only interested in estimating the

normal parameter β, then the identifiability condition on the distribution of the

error for the intercept α such as the symmetry Assumption S is not necessary,

as in the univariate TSE. Zhou and Serfling (2006) developed a theory of spatial

U-quantiles and, as an application of the theory, generalized TSE to MTSE based

on pairwise differences of the observations. Here we briefly review their result

(slightly more general, in their construction, m = p+1.) Note that their extension

of TSE is based on the spatial depth but can be extended straightforwardly to

an arbitrary multivariate median.
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Consider the pairwise difference of (2.1):

Yj − Yk = (Xj − Xk)
⊤β + ǫj − ǫk, j, k = 1, 2, ..., n. (2.5)

There are N = n(n − 1)/2 pairwise differences. For an integer m ≤ N , let K be

the
(

N
m

)

combinations of (j, k) from ▽ ≡ {(j, k) : j < k, j, k = 1, ..., n} and write

by {(k1,i, k2,i) : i = 1, ..., m} ∈ K a generic combination, kj = (kj,i : i = 1, ..., m)

for j = 1, 2, and write k for either k1 or k2. Then (2.5) can be written in matrix

form

Yk1,k2
= Xk1,k2

β + ǫk1,k2
, (2.6)

where Yk1,k2
= Yk1

− Yk2
, Xk1,k2

= Xk1
− Xk2

and ǫk1,k2
= ǫk1

− ǫk2
with

ǫk = (ǫk : k ∈ k)⊤. Let β̂k1,k2
be the least squares estimator based on the subset

of the observations, i.e.,

β̂k1,k2
= (Xk1,k2

⊤Xk1,k2
)−1Xk1,k2

⊤Yk1,k2
, (2.7)

Accordingly, they extended the TSE to the MTSE as the spatial median,

β̂n = Mmed
{

β̂k1,k2
: (k1,k2) ∈ K0

}

. (2.8)

where K0 is the subset of K in which all the least squares exist.

In a simple linear regression model, Peng, Wang and Wang (2006) studied

the Theil-Sen estimator under no assumption on the distribution of the error

(neither symmetry nor continuity on the error distribution is assumed.) They

showed that the TSE is strongly consistent, has an asymptotic distribution under

mild conditions, and is super-efficient if the error distribution is discontinuous.

Naturally we might ask whether these results can be extended to the MTSE’s?

under what conditions? Specifically, we have two questions herein. First, can we

remove the assumption of symmetry of the error distribution? Second, can we

have super-efficiency when the error ǫ is discontinuous? The answers to the two

questions are positive as are demonstrated below.

3. Existence and Uniqueness

Here we focus on the spatial-depth-based MTSE. Conditions are discussed for

the existence and uniqueness of the MTSE. We give a theorem which characterizes

the symmetry of a vector. A third construction of the MTSE is provided.
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In order to ensure that β̂n converges to the true parameter β as n tends to

infinity, a sufficient condition, as pointed out by Zhou and Serfling (2006) in their

spatial-depth-based MTSE, is that β̂k1,k2
is centrally symmetric about the true

unknown parameter β, i.e.,

β̂k1,k2
− β

cd
= β − β̂k1,k2

, (3.1)

where
cd
= denotes both sides have an identical distribution. A more general sym-

metry is angular symmetry, see Liu (1992). For more details about various no-

tions of symmetry, see Serfling (2006). They demonstrated that the central

symmetry of β̂k1,k2
about β follows from the central symmetry of ǫk1,k2

about

zero,

ǫk1,k2

cd
= −ǫk1,k2

. (3.2)

Surprisingly we found that this is equivalent to Assumption S. The argument is

as follows.

Using the method of characteristic function, it is easy to show that Assump-

tion S implies (3.2). Let ψ(t) = E exp(iǫ) be the characteristic function of the

error ǫ, where i2 = −1 is the unit imaginary number. We now calculate the char-

acteristic function ϕ(t) = E exp(it⊤ǫk1,k2
) of ǫk1,k2

for t = (t1, ..., tm)⊤ ∈ R
m.

To this end we identify ǫj from tl(ǫk1,l
− ǫk2,l

) for l = 1, ..., m and j = 1, ..., n and

let dj,l be the identifier and dj = (dj,1, ..., dj,m)⊤. Then using the independence

of ǫ1, ..., ǫn one finds

ϕ(t) = ψ(t⊤d1) · · ·ψ(t⊤dn), (3.3)

where the identifier is given by

dj,l =











0, k1,l 6= j, k2,l 6= j,

1, k1,l = j,

−1, k2,l = j.

(3.4)

Under Assumption S, ǫ is symmetric about zero so that ψ(t) = ψ(−t). Thus the

characteristic function of −ǫk1,k2
is E exp(−it⊤ǫk1,k2

) = ϕ(−t) = ϕ(t) by (3.3).

This establishes the symmetry (3.2) of ǫk1,k2
.

To show that (3.2) implies Assumption S, we present the following theo-

rem, which gives a little stronger result stating that it only requires the central

symmetry (3.2) to hold for m = 3.
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Theorem 1. Suppose E1, E2, E3 are independent and identically distributed. Then

E1 is symmetric about its median if and only if E1, E2, E3 satisfy (3.2) for

(k1,k2) = ({1, 1} , {2, 3}), ({1, 2} , {3, 3}), ({1, 2} , {2, 3}). (3.5)

Proof: We only need to show the sufficiency. Let φ be the characteristic

function of E1. Since (3.2) holds for the values of (k1,k2) in (3.5), it follows

φ(t + s)φ(−t)φ(−s) = φ(−t − s)φ(t)φ(s), s, t ∈ R. (3.6)

Let Φ(t) = φ(t)/φ(−t). Then Φ is continuous and, by (3.6), satisfies the Cauchy

functional equation Φ(t + s) = Φ(t)Φ(s). It is well known that the solution of

a Cauchy functional equation is exponential, i.e., Φ(t) = ect for some complex

number c among continuous functions. In addition, it is easy to verify by the

definition that the conjugate Φ̄(t) satisfies Φ̄(t)Φ(t) = 1, yielding c̄+c = 0, so that

c is an imaginary number, i.e., c = ia for some real a. Hence φ(t) = eiatφ(−t).

This is equivalent to ǫ − a
cd
= a − ǫ. The proof is complete. ¤

From the above Theorem 1, we see that Assumption S is necessary and

sufficient for the central symmetry of the joint (3.2) and hence (3.1); while the

latter ensures that the spatial median converges to the true symmetric center,

the true parameter value β, as the sample size n tends to infinity. In addition, by

Theorem 1, in estimating the normal vector β, a slightly more general assumption

of symmetry is that the error ǫ is essentially symmetric in the sense that it

has a distribution symmetric about its median. An example of this is the uniform

distribution.

Estimating the normal vector using non-overlapping differences.

Because ǫi − ǫj and ǫj − ǫi have an identical distribution as soon as ǫi, ǫj are

independent and have a common distribution no matter whether or not this

distribution is symmetric. Without the assumption of central symmetry on

the error ǫ, (3.2) is no longer true. What happens is that its components

are correlated; for instance, ǫ2 − ǫ1 and ǫ3 − ǫ2 are correlated. Therefore one

simple remedy to this problem is to choose its components, the pairwise dif-

ferences, in a way that they are not overlapped; for instance, we may choose

ǫk1,k2
= (ǫ1 − ǫ2, ǫ3 − ǫ4, ..., ǫ2p−1 − ǫ2p)

⊤. In general we choose the pairwise

difference ǫk1,k2
in such a way that k1,k2 have no element in common. Then
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following the procedure of Zhou and Serfling (2006), we construct the multiple

Theil-Sen estimator, β∗
n say, of β for a general depth function. For the spatial-

depth-based median, the asymptotic normality of the MTSE of Zhou and Serfling,

under no assumption of symmetry on the error distribution, follows from their

theory of spatial quantiles. In this article we give the strong consistency and

asymptotic normality in Theorem 5 under a set of weaker assumptions as an

application of the asymptotic results that we shall present below in this article.

Existence and Uniqueness for the spatial median. As an illustration

and for later applications, let us give the spatial depth. Let Z be a random

vector on R
d with probability distribution Q. The spatial median m of Z is the

minimizer of z 7→
∫

(‖t− z‖ − ‖t‖) dQ(t) = EQ(‖Z − z‖ − ‖Z‖) where ‖ · ‖ is the

Euclidean norm. The existence follows from the tightness of Q. For z ∈ R
d, let

S(z) = z/‖z‖(S(0) = 0) be the spatial sign function (or spatial unit function by

Chaudhuri). The statistical spatial depth is then defined as

Dsp(z, Q) = 1 − ‖EQS(z − Z)‖, z ∈ R
d. (3.7)

For a random sample Z1, ..., Zn of Q, the sample version spatial depth is

Dsp(z, Qn) = 1 −
∥

∥

∥

∥

∥

1

n

n
∑

i=1

S(z − Zi)

∥

∥

∥

∥

∥

, z ∈ R
d, (3.8)

where Qn is the empirical distribution. Then the spatial median m is the mul-

tivariate median defined by the spatial depth, which is any maximizer of the

spatial depth, i.e.,

m = arg sup
x∈Rd

Dsp(x, Q). (3.9)

Note that the above two definitions of the spatial median coincide. The spatial

median m can be estimated by the sample spatial median mn, which maximizes

the sample depth, i.e.,

mn = arg sup
x∈Rd

Dsp(x, Qn). (3.10)

The strong consistency and asymptotic normality of the spatial median

are well established in the literature, see, e.g., Bose (1998), Chaudhuri (1996),

Nimiero (1992) among others. Other depth-based multivariate medians are de-

fined analogously, i.e., they are the maximizers of the depths. If a distribution is



Multiple Theil-Sen Estimators 11

symmetric in some sense then the depth-based multivariate median is the center

of symmetry. There are various notions of symmetry, for example, central sym-

metry, angular symmetry, halfspace symmetry, etc. For a systematic discussion,

see Serfling (2006). In the following we summarize some useful facts about the

uniqueness of the spatial medians.

Remark 1. Z has a unique spatial median if one of the following holds.

(1) Q is not concentrated on a line (Milasevic and Ducharme (1987)). Hence,

(2) There are two one-dimensional marginal distributions each of which is not

point mass for d ≥ 2. Further,

(3) There are at least two absolute continuous one-dimensional marginal distri-

butions.

(4) Q is angularly symmetric about its median and φ′(m) =
∫

S(z − m)P (dz).

Hence,

(5) Q is centrally symmetric about its median.

(6) Q is angularly symmetric about the its median and Q is absolutely continuous.

Both (2) and (3) are apparent and for (5) see Milasevic and Ducharme (1987)

and we give an argument for (4) from which it follows (6). For z ∈ R
d, let

T : R
d → [0,∞) × Sd−1 be the transformation given by the polar coordinate

u = z/‖z‖, r = ‖z‖ where Sd−1 =
{

u ∈ R
d : ‖u‖ = 1

}

is the unit sphere. Let

ν(u) =
∫ ∞
0 P ◦ T−1(u, dr) be assumed for u on Sd−1. Then Z is angularly

symmetric about zero provided that ν(−u) = ν(u) for every u on Sd−1; so

that φ′(0) =
∫

Sd−1

(

u
∫ ∞
0 P ◦ T−1(u, dr)

)

du =
∫

Sd−1 uν(u) du = 0. Therefore

minm φ(m) = φ(0) = 0 and this is the desired result. ¤

4. Asymptotic consistency

In this section, we first give two theorems which are useful for proving strong

consistency for U -statistics. As an application, the consistency of the spatial

depth-based MTSE and pairwise-difference based MTSE are given, followed by

the super-efficiency.

Let (X , O) be a probability space on which F is a probability measure. Let

{Xi}∞i=1 be a sequence of independent r.v.’s with common distribution F . Let

Θ be an open subset of R
d and ϑ0 ∈ Θ is fixed. For a positive integer r, denote

the r-tuple product space by X r = X ⊗ · · · ⊗X and the r-type convolution by
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F r = F ⊗ · · · ⊗F . Let ψ be a kernel which is a symmetric map (invariant under

argument permutation) from X r × Θ into R satisfying the following conditions

C.1–C.5.

(C.1) the map x 7→ ψ(x, ϑ) is measurable for every ϑ ∈ Θ.

(C.2) the map ϑ 7→ ψ(x, ϑ) is continuous for every x ∈ X r.

For ϑ ∈ Θ set

Un(ϑ) =

(

n

r

)−1
∑

i1<···<ir

ψ(Xi1 , . . . , Xir , ϑ),

A sequence 〈ϑ̂n〉 is called a U-estimate if Un(ϑ̂n) = supϑ∈Θ Un(ϑ). It is called a

generalized U(V)-estimate if Un(ϑ̂n) ≥ supϑ∈Θ Un(ϑ) − OP (n−1) .

(C.3) For every ϑ ∈ Θ, there is an F r-integrable function Hϑ and positive ǫϑ

such that ψ(x, t) ≤ Hϑ(x) for all x ∈ X r and t ∈ Θ with ‖t − ϑ‖ ≤ ǫϑ.

(C.4) The map µ(ϑ) from Θ into [−∞,∞) defined by

µ(ϑ) =

∫

ψ(x, ϑ) F r(dx), ϑ ∈ Θ

is uniquely maximized at ϑ0.

(C.5) There exists a compact neighborhood K ⊂ Θ of ϑ0 such that

lim sup
n→∞

sup
ϑ∈Θ\K

Un(ϑ) < µ(ϑ0) a.s.

We have the following theorem and the proof is given later.

Theorem 2. Suppose (C.1)-(C.5) hold. If 〈ϑ̂n〉 is a generalized U-estimate, then

ϑ̂n → ϑ0 a.s.

The above (C.5) can be replaced with the convexity of ϑ 7→ ψ(x, ϑ). This

is especially useful because some of the depth functions are concave down; for

instance, the spatial depth. This is stated in the following theorem and the proof

is relegated in the last section.

Theorem 3. Suppose (C.1)-(C.4) hold. If the map ϑ 7→ ψ(x, ϑ) is concave down

for every x ∈ X r then ϑ̂n → ϑ0 a.s.

Now we apply the above theorems to the spatial depth-based MTSE’s, see

definition and discussion of about the spatial median in Section 1. Denote ξk =

(Xk, Yk), k = 1, ..., n, ξk = {ξk : k ∈ k} and k0 = (1, ..., m) and write ξk0
= ξ0.
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For the spatial depth, we apply Theorem 3 with ψ(ξ0; ϑ) = ‖h(ξ0)‖−‖ϑ−h(ξ0)‖
where h(ξ0) = (X⊤

k0
Xk0

)−1X⊤
k0

Yk0
apparently satisfies (C.1), (C.2), and (C.3)

with integrable H(ξ0) = ‖ϑ0‖ + 1 for ‖ϑ − ϑ0‖ ≤ 1 by the triangle inequality.

Apparently by the triangle inequality of the Euclidean norm ϑ 7→ ψ(ξ0, ϑ) is

concave down. Thus by Theorem 3 we have the strong consistency for the spatial-

depth based MTSE θ̂n ≡ θ̂n,sp.

Theorem 4. (Consistency for spatial-depth based MTSE under no symmetry.)

Suppose the distribution of h(ξ0) is not concentrated on a line and the map

ϑ 7→ E‖ϑ − h(ξ0)‖ is maximized at true θ. Then the spatial-depth based MTSE

θ̂n,sp is strongly consistent, i.e. θ̂n,sp → θ a.s.

Important special cases of the above theorem are given below in view of

Remark 1.

Corollary 1. Theorem 4 holds if one of the following is true.

(1) Assumption S is met. The derivative can pass the integral ∆µ(ϑ) = ES(ϑ −
h(ξ0)) for ϑ in a neighborhood of the true θ.

(2) Assumption S is met and the distributions of ǫ and X are absolutely contin-

uous.

(3) There are at least two one-dimensional marginal distributions of h(ξ0) each

of which is not point mass for p ≥ 1 and the true parameter θ satisfies ES(θ −
h(ξ0)) = 0. Hence

(4) The distributions of ǫ and X are absolutely continuous and the true parameter

θ satisfies ES(θ − h(ξ0)) = 0.

By Theorem 1 and with a similar argument we have the following.

Corollary 2. (Consistency for spatial-depth based MTSE under symmetry, based

on overlapped differences.) Suppose Assumption S is met. Then the MTSE β̂n,sp

based on the spatial depth and the pairwise (overlapped) differences is strongly

consistent, i.e. β̂n,sp → β a.s.

Peng, Wang and Wang (2006) gave the consistency of the univariate Theil-

Sen estimator under no assumption on the distribution of the error. With non-

overlapping pairwise differences we have a similar result, i.e., Assumption S is

not required for the consistency of β̂∗
n,sp of the normal vector β.
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Theorem 5. (Consistency for spatial-depth under no symmetry.) Suppose the

distribution of the error ǫ is not concentrated on a point mass. Then the MTSE

β̂∗
n,sp based on the spatial depth and the non-overlapping pairwise differences is

strongly consistent, i.e., β̂∗
n,sp → β a.s.

Remark 2. Using Theorem 2 or Theorem 3, one can establish the consistency of

the MTSE’s whose defining medians are associated with continuous depth func-

tions. Examples of these include Lp-depth, smoothed Tukey depth, simplicial

value depth, etc.

Super-efficiency. Here we consider the super-efficiency of the spatial-depth

based MTSE β̂n,sp. Let hb(ξ0) = Iph(ξ0) with Ip = diag(0, 1, . . . , 1) a diago-

nal matrix and ψb (ξ0; ϑ)=‖hb(ξ0)‖ − ‖ϑ − hb(ξ0)‖ and the resulting U-statistic

Ub,n(ϑ). We have the following theorem and the proof is given in the last section.

Theorem 6. (Super-efficiency of spatial-depth-based MTSE) Suppose Assump-

tion S holds. Assume hb(ξ0) is not concentrated on a line. Then if the error

distribution is discontinuous,

P (β̂n,sp = β) → 1.

It follows from the above theorem we have for any ν ≥ 0

nν(β̂n,sp − β) → 0.

Thus β̂n,sp is super-efficient. This result is true for the TSE in a simple linear

regression model, see Peng, Wang and Wang (2006). Our simulation validates

this fact and exhibits that different samples are required to reach the equality.

5. Asymptotic normality

In this section, we first give a theorem which is useful for proving asymptotic

normality of U-statistics. As an application, the asymptotic normality of the

MTSE and paired MTSE are obtained under weaker assumptions of Zhou and

Serfling (2006). Rates of the remainder are also obtained.

Definition 1. ψ is regular at ϑ0 if there exists a neighborhood Θ0 of ϑ0 such

that

(A.1) For every x ∈ X r, the map ϑ 7→ ψ(x, ϑ) is twice continuously differentiable
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on Θ0 with gradient ∇ψ(x, ϑ) and second derivative ∇2ψ(x, ϑ).

(A.2) There is an F r-integrable function H such that supϑ∈Θ0

∥

∥∇2ψ(x, ϑ)
∥

∥ ≤
H(x) for all x ∈ X r.

For ψ regular at θ and ϑ ∈ Θ0, let

∇Un(ϑ) =

(

n

r

)−1
∑

i1<···<ir

∇ψ(Xi1 , . . . , Xir , ϑ),

∇ψ̃(x, ϑ) =

∫

∇ψ(x1, . . . , xr−1, x, ϑ) F (dx1) . . . F (dxr−1),

∇2Un(ϑ) =

(

n

r

)−1
∑

i1<···<ir

∇2ψ(Xi1 , . . . , Xir , ϑ), Mϑ =

∫

∇2ψ(x, ϑ) F r(dx).

Theorem 7. Suppose that ψ is regular at θ, Mθ is invertible,
∫

∇ψ(x, ϑ) F r(dx) = 0 and

∫

‖∇ψ(x, ϑ)‖2 F r(dx) < ∞.

Let 〈θ̂n〉 be a sequence of Θ-valued random vectors such that ϑ̂n = ϑ0 + op(1) and
√

n∇Un(ϑ̂n) = op(1). Then

√
n(ϑ̂n − ϑ0) = −√

nM−1
ϑ0

∇Un(ϑ0) + op(1).

In particular, √
n(ϑ̂n − ϑ0) ⇒ N(0, r2M−1

ϑ0
Vϑ0

M−⊤
ϑ0

),

where Vϑ0
=

∫

∇ψ̃(x, ϑ0)∇ψ̃⊤(x, ϑ0) F (dx).

If the above condition (A.2) is not met or difficult to verify (for example, for

the spatial depth in a two-dimensional parameter space), the following theorem

gives another set of conditions.

Theorem 8. Suppose the map ϑ 7→ ψ(x, ϑ) is differentiable at ϑ0 for almost

every x ∈ X r with gradient ∇ψ(x, ϑ0) and there exists a neighborhood Θ0 of ϑ0

and a measurable function L with
∫

‖L(x)‖2 F r(dx) < ∞, such that for every

ϑ1, ϑ1 in Θ0 and every x ∈ X r,

|ψ(x, ϑ1) − ψ(x, ϑ2)| ≤ L(x) ‖ϑ1 − ϑ2‖ . (5.1)

If there exists a positive symmetric matrix Mϑ0
such that

µ(ϑ) = µ(ϑ0) +
1

2
(ϑ − ϑ0)

TMϑ0
(ϑ − ϑ0) + o(‖ϑ − ϑ0‖2). (5.2)
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Then for any sequence of Θ-valued random vectors 〈ϑ̂n〉 satisfying ϑ̂n = ϑ0+op(1),

and Un(ϑ̂n) ≥ supϑ∈Θ Un(ϑ) − op(n
−1), one has

√
n(ϑ̂n − ϑ0) = −√

nM−1
ϑ0

∇Un(ϑ0) + op(1).

In particular, √
n(ϑ̂n − ϑ0) ⇒ N(0, r2M−1

ϑ0
Vϑ0

M−⊤
ϑ0

).

Asymptotic normality of the spatial-depth-based MTSE. Zhou and

Serfling (2006) gave the Bahadur-Kiefer representation for multivariate spatial

U -quantiles. They obtained the faster rate of the remainder than the existing

results. The asymptotic normality of the MTSE as a special U quantile can be

derived from the representation. Bose(1998) gave the Bahadur presentation of

median estimates where the rate of the remainder was also obtained. Here we

first give a representation under weak assumptions based on the above theorems.

Then with an application to Bose’s we obtain the rate of the remainder of the

representation. Recall h(ξ0) = (X⊤
k0

Xk0
)−1X⊤

k0
Yk0

, and µ(ϑ) = E(‖ϑ−h(ξ0)‖−
‖h(ξ0)‖). Denote

D1(ϑ) ≡ E

{

1

‖ϑ − h(ξ0)‖

(

Im − (ϑ − h(ξ0))⊗2

‖ϑ − h(ξ0)‖2

)}

.

Theorem 9. Suppose (i) the distributions of ǫ and Ak0
are absolutely con-

tinuous w.r.t. the Lebesgue measure; (ii) ∆µ(ϑ) is continuously differentiable

with derivative ∆2µ(ϑ) = D1(ϑ) in a neighborhood N of θ; and (iii) the map

ϑ 7→ E‖ϑ − h(ξ0)‖ is maximized at true θ. Then the MTSE θ̂n,sp satisfies the

stochastic approximation

θ̂n,sp = θ + DS̄n + Rn, (5.3)

where D = D1(θ), S̄n =
∑

k S(θ − h(ξk))/
(

n
m

)

, and Rn = op(n
−1/2). Hence if

D1(θ) is invertible then θ̂n,sp is asymptotic normal with mean zero and covariance

Σ, √
n(θ̂n,sp − θ)

D
=⇒ N (0, Σ), (5.4)

where Σ = D−1
1 (θ)Eh̃(ξ1)

⊗2D−1
1 (θ) with h̃(ξ1) = E(S(θ − h(ξ1, ..., ξm))|ξ1).

Proof: The absolute continuity of ǫ and Ak0
implies that the distribution of

h(ξ0) is also absolutely continuous; the support of the density function of ǫ is not
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congregated at only one point, hence the distribution of h is not concentrated on

a line, see Remark 1, so that the spatial median uniquely exists. The absolute

continuity of h also implies that ϑ 7→ ψ(x, ϑ) = ‖x‖−‖ϑ−x‖ is differentiable for

almost every x ∈ R
m with gradient ∆ψ(x, ϑ) = S(ϑ − x) and D(ϑ) = ∆µ(ϑ) =

ES(ϑ − X) for ϑ ∈ N by the dominated convergence theorem (S(ϑ − x) is

dominated by 1); and ∆µ(θ) = ES(θ − X) = 0 by the uniqueness. Apparently

(5.1) is satisfied because

|ψ(x; ϑ1) − ψ(x; ϑ2)| ≤ ‖ϑ1 − ϑ2‖, x ∈ R
m, ϑ1, ϑ2 ∈ N.

The differentiability of D(ϑ) with continuous gradient D1(ϑ) in N with Taylor

expansion of µ(ϑ) at θ yield (5.2). Thus an application of Theorem 8 completes

the proof. ¤

Remark 3. Theorem 9 holds without assuming the boundedness of the densi-

ties Ak0
and ǫ; while the boundedness is assumed in Chaudhuri and Zhou and

Serfling.

Remark 4. The absolute continuity of Ak0
and ǫ in Theorem 9 is necessary for

the asymptotic normality; noticing that Peng, Wang and Wang (2005) demon-

strate that the asymptotic distribution is not normal when the absolute continuity

is not assumed for the Theil-Sen estimator in a simple linear regression. We be-

lieve the latter shall also hold for MTSE.

Remark 5. Theorem 9 holds if one of the following is true instead of (iii).

(1) Assumption S is met. (2) ES(θ − h(ξ0)) = 0.

Denote ξo,e = ξ(1,3,...,(2m−1))−ξ(2,4,...,2m). With the non-overlapping pairwise

differences symmetry is automatic so that the MTSE β̂∗
n,sp uniquely exists. Let

µ∗(b) = E(‖b − h(ξo,e)‖ − ‖h(ξo,e)‖) and

D∗
1(b) = E

{

1

‖b − h(ξo,e)‖

(

Im − (b − h(ξo,e))
⊗2

‖b − h(ξo,e)‖2

)}

.

Theorem 10. Suppose the conditions of Theorem 9 are fulfilled with ∆µ∗(b)

and its derivative ∆2µ∗(b) = D∗
1(b) for b in a neighborhood N of β. Then the

MTSE β̂∗
n,sp satisfies (5.3) with D = D∗

1(β), S̄n =
∑

k1,k2
S(β − h(ξk1,k2

))/
(

N
m

)

.

Hence, if D∗
1(β) is invertible then β̂∗

n,sp is asymptotic normal with mean zero and
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covariance matrix Σ∗ = (D∗
1)

−1(β)Eh̃∗(ξ1 − ξ2)
⊗2(D∗

1)
−1(β) with h̃∗(ξ1 − ξ2) =

E(S(β − h(ξk1,k2
))|ξ1 − ξ2).

Remark 6. For the pairwise overlapped differences we may also derive the

asymptotic distribution of the estimator β̂n,sp. Nevertheless it may be differ-

ent from the above because of the following fact. There are at least two types of

errors; one is overlapped, (ǫ1 − ǫ2, ǫ1 − ǫ3, ..., ǫ1 − ǫm+1) say and the other is the

non-overlapped, (ǫ1 − ǫ2, ǫ3 − ǫ4, ..., ǫ2m−1 − ǫ2m) say. Thus the the kernels have

at least two types, so that the above results do not apply here.

Using Bose’s proposition 1 we find the rate of the remainder in the stochas-

tic approximation, which slightly improves the rate given by Zhou and Serfling

(2006) under a bit weaker assumptions.

Theorem 11. Suppose ǫ fulfills Assumption S . Assume E‖h(ξ0)−θ‖(3+ν)/2 < ∞
for some 0 ≤ ν ≤ 1. Then the MTSE θ̂n,sp satisfies the stochastic approximation

(5.3) with the remainder

Rn = O(n−(3+ν)/4(log n)1/2(log log)(1+ν)/4). (5.5)

Theorem 12. Suppose ǫ fulfills Assumption S . Assume E‖h(ξk1,k2
)−β‖(3+ν)/2 <

∞ for some 0 ≤ ν ≤ 1. Then the MTSE β̂∗
n,sp satisfies the stochastic approxima-

tion (5.3) with the remainder Rn in (5.5).

6. Robustness considerations

In this section, we study the robustness of our estimators in terms of the two

prevailing notions: breakdown point (BP) and influence function (IF).

Breakdown point. The breakdown point measures the ability of an estima-

tor or a statistic to resist contamination of the data. Roughly speaking, the finite

sample breakdown point of an estimator is the minimum fraction of ‘bad’ samples

in a data set that can render the estimator useless. For our proposed estimator,

the finite sample breakdown point is at least (1 − (1/2)1/m)(n − m + 1)/n. Since

the breakdown point of the spatial median is 1/2, we need at least 1/2 LSE’s to

be “good”. Suppose that there is a fraction ε ‘bad’ of observations in the data

set with size n, then there are
(

(1−ε)n
m

)

“good” LSE’s out of
(

n
m

)

. So we need that
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(

(1−ε)n
m

)

/
(

n
m

)

> 1/2. Since
(

(1 − ε)n

m

)

/

(

n

m

)

>

(

(1 − ε)n − m + 1

n − m + 1

)m

,

it follows that if ε ≤ (1/2)1/m(n − m + 1)/n, our proposed estimator will never

break down. Accordingly, the asymptotic BP is 1 − (1/2)1/m.

As one can see, the BP depends on the choice of m. On one hand, a smaller

m results in a higher BP; on the other hand, a smaller m means lower efficiency.

The highest BP is reached when m takes its minimal value m = p + 1 and this

also leads to the lowest efficiency; while the maximal efficiency is attained when

m assumes its maximal value n, where the LSE is recovered, and this leads to the

lowest BP; assuming the error is Gaussian. Any m taking values in between p+1

and n results in an estimator which gives the compromise between robustness and

efficiency. Hence one can choose the value of m to gain the desired robustness and

efficiency. It should be noted that the highest intensity is reached at m = ⌊n/2⌋
because the computational intensity is a order of

(

n
m

)

.

Influence function. While the breakdown point captures the global ro-

bustness properties; the local robustness information is provided by the influence

function. By (5.3), the influence function of the MTSE β̃ is

IF ((y,x); β̃) = D−1
E

{

β − (X⊤
x Xx)−1X⊤

x Yy

‖β − (X⊤
x Xx)−1X⊤

x Yy‖

}

, x ∈ R
p, y ∈ R,

where D is the previous D1 or D∗
1, Xx = [1m, X(x)] with column 1m ∈ R

m

of all entries 1 and X(x) = [x, X1, ..., Xm−1]
⊤ and Yy = (y, Y1, ..., Ym−1)

⊤. The

above expression shows that the estimator is only influenced by the direction and

is irrelevant to the magnitudes of y and x. Consequently our MTSE is robust

against both x and y outlying. The gross error sensitivity is

γ∗ = sup
y,x

‖IF ((y,x), β̃)‖ = sup
‖s‖≤1

‖D−1s‖ ≤ max λ1/2((D−1)⊤D−1),

where max λ1/2(M) denotes the square root of the largest eigenvalue of the matrix

M . Since D is invertible, the influence function is bounded.

7. Computation and Simulation Study

In this section, we describe the stochastic sampling of subpopulation to cal-

culate the estimator for a large sample size. A simulation is also conducted.



20 Xin Dang, Hanxiang Peng, Xueqin Wang and Heping Zhang

To investigate the behavior of the proposed MTSE, three simulations are

carried out for robustness, efficiency and super-efficiency. Samples are generated

from the multiple regression model Yi = 1 + 5X1i + 10X2i + εi, where X1i ∼
N (0, 1), X2i ∼ U(0, 1), and the error εi’s are from different distributions for

different purposes.

Table 6.1: Robustness

True parameter β = (5, 10)

Theil-Sen Diff Theil-Sen LSE

n=20 (4.31,10.43) (4.38,10.93) (4.38,10.59)

n=30 (4.88,10.38) (4.61,10.39) (4.91,10.25)

n=40 (4.97,9.88) (4.98,9.66) (5.01,9.87)

n1 = 16, n2 = 4 (5.01,9.95) (5.06,9.71) (4.18,7.76)

n1 = 15, n2 = 5 (5.30,9.46) (5.25,9.33) (5.65,2.27)

n1 = 14, n2 = 6 (4.37,9.68) (4.22,9.41) (-2.65,7.72)

n1 = 13, n2 = 7 (4.14,9.17) (4.88,9.59) (-2.37,3.34)

n1 = 12, n2 = 8 (3.98,9.12) (0.72,5.65) (-3.37,5.18)

n1 = 11, n2 = 9 (-2.06,-6.67) (-3.38,5.85) (-0.33,-2.12)

Computation and Stochastic sampling of subpopulation. As pointed

out in Section 1, the algorithm for computing the spatial-depth-based MTSE is

very simple and the author has the codes at her homepage. These codes are used

by the authors to carry out the simulations. For a sample size less than 50, it

takes only less than half a minute to compute the MTSE. For a large sample, we

suggest to use the stochastic sampling of subpopulation. Here is what the author

used to do the simulations. Instead of computing the MTSE based on all possible

Table 6.2: Supper-Efficiency

n 10 20 30 50 80 100

Er = {−1, 1} 0.405 0.680 0.840 0.930 0.995 1.000

Er = Bin 0.210 0.335 0.385 0.500 0.630 0.765

Er = hyper 0.360 0.630 0.670 0.880 0.960 1.000
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Table 6.3: Efficiency comparison

Normal T3 Cauchy

TSE LSE TSE LSE TSE LSE

n=10 EMSE 3.716 2.643 7.058 7.628 45.97 2613

RE 0.711 1.000 1.081 1.000 56.84 1.000

n=20 EMSE 1.339 1.075 2.111 2.627 5.667 816.2

RE 0.803 1.000 1.245 1.000 144.0 1.000

n=30 EMSE 0.739 0.596 1.161 1.569 3.032 2207

RE 0.806 1.000 1.352 1.000 728.0 1.000

(

n
m

)

LSE’s, we calculate it based on a subpopulation K of
(

n
m

)

LSE’s. Specifically,

we take a random sample of size m from the whole sample and compute the LSE

based this random sample and this process is repeated K times; then the MTSE

is calculated based on this K LSE’s. Here K is a pre-specified number not

exceeding
(

n
m

)

. In our example below, we take K to be one percent of
(

n
m

)

and

the result seems satisfactory. It deserves more investigation into it; for example,

how large should K be so that the probability of error is less than a pre-specified

level. For some discussions, see Rousseeuw and Leroy (1987).

Simulation on robustness. (1) Samples of size n = 20, 30, 40 are generated

from the multiple linear model with ǫi ∼ N (0, 0.5). The MTSE’s, the pairwise

differencing MTSE and the LSE are calculated and reported at the upper part

of Table 6.1. (2) Contaminate the data with outliers (Xi, Yi) from the multiple

linear model Yi = 1−6X1i−7X2i+ǫi, where ǫi ∼ N (0, 0.5). Here n1, n2 represent

the number of “good”, “bad” (outliers) observations, respectively. See Table 6.1.

Observe that without contamination, all the MTSE, the difference-based MTSE

and LSE work well. However, with the presence of outliers, the LSE’s completely

break down and are useless; while the difference-based MTSE’s work well until

the fraction of outliers reaches 35%; and the MTSE’s preform well up to 40%.

Simulation on super-efficiency. A simulation is run to exhibit the super-

efficiency. Specifically, we want to investigate how large a sample size n shall be

in order to reach β̃ = β. For the sample size n, generate errors from discrete

distributions: uniform on {−1, 1}, binomial with parameters 4, 0.5, hypergeo-
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metric with parameters (6, 3, 2). Based on the simulated data, the MTSE β̃n is

calculated. Repeat this procedure N = 200 times, the ratio of the frequency for

which β̃ = β is computed. See Table 6.2. For the sample size 80 and 100, a

stochastic procedure is used for calculation of the spatial median.

Simulation on relative efficiency. There is always a concern that a

robust estimator may lose efficiency. To investigate the efficiency, a simulation

is conducted as follows. For sample size n = 10, 20, 30, generate 1000 samples

with errors from N (0, 1), heavy tail distributions t with df=3 and df=1(Cauchy);

compute the TSE β̃, the empirical mean squared error EMSE = 1/m
∑m

i=1 ‖β̃i−
β‖, where m = 1000 and β = (1, 5, 10) and β̃i is the estimate for ith sample.

The relative efficiency (RE) of β̃ is obtained by dividing the EMSE of the LSE

by that of β̃.

From the Table 6.3, under the Gaussian model, the finite sample RE of

MTSE is about 70-80% which is acceptable. However, when the error comes

from the heavy tail T3, the MTSE competes LSE, especially for Cauchy. Note

that the EMSE’s of LSE under Cauchy are very large (over 2000) and divergent,

for the variance of Cauchy does not exist. The MTSE is much stable and achieves

a good balance between robustness and efficiency.

8. Proofs of the theorems

In this section, we collect some of the proofs. We first give two lemmas.

Lemma 1. Suppose (C.1)-(C.4) hold. Then

sup
ϑ∈K

µ(ϑ) < µ(θ)

for every compact subset K ⊂ Θ that does not contain ϑ0

Proof. It follows from (C.1)-(C.3) and Fatou’s Lemma that

lim sup
α→ϑ

µ(ξ) =

∫

Hϑ(x) F r(dx) − lim inf
α→ϑ

∫

Hϑ(x) − ψ(x, ξ) F r(dx)

≤
∫

Hϑ(x) −
∫

Hϑ(x) − ψ(x, ϑ) F r(dx) = µ(ϑ)

for each ϑ ∈ Θ. Thus µ is upper semi-continuous and achieves a maximum over

each compact subset of Θ. The desired result follows this and (C.4). ¤
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Lemma 2. Suppose (C.1)-(C.3) hold. Then

lim sup
n→∞

sup
ϑ∈K

Un(ϑ) ≤ sup
ϑ∈K

µ(ϑ) a.s.

for every compact subset K ⊂ Θ.

Proof. We have shown in the proof of Lemma 1 that µ is upper semi-

continuous under (C.1)-(C.3). Thus µ achieves a maximum on the compact set

K and MK = supϑ∈K µ(ϑ) < ∞. Now select N > MK . For each η > 0 and

ϑ ∈ K, define a map ψϑ,η on X r by

ψϑ,η(x) = sup
α∈K:‖α−ϑ‖≤η

ψ(x, α), x ∈ X
r.

These maps are measurable(since the supremum can be taken over a countable

set) and ψϑ,η(x) ≤ Hϑ(x) if η < ǫϑ, where Hϑ and ǫϑ are as in (C.3). Moreover,

ψϑ,η(x) ↓ ψ(x, ϑ) as η ↓ 0 for each x ∈ X r and ϑ ∈ K. Thus, it follows from the

monotone convergence Theorem that
∫

Hϑ(x) − ψϑ,η(x) F r(dx) ↑
∫

Hϑ(x) − ψ(x, ϑ) F r(dx),

moreover,
∫

ψϑ,η(x) F r(dx) ↓
∫

ψ(x, ϑ) F r(dx)

for every ϑ ∈ K. Consequently, for each ϑ ∈ K, there exists an ηϑ > 0 such that
∫

ψϑ,η(x) F r(dx) < N . Let S(ϑ) = {α ∈ K : ‖α − ϑ‖ ≤ ηϑ}, ϑ ∈ K. Then it

forms an open cover of K, so that there is a finite subcover. Namely, there are

ϑ1, . . . , ϑm in K such that K =
⋃m

i=1 S(ϑi). From this we can conclude

sup
ϑ∈K

Un(ϑ) ≤ max
1≤i≤m

(

n

r

)−1
∑

i1<···<ir

hi(Xi1 , . . . , Xir , ϑ),

where hi = ψϑi,ηϑi
, i = 1, . . . , m. By the SLLN of U-statistic,

lim sup
n→∞

sup
ϑ∈K

Un(ϑ) ≤ max
1≤i≤m

∫

hi(x)F r(dx) < N a.s..

This yields the desired result by letting N ↓ MK . ¤

Proof of Theorem 2. Let

A = {lim sup
n→∞

‖ϑ̂n − ϑ0‖ > 0}
⋂

{ lim
n→∞

Un(ϑ0) = µ(ϑ0)}.
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Since Un(ϑ0) → µ(ϑ0) a.s. by the SLLN of U-statistic, it is enough to show that

P (A) = 0. Fix ω ∈ A. Then there exists an ǫ > 0 and an increasing sequence

< mn > of positive integers such that

‖ϑ̂mn − ϑ0‖ ≥ ǫ, for all n.

This yields

sup
‖ϑ−ϑ0‖≥ǫ

Umn(ω, ϑ) ≥ Umn(ω, ϑ̂mn) ≥ Umn(ω, ϑ0) − O(
1

mn
)

for all n. Thus

T (ǫ) ≡ lim sup
n→∞

sup
‖ϑ−ϑ0‖≥ǫ

Un(ω, ϑ) ≥ µ(ϑ0).

Consequently, ω ∈ Bǫ = {T (ǫ) ≥ µ(ϑ0)}. This shows that A ⊂ ⋃

ǫ>0 Bǫ. We

shall now show that P (Bǫ) = 0 for every ǫ > 0. This will imply that desired

P(A) = 0.

Let K be as in (C.5). Fix a small ǫ > 0 so that Cǫ = {ϑ ∈ K : ‖ϑ − ϑ0‖ ≥ ǫ}
is not empty. Then Cǫ is compact, and it follows from Lemma 1 and Lemma 2

that

T1(ǫ) ≡ lim sup
n→∞

sup
ϑ∈Cǫ

Un(ϑ) ≤ sup
ϑ∈Cǫ

µ(ϑ) < µ(ϑ0) a.s.

and from (C.5) that

T2(ǫ) ≡ lim sup
n→∞

sup
ϑ∈Θ\Cǫ:‖ϑ−ϑ0‖≥ǫ

Un(ϑ) < µ(ϑ0) a.s.

Combining the above shows that T (ǫ) ≤ T1(ǫ) ∨ T2(ǫ) < µ(ϑ0) a.s. This is the

desired P(Bǫ) = 0. ¤

Proof of Theorem 3. Let η > 0 be small enough so that the closed ball

Bη =
{

ϑ ∈ R
k : ‖ϑ − ϑ0‖ ≤ η

}

⊂ Θ. We shall verify (C.5) with K = Bη. Let

ϑ ∈ Θ with ‖ϑ − ϑ0‖ > η. Then there exist a υ ∈ R
k of length ‖υ‖ = η and

an a > 1 such that ϑ = ϑ0 + aυ. It follows from the assumed concavity that

ϑ 7→ Un(ϑ) is concave down. Thus

Un(ϑ0 + υ) ≥ 1

a
Un(ϑ0 + aυ) +

a − 1

a
Un(ϑ0).

This yields

Un(ϑ0 + aυ) ≤ Un(ϑ0) − a

(

Un(ϑ0) − sup
‖υ‖=η

Un(ϑ0 + υ)

)
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and shows that

sup
‖ϑ−ϑ0‖>η

Un(ϑ) ≤ Un(ϑ0) − inf
a>1

a

(

Un(ϑ0) − sup
‖ϑ−ϑ0‖=η

Un(ϑ)

)

.

In view of Lemma 2,

lim inf
n→∞

(

Un(ϑ0) − sup
‖ϑ−ϑ0‖=η

Un(ϑ)

)

≥ µ(ϑ0) − sup
‖ϑ−ϑ0‖=η

µ(ϑ) a.s.

Since ∆η = µ(ϑ0) − sup‖ϑ−ϑ0‖=η µ(ϑ) is positive by Lemma 2, we obtain

lim sup
n→∞

(

sup
‖ϑ−ϑ0‖>η

Un(ϑ)

)

≥ µ(ϑ0) − ∆η a.s.

This shows that (C.5) holds with K = Bη. Thus, the desired result follows from

Theorem 7.

Lemma 3. Suppose ψ is regular at ϑ0. Then the map ϑ 7→ Mϑ is continuous at

ϑ0. Moreover, if {an} is a sequence of positive numbers converging to 0, then

sup
‖ϑ−ϑ0‖≤an

∥

∥∇2Un(ϑ) − Mϑ0

∥

∥ → 0 a.s.,

sup
‖ϑ−ϑ0‖≤an

‖∇Un(ϑ) −∇Un(ϑ0) − Mϑ0
(ϑ − ϑ0)‖

‖ϑ − ϑ0‖
→ 0 a.s.

and almost surely,

sup
‖ϑ−ϑ0‖≤an

∥

∥Un(ϑ) − Un(ϑ0) −∇Un(ϑ0)(ϑ − ϑ0) − 1
2(ϑ − ϑ0)

TMϑ0
(ϑ − ϑ0)

∥

∥

‖ϑ − ϑ0‖2 → 0.

Proof. For a > 0, let ha denote the map defined by

ha(x) = sup
‖ϑ−ϑ0‖≤a

∥

∥∇2ψ(x, ϑ) −∇2ψ(x, ϑ0)
∥

∥ , x ∈ X
r

This map is measurable as the supremum can be achieved over a countable subset.

Moreover, for each x ∈ X r, ha(x) ↓ 0 as a ↓ 0. Also, for small enough a, 0 <

ha(x) ≤ H(x) for all x ∈ X r. Thus by the Lebesgue Dominated Convergence

Theorem,

lim
a→0

∫

ha(x) F r(dx) = 0.
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This shows that the map ϑ 7→ Mϑ is continuous at ϑ0. Since

lim sup
n→∞

(

n

r

)−1
∑

i1<···<ir

han(Xi1 , . . . , Xir)

≤ lim sup
n→∞

(

n

r

)−1
∑

i1<···<ir

ha(Xi1 , . . . , Xir) =

∫

ha(x) F r(dx)

for every a > 0. We also find that

(

n

r

)−1
∑

i1<···<ir

han(Xi1 , . . . , Xir) → 0 a.s..

The above and
∥

∥∇2Un(ϑ0) − Mϑ0

∥

∥ → 0 by the SLLN yield

sup
‖ϑ−ϑ0‖≤an

∥

∥∇2Un(ϑ) − Mϑ0

∥

∥ → 0 a.s..

By the Taylor Theorem, each coordinate of

‖ϑ − ϑ0‖−1 ‖∇Un(ϑ) −∇Un(ϑ0) − Mϑ0
(ϑ − ϑ0)‖

is bounded by sup‖ϑ−ϑ0‖≤an
‖∇Un(ϑ) − Mϑ0

‖ provided ‖ϑ − ϑ0‖ ≤ an. Thus,

sup
‖ϑ−ϑ0‖≤an

‖∇Un(ϑ) −∇Un(ϑ0) − Mϑ0
(ϑ − ϑ0)‖

‖ϑ − ϑ0‖
→ 0 a.s..

In a similar way, the two term Taylor expansion, we also obtain almost surely

sup
‖ϑ−ϑ0‖≤an

∥

∥Un(ϑ) − Un(ϑ0) −∇Un(ϑ0)(ϑ − ϑ0) − 1
2(ϑ − ϑ0)

TMϑ0
(ϑ − ϑ0)

∥

∥

‖ϑ − ϑ0‖2 → 0.

¤

Proof of Theorem 7. Set Rn = ∇Un(ϑ̂n) − ∇Un(ϑ0) − Mϑ0
(ϑ̂n − ϑ0),

since ϑ̂n = ϑ0 + op(1), We obtain from the second part of Lemma 3 that Rn =

op(
∥

∥

∥
ϑ̂n − ϑ0

∥

∥

∥
). This and

√
nUn(ϑ̂n) = op(1) yields

√
n(ϑ̂n − ϑ0) = −√

nM−1
ϑ0

∇Un(ϑ0) + op(1) +
√

nop(
∥

∥

∥
ϑ̂n − ϑ0

∥

∥

∥
).

Since
∫

‖∇ψ(x, ϑ)‖2 F r(dx) < ∞, −√
nM−1

ϑ0
∇Un(ϑ0) = Op(1). By the invert-

ibility of Mϑ0
,

√
n

∥

∥

∥
ϑ̂n − ϑ0

∥

∥

∥
≤

∥

∥

∥
M−1

ϑ0

∥

∥

∥

∥

∥

∥

√
nMϑ0

(ϑ̂n − ϑ0)
∥

∥

∥
= Op(1) +

√
nop(

∥

∥

∥
ϑ̂n − ϑ0

∥

∥

∥
).
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This implies that
√

n‖ϑ̂n − ϑ0‖ = Op(1). Consequently, we obtain

√
n(ϑ̂n − ϑ0) = −√

nM−1
ϑ0

∇Un(ϑ0) + op(1).

Hence,
√

n(ϑ̂n − ϑ0) ⇒ N(0, r2M−1
ϑ0

Vϑ0
(M−1

ϑ0
))T)

follows from the CLT of U-statistic directly. ¤

Proof of Theorem 6. Denote the cdf of hb(ξ0) by H and µb(ϑ) = E[‖hb(ξ0)‖−
‖ϑ − hb(ξ0)‖]. Then

µb(ϑ) − µb(ϑ0) = E (‖ϑ0 − hb(ξ0)‖ − ‖ϑ − hb(ξ0)‖)
= −‖ϑ − ϑ0‖B + E (‖ϑ0 − hb(ξ0)‖ − ‖ϑ − hb(ξ0)‖1[hb(ξ0) 6= β(ϑ0)])

≤ −‖ϑ − ϑ0‖B

the last inequality yields from the symmetry of the hb(ξ0) at ϑ0 and the convexity

of the norm. By the Lemma 5, we obtain that

Supϑ

∣

∣

∣

∣

Ub,n(ϑ) − Ub,n(ϑ0) − (µb(ϑ) − µb(ϑ0))

‖ϑ − ϑ0‖

∣

∣

∣

∣

→ 0. a.s.

Thus, for almost every ω and ǫ, there exists Nω,ǫ > 0, such that for n > Nω,ǫ and

ϑ ∈ Bǫ = {ϑ : 0 < ‖ϑ − ϑ0‖ ≤ B/2ǫ},

Ub,n(ϑ) − Ub,n(ϑ0) ≤ ǫ ‖ϑ − ϑ0‖ − B ≤ −B/2.

This combine with Condition (C.5) yields the super-efficiency of the spatial-depth

based MTSE β̂n,sp. ¤

Lemma 4. If the error distribution is discontinuous, then B = P (hβ(ξ0) = β) >

0

Let

ϕϑ(ξ0) =
ψ(ξ0; ϑ)

‖ϑ‖ =
‖h(ξ0)‖ − ‖ϑ − h(ξ0)‖

‖ϑ‖
and Φ = {ϕϑ : ϑ}

Lemma 5. For all ǫ > 0, N[ ](ǫ, Φ, P ) < ∞. Furthermore,
∥

∥

∥

Un(ϑ)−µ(ϑ)
‖ϑ‖

∥

∥

∥

Φ
→

0, a.s.
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Proof. ϕϑ(x) = ‖x‖−‖ϑ−x‖
‖ϑ‖ can be bracketed as the indicator functions of

cells considered in Example 3.7.4C in Van de Geer (2000). Thus, N[ ](ǫ, Φ, P ) <

∞. By the Corollary 3.5 in Arcones, Chen and Giné (1994), we have
∥

∥

∥

∥

Un(ϑ) − µ(ϑ)

‖ϑ‖

∥

∥

∥

∥

Φ

→ 0, a.s.
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