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Abstract

In extending univariate outlier detection methods to higher dimension, various issues arise:
limited visualization methods, inadequacy of marginal methods, lack of a natural order, limited
parametric modeling, and, when using Mahalanobis distance, restriction to ellipsoidal contours. To

address and overcome such limitations, we introduce nonparametric multivariate outlier identifiers
based on multivariate depth functions, which can generate contours following the shape of the data

set. Also, we study masking robustness, that is, robustness against misidentification of outliers as
nonoutliers. In particular, we define a masking breakdown point (MBP), adapting to our setting

certain ideas of Davies and Gather (1993) and Becker and Gather (1999) based on the Mahalanobis
distance outlyingness. We then compare four affine invariant outlier detection procedures, based

on Mahalanobis distance, halfspace or Tukey depth, projection depth, and “Mahalanobis spatial”
depth. For the goal of threshold type outlier detection, it is found that the Mahalanobis distance

and projection procedures are distinctly superior in performance, each with very high MBP, while
the halfspace approach is quite inferior. When a moderate MBP suffices, the Mahalanobis spatial
procedure is competitive in view of its contours not constrained to be elliptical and its computational

burden relatively mild. A small sampling experiment yields findings completely in accord with
the theoretical comparisons. While these four depth procedures are relatively comparable for the

purpose of robust affine equivariant location estimation, the halfspace depth is not competitive with
the others for the quite different goal of robust setting of an outlyingness threshold.

AMS 2000 Subject Classification: Primary 62G10 Secondary 62H99.

Key words and phrases: multivariate analysis; nonparametric; robust; outlier identification; depth
functions.



1 Introduction

Of fundamental importance in nonparametric multivariate location inference is identification of
“outliers” in the data. These are observations far from, or inconsistent with, the main body of data

points. Such cases may be of interest in themselves, or their presence can very adversely impact
the performance of estimators or testing procedures. For excellent background, see Hawkins [9],

Barnett and Lewis [1], and Gnanadesikan [8].
Identification of outliers by visualization is limited to dimension 3 or lower. Also, mere marginal

outlier checking is inadequate, for an outlier can be nonoutlying in each coordinate. Algorithmic
approaches that take underlying geometry into account are needed. One may formulate a suitable

outlyingness function and set a threshold. A popular choice is the highly tractable Mahalanobis
distance outlyingness function, which, however, is constrained to have elliptical contours of equal
outlyingness, regardless of whether the underlying model is elliptically symmetric.

Here we introduce a general nonparametric approach based on depth functions, which provide
center-outward orderings of multidimensional data. Higher depth represents higher “centrality”,

lower depth greater “outlyingness”. One can associate with any depth function an equivalent
outlyingness function. For suitable choices of depth function, the contours of equal outlyingness

follow the actual geometric structure and shape of the given data.
An outlier identifier must, of course, be itself robust in the presence of the outliers it is supposed

to identify. As a key relevant robustness criterion, we introduce the masking breakdown point
(MBP), which measures the fraction of sample allowed to be contaminants without some extreme

outlier becoming “masked”, i.e., misidentified as a nonoutlier. We use replacement contamination.
Our approach adapts a notion introduced by Davies and Gather [4] and Becker and Gather [2]
using Mahalanobis distance outlyingness with the contaminated normal model and addition type

contamination. (While not identical, replacement and addition breakdown points are equivalent
as measures of robustness performance, although differing in intuitive appeal. See Zuo [27] and

Serfling [20] for results and discussion.)
In particular, we derive and compare MBPs for four affine invariant outlyingness functions,

based on the well-established Mahalanobis distance, halfspace (or Tukey), and projection depths,
and on a new “Mahalanobis spatial” depth recently treated in Serfling [21]. The latter has a

transformation-retransformation representation in terms of the well-known “spatial” outlyingness,
which is only orthogonally invariant. We define these precisely in Section 2, which provides pre-

liminaries on depth functions.
In Section 3, we formulate our notion of MBP, develop a general lemma on evaluation of MBP,

and derive the MBPs of the four outlyingness functions under study. Further, these procedures

are then compared within the framework of a contamination model, balancing MBP versus false
positive rate. The findings are that, for robust identification of outliers using a threshold, both the

Mahalanobis distance and the projection approaches are superior: they can simultaneously maintain
a low false positive rate and a high MBP. In contrast, even though associated with a robust affine

equivariant location estimator, the halfspace procedure imposes a severe and unacceptable trade-off
between MBP and false positive rate. In cases with anticipated contamination level low enough

that a modest MBP suffices, the Mahalanobis spatial approach is competitive in view of its contours
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not constrained to be elliptical and its computational burden relatively mild. In Section 4, a small

sampling experiment corroborates these theoretical conclusions.
The four depth functions under consideration are relatively comparable for the purpose of robust

location estimation. However, for robust setting of an outlyingness threshold, a quite different type
of goal, the halfspace depth is not competitive with the others.

2 Depth and outlyingness functions

Let F be a probability distribution on R
d. An associated depth function D(x, F ) provides a center-

outward ordering of points x ∈ Rd, higher values representing higher “centrality” of x, with nested

contours of equal depth. The set of points of maximal depth constitutes the “center”. For D(x, F )
normalized to have range [0, 1], the function O(x, F ) = 1−D(x, F ) gives an equivalent outlyingness

function. One can also start with a center-outward O(x, F ) and generate D(x, F ). For a data set
XN = (X1, . . . , XN), we will denote sample versions by D(x, XN) and O(x, XN).

Quite a number of multivariate depth functions have been formulated. For location inference in
Rd, as considered here, depth is defined on the sample space. See Liu, Parelius and Singh [12], Zuo

and Serfling [30], and Serfling [18], [21] for general treatments and discussion of connections with
related multivariate quantile and centered rank functions. For other inference situations, depth is
defined on the relevant parameter space. See Zhang [26], Müller [15] and Serfling [19].

We now introduce the four affine invariant outlyingness functions considered here, normalized
to take values in [0, 1). Affine invariance assures that a point classified as an “outlier” or not in one

coordinate system remains similarly classified under affine transformation to another coordinate
system (see Serfling [21] for discussion and the role of standardization).

Mahalanobis distance outlyingness. Perhaps the oldest notion of outlyingness in R
d, d ≥

2, is that based on the distance introduced by Mahalanobis [14]. For location and scatter measures

m(F ) and nonsingular S(F ), and with ‖ · ‖ the Euclidean norm, the corresponding Mahalanobis
distance MD(x, F ) = ‖S(F )−1/2(x− m(F ))‖, x ∈ Rd, is widely used as an outlyingness function,
taking values in [0,∞). Equivalently, here we use as “Mahalanobis distance outlyingness”

OMD(x, F ) =
MD(x, F )

1 + MD(x, F )
, x ∈ R

d.

Halfspace or Tukey outlyingness. We take as “halfspace outlyingness”

OH(x, F ) = 1 − 2DH(x, F ), x ∈ R
d,

where
DH(x, F ) = inf{F (H) : H a closed halfspace containing x}, x ∈ R

d,

the “halfspace” or “Tukey” depth introduced by Tukey [23] and generally regarded as the first
notion of “depth function”. In particular, the sample halfspace depth of x is the minimum fraction
of data points in any closed halfspace containing x.
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Projection outlyingness. With µ(·) and σ(·) any univariate location and scale measures, a

“projection outlyingness” and related depth is defined by

ÕP(x, F ) = sup
‖u‖ = 1

∣∣∣∣
u′x − µ(Fu′X)

σ(Fu′X)

∣∣∣∣ .

See Liu [11], Zuo and Serfling [30], and Zuo [28]. Here we take as “projection outlyingness”

OP(x, F ) =
ÕP(x, F )

1 + ÕP(x, F )
, x ∈ R

d.

Spatial and Mahalanobis spatial outlyingness. The “spatial outlyingness” corresponds

to the spatial depth introduced by Vardi and Zhang [25] and is given by OS(x, F ) = ‖ES(x−X)‖,
where X ∼ F and

S(x) =





x

‖x‖ , if x 6= 0,

0, if x = 0,

the vector sign function in R
d. It is only orthogonally invariant. To obtain an affine invariant

modification, we standardize using any weak covariance functional or shape functional, i.e., any

symmetric positive definite d× d matrix-valued functional C(F ) defined on distributions F on R
d

and satisfying weak covariance equivariance,

C(FAX + b) = k(A, b, FX)AC(FX) A′,

for any nonsingular d × d A and any b, with k(A, b, FX) a positive scalar function. For any such
C(F ), an associated affine invariant “Mahalanobis spatial outlyingness function” (Serfling [21]) is
given by

OMS(x, FX) = OS

(
C(FX)−1/2x, FC(FX)−1/2X

)
=
∥∥∥ES(C(FX)−1/2(x − X))

∥∥∥ .

3 Nonparametric outlier identification method

3.1 The nonparametric outlier identification problem

Relative to a given outlyingness function O(x, F ), points whose outlyingness values exceed some
specified threshold λ are considered “outliers” of F . That is, a point x inside (resp., outside) the
region

out(λ, F ) = {x : O(x, F ) > λ}
is called a λ outlier (resp., nonoutlier) of F . Relative to a data set XN = (X1, . . . , XN ) in Rd

and a specified choice of outlyingness threshold λN , the practical goal is to correctly classify each
point x ∈ Rd as an F -based λN outlier or not, i.e., as belonging to the (unknown) outlier region

out(λN , F ) or not. For this purpose, the region out(λN , F ) is estimated by an XN -based outlier
identifier (or sample outlier region)

OR(λN , XN) = {x : O(x, XN) > λN}.
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(This is more demanding than simply ranking points by outlyingness values.)

Unfortunately, the outliers in XN can exacerbate the situation by adversely influencing the
performance of OR(λN , XN) as an estimator of out(λN , F ). Thus the chosen outlyingness function

itself should be robust. In particular, masking occurs if points which are O(·, F )-based λN outliers
of F are misidentified by OR(λN , XN) as sample λN nonoutliers. If, relative to threshold λN ,

points of arbitrarily extreme O(·, F )-outlyingness can be misidentified so, then masking breakdown
of OR(λN , XN) occurs, in which case OR(λN , XN) is grossly unreliable. The minimal fraction

of contaminants in XN sufficient for masking breakdown to occur provides a useful robustness
criterion, the masking breakdown point, which we formulate precisely in Section 3.2. General results

on evaluating masking breakdown points are developed in Section 3.3, and specific results for our
four target outlyingness functions are derived in Section 3.4.

One must specify, of course, the “outlier” threshold λN , which depends upon the choice of

outlyingness function O(·, F ) and possibly the sample size N . One approach, which we follow here,
is based on a contamination model for F ,

F = (1− ε)G + εH, (1)

with G a known “ideal” model distribution and H an unknown source of “contaminants” tending to
have high outlyingness relative to G. Extreme observations from G are “false positives” and those
from H “true outliers”. We desire the threshold λN high enough to yield a small false positive rate

(1− ε)PG(O(X, G) > λN) ≈ PG(O(X, G) > λN)

while also low enough for “true outliers” to be identified with high probability

εPH(O(X, H) > λN) ≈ ε.

We thus adopt αN = PG(O(X, G) > λN) and ε as the (approximate) false positive and true positive
rates, respectively, quantities which can be specified. Given αN , the threshold λN is determined by

λN = F−1
O(X,G)(1− αN), (2)

based on the quantile function of the distribution of O(X, G) under the ideal distribution G. In

turn, αN , should be selected relative to ε. Scenarios for these choices are discussed in Section 3.5.
For a fixed choice of αN , the four outlier identifiers of form OR(λN , XN) for different outlying-

ness functions and corresponding thresholds may be compared in terms of the associated masking
breakdown points. These results are derived in Section 3.6, and conclusions and comparisons are

provided in Section 3.7.
In comparison with Davies and Gather [4] and Becker and Gather [2], we find it more flexible

and convenient to index our outlier regions by the threshold λ instead of by a false positive rate α

under an assumed contamination model.
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3.2 Masking breakdown point

Masking of some γ outliers of F can occur with k contaminants if there exists a choice of k

replacements Yk, changing XN to XN,k, such that

OR(λN , XN,k) ∩ out(γ, F ) 6= ∅, (3)

where A denotes the complement of A. Note that (3) holds if and only if some γ outliers of F are
included among sample λN nonoutliers, relative to the altered sample XN,k. The lack of robustness

of OR(λN , XN) in the presence of k contaminants in XN may be measured by the largest value of
γ for which (3) holds for some choice of Yk, and thus we define the quantity

γM(λN , XN , k) =

sup{γ > 0 : ∃ a choice of k replacements Yk, changing XN to XN,k, such that (3) holds}.

For and only for γ > γM(λN , XN , k), (3) fails for every choice of Yk and thus all γ outliers of

F in any altered data set XN,k are indeed identified as sample λN outliers. The worst case is
that γM(λN , XN , k) = 1 and represents masking breakdown due to k replacements : some points

with arbitrarily large outlyingness O(·, F ) can fail, by suitable choices of XN,k, to be identified
by OR(λN , XN,k) as sample λN outliers. Noting that γM(λN , XN , k) ≤ γM(λN , XN , k + 1) ≤
γM(λN , XN , N ) = 1, a useful robustness criterion is thus the minimal number kM(λN , XN) =
min{k : γM(λN , XN , k) = 1} of sample contaminants necessary to cause masking breakdown, or,

equivalently, the masking breakdown point (MBP)

εM (λN , XN) =
kM(λN , XN)

N
.

3.3 Evaluation of the masking breakdown point

Evaluation of εM(λ, XN) is carried out not by solving the equation γM(λN , XN , k) = 1 for successive
k, but rather via tools such as the following result.

Theorem 3.1 Let F be continuous with supp(F ) = Rd. Suppose that O(·, F ) satisfies O(x, F ) <

1, all x, and
O(x, F ) → 1 if and only if ‖x‖ → ∞. (4)

Then γM (λN , XN , k) = 1 (masking breakdown with replacement of k sample values) if and only if

sup
XN,k

sup
y ∈ OR(λN ,XN,k)

‖y‖ = ∞. (5)

Proof. Suppose that γM(λN , XN , k) = 1. Then, for any γ < 1, there exists XN,k such that (3)
holds. For a sequence γn ↑ 1, let yn belong to the intersection in (3) corresponding to γ = γn.

Then γn < O(yn, F ) ↑ 1 and by (4) we have ‖yn‖ → ∞. Then

sup
XN,k

sup
y ∈ OR(λN ,XN,k)

‖y‖ ≥ sup
n

‖yn‖ = ∞,
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and so (5) holds.

Now assume (5). By (4), we have

sup
XN,k

sup
y ∈ OR(λN , XN,k)

O(y, F ) = 1. (6)

Let γn ↑ 1 and select X
(n)
N,k such that

sup

y ∈ OR(λN ,X
(n)
N,k)

O(y, F ) > γn.

Then there exists y(n) ∈ OR(λN , X
(n)
N,k) with O(y(n), F ) > γn, i.e., with y(n) ∈ out(γn, F ) and hence

satisfying

OR(λN , X
(n)
N,k) ∩ out(γn, F ) ⊃ {y(n)} 6= ∅.

Thus γM(λN , XN , k) = 1. 2

Remark 3.1 (a) We note that, under (4), conditions (5) and (6) are equivalent.

(b) If OR(λN , XN,k) can be made to grow along some direction, then arbitrarily large outliers

become elements of OR(λN , XN,k) and classifed as nonoutliers (“masking”). On the other hand,

if a diameter of OR(λN , XN,k) can be made to shrink to the “center” and hence OR(λN , XN,k)
degenerate to a (d − 1)-dimensional structure, then nonoutliers arbitrarily close to the center will

become elements of OR(λN , XN,k) and classifed as outliers (“swamping”). Our concern in the
present paper is the first case. 2

3.4 Masking breakdown points for selected outlyingness functions

We now derive MBPs, or bounds on them, for the outlyingness functions defined in Section 2.
In some cases the results will depend upon the usual (replacement) BPs of relevant location and

scatter statistics. For these, we use standard definitions [6], [13], as follows.
For a location estimator T (XN) in Rd, we say that breakdown occurs with k points of XN

replaced if
sup
XN,k

‖T (XN) − T (XN,k)‖ = ∞,

with XN,k as defined previously. With k(T (XN)) denoting the minimum k such that T (XN) breaks
down due to k replacements, the replacement breakdown point of T (XN) is given by

RBP(T (XN)) = k(T (XN))/N.

For a positive definite matrix-valued scatter estimator S(XN), explosion breakdown of S(XN) occurs
with k points of XN replaced if

sup
XN,k

‖emax(S(XN))− emax(S(XN))‖ = ∞,
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and implosion breakdown if

sup
XN,k

‖1/emin(S(XN))− 1/emin(S(XN))‖ = ∞,

where emax(S(XN )) and emin(S(XN)) ≥ 0 denote, respectively, the maximum and minimum
eigenvalues of S(XN). With obvious notation, the corresponding replacement BPs are given by

RBPexp(S(XN)) = kexp(S(XN))/N, RBP imp(S(XN)) = kimp(S(XN ))/N.

We will see that only the explosion case is relevant here.

3.4.1 Mahalanobis distance outlier identifier

For the Mahalanobis distance outlier identifier using OMD(x, F ), we establish bounds on the MBP

in terms of RBP(m(XN)) and RBPexp(S(XN)). Of greatest interest for our purposes is the
upper bound RBP(m(XN)), which is attained by the MBP in the case that RBP(m(XN)) ≤
RBPexp(S(XN)).

Theorem 3.2 Using OMD(x, F ) with threshold λN , we have

min{RBP(m(XN )), RBPexp(S(XN))} ≤ εMD
M (λN , XN) ≤ RBP(m(XN)).

Remark 3.2 (a) The above bounds do not depend upon the threshold λN , in which case this
threshold may be chosen to achieve a desired false positive rate without entailing a tradeoff with

MBP, as will be discussed in Section 3.5.

(b) Theorem 3.2, with our notion of MBP and replacement contamination, is an analogue of

Theorems 1 and 2 of Becker and Gather [2] with their MBP and addition contamination.

(c) Since for OMD(x, F ) the regions OR(λN , XN,k) are ellipsoidal, we see from Remark 3.1(b)
that only the explosion case of breakdown of S(XN) is relevant, our concern here being masking.

(d) As discussed by Becker and Gather [2], but utilizing an improved bound given by Zuo [28],
we may state that lower bounds for optimal BPs for m(XN) among affine equivariant location

estimators and for S(XN) among affine equivariant scatter estimators are (N − d + 2)/2N and
b(N − d+ 1)/2)c/N , respectively, the latter under the condition that N ≥ d + 1 and the sample be

in general position. Also, the latter is an upper bound for RBP(m(XN )) among affine equivariant
location estimators [5]. Using in OMD(x, F ) choices of m(·) and S(·) that attain these lower bounds,
we thus have

b(N − d + 1)/2)c/N ≤ εMD
M (λN , XN) ≤ (N − d + 1)/2N. (7)

The Minimum Covariance Determinant (MCD) estimator of Rousseeuw [16] attains the above
lower bound while retaining full affine equivariance, but at some sacrifice of computational ease.
On the other hand, a fast algorithm “Fast-MCD” constructed by Rousseeuw and Van Driessen [17]

approximates the MCD and is implemented in the R packages MASS, rrcov, and robustbase, as well
as in other software packages. Other well-known covariance functionals also attain the lower bound

in (7), again at the expense of computational complexity. 2
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Proof of Theorem 3.2. In an obvious notation, we have

OR(λN , XN,k) =

{
x : MD(x, XN,k) ≤

λN

1 − λN

}
,

an ellipsoid having center m(XN,k) and contained in the sphere Sd(r(XN,k)) with radius

r(XN,k) = ‖m(XN,k)‖+

(
λN

1 − λN

)√
emax(S(XN,k)).

Now (5) is equivalent to {(a) and/or (b)}, with

(a) m(XN,k) → ∞, with suitable choice of XN,k,

and

(b) volume
(
OR(λN , XN,k)

)
→ ∞, with suitable choice of XN,k.

Let RBP(m(XN)) = k1/N and RBPexp(S(XN)) = k2/N . By (a) with k = k1, we obtain (5) with

k = k1 and thus γM(λN , XN , k1) = 1. Hence εMD
M (λN , XN) ≤ k1/N . Now putting εMD

M (λN , XN) =
kMD

M (λN , XN)/N , we note that (5) with k = kMD
M (λN , XN) holds and so either (a) or (b) with k =

kMD
M (λN , XN) holds. Hence εMD

M (λN , XN) ≥ min{k1, k2}/N . 2

3.4.2 Halfspace depth outlier identifier

For the outlier identifier using halfspace outlyingness OH(x, F ), x ∈ R
d, and with mH(XN ) the

halfspace median, as treated in Donoho and Gasko [5], we establish an upper bound for the MBP.

Theorem 3.3 Using OH(x, F ) with threshold λN ,

εH
M (λN , XN) = min

{
RBP(mH(XN)), N−1

⌈(
1 − λN

2

)
N

⌉}
.

Proof. Subject to mH(XN ) not breaking down, i.e, subject to mH(XN,k) remaining within the
convex hull CH(XN) over all replacements Yk, we explore when (5) may or may not hold. We have

OR(λN , XN,k) =

{
x : DH(x, XN,k)) ≥

1 − λN

2

}
.

Choose ∆ > supx ∈ CH(XN ) ‖x‖ and let x∗ satisfy ‖x∗‖ > ∆. In order to achieve DH(x∗, XN,k)) ≥
(1−λN)/2 by replacing k points of XN with points in a halfspace containing x∗ but not intersecting

CH(XN), we need k =
⌈(

1−λN
2

)
N
⌉
. This can be accomplished for each arbitrarily large ∆ and

thus (5) follows. By standard arguments analogous to those in the treatment of halfspace depth in
Donoho and Gasko [5], no other choice of XN,k corresponding to a smaller k suffices. 2
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Remark 3.3 (a) The expression given in Theorem 3.3 depends upon the threshold λN .

(b) Donoho and Gasko [5] show that if XN is in general position, then the addition BP of

mH(XN ) is ≥ 1/(d + 1), d ≥ 2. Further, Donoho and Gasko [5] and Chen [3] show that if the
underlying probability measure is absolutely continuous and angularly symmetric, then this BP has

almost sure limit 1/3, N → ∞. From results of Serfling [20] we thus conclude that RBP(mH(XN))
≥ 1/(d + 1), for d ≥ 2 and XN in general position, and that lim supN→∞ RBP(mH(XN)) ≤ 1/3

if also the underlying probability measure is absolutely continuous and angularly symmetric. It is
thus reasonable to use in practice as a heuristic guideline the upper bound

εH
M(λN , XN) ≤ min

{
N−1

⌈(
1 − λN

2

)
N

⌉
,
1

3

}
≈ min

{
1 − λN

2
,
1

3

}
. (8)

2

3.4.3 Projection depth outlier identifier

We take projection outlyingness OP(x, F ), with (µ(·), σ(·)) = (Med, MAD), and for the sample

MAD we use the MADd−1 in the case d ≥ 2, where MADm is the modified version of sample MAD
(see Tyler [24], Gather and Hilker [7], and Zuo [28]) given by

MADm(YN ) = Medm{|Y1 − Med(YN )|, . . . , |YN − Med(YN)|}

with

Medm(ZN) =
1

2

(
Z(bN+m

2
c) + Z(bN+m+1

2
c)

)
, 1 ≤ m ≤ N.

The case m = 1 gives the usual MAD. We establish an exact result for the corresponding MBP.

Theorem 3.4 For OP(x, F ) with (µ, σ) given by (Med, MAD), and using sample version MADd−1

for d ≥ 2, and for XN in general position with N ≥ 2(d− 1)2 + d, we have for threshold λN

εP
M (λN , XN) = N−1

⌈
N − d + 2

2

⌉
.

Proof. It is shown in [24] and [7] that, for d ≥ 2,

(Med, MADd−1) has explosion RBP∗∗ = N−1

⌈
N − d + 2

2

⌉
, (9)

where RBP∗∗ represents uniform RBP, that is, breakdown with respect to the maximum bias taken

over all projections u.
We now show that if (5) holds, then k ≥ d(N −d+2)/2e. For suppose that k < d(N −d+2)/2e.

Then Med(u′
XN,k) and MADd−1(u

′
XN,k) remain uniformly bounded above with respect to all u

and all choices of XN,k. Let B1(XN) and B2(XN) denote such bounds, respectively. Then

∣∣∣∣
u′x − Med(XN,k)

MADd−1(XN,k)

∣∣∣∣ ≥
|u′x| − B1(XN )

B2(XN)

9



and then

O(x, XN,k) ≥
sup‖u‖ = 1 |u′x| − B1(XN)

B2(XN)
≥ max1 ≤ i ≤ d |xi| − B1(XN)

B2(XN)
.

Therefore, for all sufficiently large ‖x‖, the point x cannot belong to OR(λN , XN,k) for any XN,k,
i.e., (5) fails to hold. Hence (5) implies k ≥ d(N − d + 2)/2e.

Now we show the converse. Zuo [28] establishes that, for d ≥ 2 and N ≥ 2(d − 1)2 + d, k =
d(N − d + 2)/2e contaminants suffice to break down the projection median PM(XN) with (µ, σ) =

(Med, MADd−1). Thus PM(XN,k) minimizes O(x, XN,k) but can → ∞ with some sequence {X
(i)
N,k}.

Since PM(XN,k) ∈ OR(λN , XN,k), (5) holds. 2

Remark 3.4 (a) The expression in Theorem 3.4 does not depend upon the threshold λN .

(b) With this choice of (µ, σ), the above MBP equals the RBP of PM(XN). 2

3.4.4 Spatial and Mahalanobis spatial outlier identifiers

We now consider the outlier identifiers based on the spatial outlyingness OS(x, F ) and, for a weak

covariance functional C(·), the associated Mahalanobis spatial outlyingness OMS(x, FX). We obtain
for the spatial case an exact MBP result, which yields for the Mahalanobis spatial case an upper

bound that can serve as a heuristic practical guideline.

Theorem 3.5 For the OS(x, F ) with threshold λN ,

εS
M (λN , XN) = N−1

⌈(
1 − λN

2

)
N

⌉
.

Corollary 3.1 Using OMS(x, FX) with threshold λN , we have

εMS
M (λN , XN) ≤ min

{
RBPexp(C(XN)), N−1

⌈(
1 − λN

2

)
N

⌉}
.

Remark 3.5 As for the halfspace case, the above MBP results depend upon the threshold λN . 2

Proof of Theorem 3.5. We explore (5) with respect to OS(x, F ) = ‖ES(x−X)‖ and its sample

analogue

OS(x, XN) =

∥∥∥∥∥N
−1

N∑

i=1

S(x −Xi)

∥∥∥∥∥ .

First, suppose that (5) fails for some k, and let

sup
XN,k

sup
y ∈ OR(λN , XN,k)

‖y‖ = B < ∞.

Choose x∗ with ‖x∗‖ > B. Then OS(x
∗, XN,k) > λN , each choice of XN,k. In particular, replace

XN−k+1, . . . , XN by some choice of Y 1, . . . , Y k, forming XN,k(x
∗). To choose Y 1, . . . , Y k, first

put

y∗ = S

(
N−k∑

i=1

S(x∗ − X i)

)
.
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Then
N−k∑

i=1

S(x∗ − Xi) =

∥∥∥∥∥

N−k∑

i=1

S(x∗ − Xi)

∥∥∥∥∥y∗.

Now let Y j = Y 0, j = 1, . . . , k, with S(x∗−Y 0) = −y∗, so that
∑k

j=1 S(x∗−Y j) = −ky∗. Write

S(x∗ − Xi) =
x∗ − X1

‖x∗ − X i‖
+

X1 − X i

‖x∗ − X i‖

=
x∗ − X1

‖x∗ − X1‖
× ‖x∗ − X1‖

‖x∗ − Xi‖
+

X1 − Xi

‖x∗ − X i‖
.

Since, as ‖x∗‖ → ∞,
X1 − Xi

‖x∗ − X i‖
→ 0 and

‖x∗ − X1‖
‖x∗ − X i‖

→ 1,

we have S(x∗ − Xi) = S(x∗ − X1) (1± o(1)) uniformly in i = 1, . . . , N − k, and thus

∥∥∥∥∥

N−k∑

i=1

S(x∗ − X i)

∥∥∥∥∥ = ‖S(x∗ − X1) (N − k) (1± o(1))‖ = (N − k) (1± o(1)).

It follows that

λN < OS(x
∗, XN,k(x

∗)) = N−1

∣∣∣∣∣

∥∥∥∥∥

N−k∑

i=1

S(x∗ − X i)

∥∥∥∥∥− k

∣∣∣∣∣ × ‖y∗‖

= N−1((N − 2k) ± (N − k)o(1)), as ‖x∗‖ → ∞,

yielding k ≤
⌊(

1−λN
2

)
N
⌋
. Equivalently, if k ≥

⌈(
1−λN

2

)
N
⌉
, then (5) holds.

For the converse implication, suppose that (5) holds for some k. Then there exists {xn} with
‖xn‖ → ∞ satisfying xn ∈ OR(λN , XN,k(xn)) for some choice of XN,k, say XN,k(xn), i.e., we have

OS(xn, XN,k(xn)) ≤ λN .

Denote the unreplaced observations in XN by X
(n)
1 , . . . , X

(n)
N−k. Now, using similar arguments as

above, we have

S(xn − X
(n)
i ) =

xn

‖xn‖
× ‖xn‖

‖xn − X
(n)
i ‖

− X
(n)
i

‖X(n)
i ‖

× ‖X(n)
i ‖

‖xn − X
(n)
i ‖

= S(xn) (1 + o(1)), n → ∞. (10)

Moreover, (10) holds uniformly over XN .

11



Now let ε > 0 be given, small enough that
⌈(

1−λN−ε
2

)
N
⌉

=
⌈(

1−λN
2

)
N
⌉
. Then there exists

n(ε), which may depend upon XN , such that for n > n(ε),

∥∥∥∥∥(N − k)−1
N−k∑

i=1

S(xn − X
(n)
i )

∥∥∥∥∥ = ‖S(xn)‖ (1 + o(1)) > 1 − ε.

Also, the replacements Y
(n)
1 , . . . , Y

(n)
k must satisfy

∥∥∥∥∥∥
k−1

k∑

j=1

S(xn − Y
(n)
j )

∥∥∥∥∥∥
< 1 + ε.

Then

OS(xn, XN,k(xn)) = N−1

∥∥∥∥∥∥

N−k∑

i=1

S(xn − X
(n)
i ) +

k∑

j=1

S(xn − Y
(n)
j )

∥∥∥∥∥∥

≥ N−1



∥∥∥∥∥

N−k∑

i=1

S(xn − X
(n)
i )

∥∥∥∥∥−

∥∥∥∥∥∥

k∑

j=1

S(xn − Y
(n)
j )

∥∥∥∥∥∥




≥ N−1((N − k)(1− ε) − k(1 + ε)),

yielding N−1((N − k)(1− ε)− k(1 + ε)) ≤ λN , in which case k ≥
(

1−λN−ε
2

)
N , or, equivalently, k

≥
⌈(

1−λN−ε
2

)
N
⌉

=
⌈(

1−λN
2

)
N
⌉
, completing the proof. 2

Proof (sketch) of Corollary 3.1. For the sample Mahalanobis quantile outlyingness,

OMS(x, XN) =

∥∥∥∥∥N
−1

N∑

i=1

S(C(XN)−1/2(x −Xi))

∥∥∥∥∥ ,

and thus with

OR(λN , XN,k) =

{
y :

∥∥∥∥∥N
−1

N∑

i=1

S(C(XN,k)
−1/2(y − Xi))

∥∥∥∥∥ > λN

}
,

we explore (5). It is straightforward to see that explosion breakdown of C(XN) suffices to cause

masking breakdown of OR(λN , XN), yielding

εMS
M (λN , XN) ≤ RBPexp(C(XN)). (11)

To obtain the other upper bound,

εMS
M (λN , XN) ≤ N−1

⌈(
1 − λN

2

)
N

⌉
, (12)
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we need to extend the first part of the proof of Theorem 3.5. First, with RBPexp(C(XN)) =

k0/N , suppose that (5) fails for some k < k0, and let B and x∗ be defined as previously. Then
OMS(x∗, XN,k) > λN , each choice of XN,k. Again, in particular, replace XN−k+1, . . . , XN by some

choice of Y 1, . . . , Y k, forming XN,k(x
∗). However, for choosing Y 1, . . . , Y k, the previous first step

would now take the form of defining y∗ by

y∗ = S

(
N−k∑

i=1

S(C(XN,k(x
∗))−1/2(x∗ − Xi))

)
.

It is quickly clear that this is problematic, so let us first substitute C(XN) for C(XN,k(x
∗)),

since XN,k(x
∗) does not break down C(XN). With S(C(XN,k(x

∗))−1/2(x∗ − X i)) substituted for
S(x∗ − Xi), etc., the previous steps of proof go through readily, establishing

λN < N−1((N − 2k) ± (N − k)o(1)), as ‖x∗‖ → ∞,

yielding (12) under the substitution of C(XN) for C(XN,k(x
∗)). With similar but much more

cumbersome steps, the same result without this substitution can be obtained. 2

3.5 Selection of the outlier threshold λN

Based on the discussion of the contamination model in Section 3.1, we will choose the threshold

λN to be the (1 − αN )th quantile of the distribution of O(X, G) under the ideal distribution G,
i.e., λN = F−1

O(X, G)
(1 − αN), where αN is a selected value for the approximate false positive rate.

In choosing αN , it is desired that this rate be small relative to the approximate true positive rate,
εN . That is, we desire that

δ = αN/εN

be small. In terms of εN and δ, the threshold λN is given by

λN = F−1
O(X,G)

(1− δεN). (13)

For example, with δ = 0.10, we might choose εN = 0.25 to allow for a substantial fraction of out-

liers, yielding λN = F−1
O(X,G)(0.975), or a more moderate εN = 0.15, yielding λN = F−1

O(X,G)(0.985),

or a very modest εN = 0.02, yielding λN = F−1
O(X, G)

(0.998). In such cases with εN fixed and not

depending upon N , the (approximate) expected number of true outliers NεN grows as O(N ).

An alternative approach (Jaeckel [10]) to specification of εN argues that the contamination
fraction should decrease with increasing sample size N . In this spirit, we might assume

εN =
c√
N

, (14)

for some constant c (to be determined). In this case, the (approximate) expected number of true

outliers NεN = c
√

N still is an increasing function of N but grows as o(N ). In terms of c and δ,
the threshold λN is given by

λN = F−1
O(X, G)(1 − cδ/

√
N ). (15)
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For given choice of δ, say δ = 0.1, we calibrate the function in (14) by choosing c. For example, rela-

tive to a sample of size N = 100, we might like the “feel” of allowing for up to 15 outliers, giving c =
15/

√
100 = 1.5 and thus F−1

O(X, G)
(1−0.15/

√
N ) and thresholds of F−1

O(X, G)
(0.985), F−1

O(X,G)
(0.993),

and F−1
O(X, G)(0.995), respectively, for N = 100, 500, and 1000. If, on the other hand, we prefer

the “feel” of allowing for 2 outliers in a sample of size N = 20, we would obtain c = 2/
√

20 =

0.45 and thus F−1
O(X,G)(1 − 0.045/

√
N) and thresholds of F−1

O(X,G)(0.9955), F−1
O(X,G)(0.9980), and

F−1
O(X, G)

(0.9986), respectively, for N = 100, 500, and 1000.
Other scenarios for setting εN are possible. Clearly, in any case the threshold λN needs to be

a relatively high quantile of FO(X,G).

3.6 λN and MBP with G multivariate normal

We compare values of MBP for different outlier identifiers within the framework of a common

contamination model. First, values of δ and εN are fixed, and then for each outlyingness function
the corresponding threshold λN is determined via (13). Here we select εN using (14) with a fixed

choice of c, so that λN is given by (15). For the “MD”, “H”, “P”, and “MS” outlier identifiers,
we carry out this approach with G multivariate normal. Since these four procedures are based on

affine invariant outlyingness functions, it suffices without loss of generality to take G to be standard
d-variate normal, G0 = N (0, Id).

Our first step is to obtain the distribution FO(X, G0) for each outlyingness function under con-
sideration. We denote by χ2

ν a random variable having the chi-square distribution with ν degrees

of freedom.

Lemma 3.1 (i) For Mahalanobis distance outlyingness with mean µ(F ) and covariance Σ(F ) as

the location and dispersion measures (= 0 and Id for G0),

FOMD(X,G0)(λ) = P

(
χ2

d ≤
(

λ

1 − λ

)2
)

, 0 ≤ λ < 1. (16)

(ii) For halfspace outlyingness,

FOH(X,G0)(λ) = P

(
χ2

d ≤
[
Φ−1

(
1 + λ

2

)]2
)

(17)

[
= P

(
χ2

d ≤
[
Φ−1

(
1 − λ

2

)]2
)]

, 0 ≤ λ < 1.

(iii) For projection outlyingness with (µ, σ) = (Med, MAD) and using sample version MADd−1

for MAD,

FOP(X, G0)(λ) = P

(
χ2

d ≤
[
Φ−1

(
3

4

)
λ

1 − λ

]2
)

, 0 ≤ λ < 1. (18)
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Remark 3.6 (a) The location and scatter measures for Mahalanobis distance outlyingness in (i)

and for projection outlyingness in (iii) accommodate straightforward derivations of the distributions
FO(X, G0)(λ). Other choices would yield somewhat different distributions in (i) and (iii). Thus the

results in Lemma 3.1 serve merely as benchmarks.
(b) We lack an explicit result for FOMS(X, G0) for G0 = N (0, Id), even with covariance Σ(F )

as the scatter measure. However, as may be needed in any application, this distribution can be
determined numerically, of course.

(c) Furthermore, since in practice we actually are interested in thresholds pertaining to the cdf
of O(X , Ĝ0) based on a sample estimate of G0, empirical thresholds based on appropriate sampling

experiments are more apropos and accommodate any choices of location and dispersion measures.
We use such an approach in the numerical study in Section 4. 2

Proof of Lemma 3.1. (i) We have

P (OMD(X, G0) ≤ λ) = P

(
MD(X, G0) ≤

λ

1 − λ

)

= P

(
‖Σ(G0)

−1/2(X − µ(G0))‖ ≤ λ

1 − λ

)
,

yielding (16).
(ii) From Donoho and Gasko [5] we have DH(x, G0) = Φ(−‖x‖), and hence OH(x, F ) = 1 −

2Φ(−‖x‖), from which the equality in (17) readily follows. The second inequality in (ii) follows
from Φ−1((1 + λ)/2) = −Φ−1((1 − λ)/2).

(iii) From Zuo [28] we have DP(x, G0) = Φ−1(3/4)/(Φ−1(3/4) + ‖x‖), and hence

OP(x, G0) =
‖x‖

Φ−1(3/4) + ‖x‖ ,

leading to (18). 2

With the notation

Q(d, α) =

√(
χ2

d

)−1
(1 − α),

the formula (15) for λN as a function of specified false positive rate αN = cδ/
√

N yields via Lemma

3.1 the following threshold values.

Corollary 3.2 (i) For Mahalanobis distance outlyingness with mean µ(F ) and covariance Σ(F )
as the location and dispersion measures (= 0 and Id for G0),

λN =
Q(d, cδ/

√
N )

1 + Q(d, cδ/
√

N )
. (19)

(ii) For halfspace outlyingness,

λN = 2Φ(Q(d, cδ/
√

N)) − 1. (20)

15



(iii) For projection outlyingness with (µ, σ) = (Med, MAD) and using sample version MADd−1

for MAD,

λN =
Q(d, cδ/

√
N )

(Φ−1(3/4) + Q(d, cδ/
√

N)
. (21)

It turns out that the range λN does not vary a lot over typical values of N , d, c, and δ.

Example 3.1 For c = 1.5 and δ= 0.1, i.e., αN = δc/
√

N = 0.15/
√

N , and for N = 100, 500,

and 1000 and dimension d = 2, 5, 10, 15, and 20, the solutions λN given in Corollary 3.2 range
tightly:

• For Mahalanobis distance outlyingness, 0.74 ≤ λN ≤ 0.86.

• For halfspace outlyingness, 0.996 ≤ λN ≤ 1.00.

• For projection outlyingness, 0.81 ≤ λN ≤ 0.90.

For halfspace outlyingness, the upper bound (1 − λN)/2 for the MBP is very small for the above

range of λN . For Mahalanobis distance and projection outlyingness, however, the range of λN

imposes no restriction on the MBP. 2

3.7 Conclusions and Comments

For classifying points as “outliers” or not, using a threshold λN determined by a G-based false
positive rate, the Mahalanobis distance and projection outlyingness allow choices of λN with both

high MBP and low false positive rate. For Mahalanobis spatial outlyingness, we lack an explicit
theoretical result connecting MBP and false positive rate, but the numerical study in Section 4

shows that with this outlyingness one can set a low false positive rate and still have the MBP
at levels often acceptable. Although its MBP is not as high as for the Mahalanobis distance and
projection outlier identifiers, the Mahalanobis spatial outlier identifier remains competitive because

its contours are not constrained to be elliptical and its computational burden is not intensive.
Thus the Mahalanobis distance, projection, and Mahalanobis spatial identifiers offer satisfactory

masking protection. The halfspace outlier identifier, however, entails a severe and unacceptable
tradeoff between MBP and false positive rate.

On the other hand, all four of these outlyingness functions can be used for purposes such as
robust outlyingness ranking of points in XN , or robust location estimation. These goals are quite

different from that of setting an outlyingness threshold.
The Mahalanobis distance and projection approaches succeed especially well perhaps due to

requiring only a limited objective, robust estimation of location and scale parameters, which then
determine the outlyingness function. The halfspace and Mahalanobis spatial approaches entail a
wider and more challenging inference objective, robust nonparametric estimation of the outlyingness

function.
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4 A brief numerical experiment

Here we provide a brief but illustrative numerical study to explore the qualitative findings of
Section 3 by comparing the four outlier identifiers empirically. A detailed and comprehensive study

is of considerable interest but beyond the scope of the present paper.

4.1 The simulation plan

The data XN consists of a sample of size N = 100 from the bivariate standard normal distribution,

and we consider a contamination model with c = 1.5 and δ = 0.1 as in Example 3.1, so that the
approximate true positive rate due to contamination becomes ε100 = 0.15 and the approximate

false positive rate under no contamination is α100 = 0.015. In fact, taking account of the discrete
sample size N = 100, we shall use α100 = 0.01 and thus expect the (uncontaminated) data X100 to

contain one or two observations with outlyingness beyond the threshold value λ100 determined by
α100 = 0.01 for the particular outlyingness function under consideration. For reasons as discussed in

Remark 3.6, however, we use sample-based thresholds consistent with α100 = 0.01, namely sample
α100 = the largest observation in the uncontaminated sample of size 100.

As evident in the proof of Lemma 3.1, each of the outlyingness functions OMD(x, G0), OH(x, G0),

and OP(x, G0), evaluated at G0, is an increasing function of ‖x‖. For convenience later, we index
the data points X1, . . . , X100 in order of increasing ‖Xi‖.

Six affine invariant sample outlier identifiers are considered:

• Classical Mahalanobis distance (CMD): OMD(x, XN) with the classical location and covari-
ance estimators, X and S. This, of course, is nonrobust.

• Robust Mahalanobis distance (RMD): OMD(x, XN) with robust location and covariance esti-
mators, using the minimum covariance determinant (MCD) method of Rousseeuw [16] and

Rousseeuw and Van Driessen [17], as computed in the package robust in R.

• Halfspace (H): OH(x, XN).

• Classical Mahalanobis spatial (CMS): OMS(x, XN) with S. This is nonrobust.

• Robust Mahalanobis spatial (RMS): OMS(x, XN) with the MCD covariance estimator.

• Projection (P): OP(x, XN) with (Med, MADd−1) as sample (µ, σ).

We explore the masking robustness of CMD, RMD, H, CMS, RMS, and P, with respect to two
scenarios for replacement of the 15 most outlying points of X100 by extreme outliers.

• Scenario A. The points X86, . . . , X100 are replaced, respectively, by KX86, . . . , KX100 for

some inflation factor K. We shall use K = 5. Each outlier lies along the ray in the direction

of the replaced point from the origin. Denote the modified data set by X
(A)
100.

• Scenario B. The points X86, . . . , X100 are replaced by K1X100, . . . , K15X100 for some respec-

tive inflation factors K1, . . . , K15. We shall use K1 = 1.25, K2 = 1.50, K3 = 1.75, K4 = 2.00,
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K5 = 2.25, . . ., K15 = 4.75. These outliers are spread along the single ray in the direction of

X100 from the origin. Denote the modified data set by X
(B)
100.

4.2 The simulation results

Figure 1 displays the original data set X100 consisting of 100 observations from the bivariate stan-

dard normal distribution. Also indicated are the modified data sets X
(A)
100 and X

(B)
100 resulting from

contamination under Scenarios A and B, respectively, for replacement of the 15 original sample

points that have the greatest Euclidean distance ‖x‖ from the origin.

The case of no contamination

For the 25 sample cases with uppermost ‖x‖, labeled with row index i corresponding to order of

increasing ‖x‖, the sample outlyingness values in the case of no contamination are listed in Table 1
for each of CMD, H, CMS, RMD, RMS, and P. For each, the largest outlyingness value is indicated

in boldface. Reflecting a 1% false positive rate, these values will serve as the relevant thresholds for
outlier detection under the contamination scenarios A and B. Although, for at least CMD, H, and P,

the population outlyingness values O(x, G0) are monotone increasing with ‖x‖, the corresponding
sample versions need not strictly follow such monotonicity, of course.

For CMD, H, and P, we can compare the respective sample-based thresholds 0.76, 0.98, and
0.86 with the population-based thresholds determined by Corollary 3.2 for α100 = 0.01, i.e., with

Q(2, 0.01) = 9.21. For CMD, (19) yields λ100 =
√

9.21/(1 +
√

9.21) = 3.03/(1+ 3.03) = 0.75. For
H, (20) yields λ100 = 2Φ(3.03)− 1 = 0.9976, and, for P, (21) yields λ100 = 0.82. The population
and outlyingness values agree fairly well for all 25 cases listed, although for H, however, the step

function character of the sample halfspace depth results in minimum sample depth 1/N = 1/100 =
0.01 for all points on the boundary of the convex hull of the data, yielding maximum possible sample

outlyingness 0.98. Therefore, sample outlyingness values (using H) cannot reach the theoretical
threshold of 0.9976 without a much larger sample size N , although then the relevant threshold

would become even closer to 1.00.

The case of contamination and nonrobust identifiers

For the 25 cases of Table 1, the performance of two nonrobust outlier identifiers, CMD and CMS,
is illustrated in Table 2 under Scenarios A and B for replacement contamination of the 15 cases

86-100 by outliers. For purposes of comparison, the unaltered cases 76-85 are retained. For all 25
cases, the original sample outlyingness values and those under Scenarios A and B are shown.

For CMD, it is seen that under Scenario A most (12 out of 15) outliers are detected (and the

other 3 are almost detected), whereas in Scenario B only the most extreme 3 cases are detected
leaving the other 12 outliers masked (although 2 of these are almost detected). This is not surprising,

since in Scenario B the sample mean is pulled in the direction of the 15 outliers. We also note that
under Scenario A the outlyingness values of cases 76-85 change considerably, becoming far below

the threshold 0.76. For CMS, 9 of the outliers are detected under Scenario A (with 3 more almost
detected), while under Scenario B only the 2 most extreme are detected and one nonoutlier, case 82,
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is misidentified as an outlier. Of course, a good identifier should perform well under both Scenario

A and Scenario B. As expected, neither CMD nor CMS meets this criterion.

The case of contamination and weakly robust identifiers

Table 3 illustrates the performance of two weakly masking robust outlier identifiers, H and RMS,
under Scenarios A and B for replacement of 15 sample points by outliers.

For H, the 9 cases that met the threshold without contamination are also detected under Scenario
A, while under Scenario B only the most extreme case among the created outliers is detected, the

others being masked. Also, 6 among the 10 nonoutliers are misidentified as outliers, indicating a
serious masking problem with H.

For RMS, 6 of the created outliers are detected under Scenario A and 3 under Scenario B, but

none of the nonoutliers are misidentified as outliers.
Of course, this weak masking performance is anticipated in the present case of a high threshold

combined with a high level of contamination. The associated masking breakdown points, MBP
= (1 − λ)/λ), are .02/.98 = .02 and .04/.96 = .04 for H and CMS, respectively, whereas the

contamination level is 0.15. For a contamination level of 0.03, however, we see that CMS (but not
H) performs well in detecting the 3 most extreme outliers under either scenario.

The case of contamination and strongly robust identifiers

Table 4 illustrates the performance of two strongly masking robust outlier identifiers, RMD and

P, under Scenarios A and B for replacement of 15 sample points by outliers. Both have excellent
performance, each identifying all 15 outliers and only these, under both scenarios. Of course, this
is expected from the high masking breakdown points, independent of the threshold, possessed by

these procedures. The identifiers RMD and P are competitive with each other, with RMD more
favorable computationally but P not constrained to follow elliptical outlyingness contours.

4.3 Practical recommendations

The findings of this sampling study are consistent with the general conclusions of Section 3.7 based
on theoretical MBPs considered relative to a low false positive rate. Under two quite different

scenarios for creation of 15 outliers by replacement in a sample of size 100 from standard bivariate
normal, the outlyingness functions RMD and P are considerably superior in performance. At the

other extreme are CMD, CMS, and H. In between falls RMS, which is competitive in the case of a
small level of contamination.
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Figure 1: Plot of 100 observations from bivariate standard normal, the 15 most outlying observa-
tions represented by +. Scenario A inflates the 15 most outlying observations by the factor K = 5,

to locations indicated by “a”. Scenario B replaces the 15 most outlying observations by more
extreme values along a single direction, to locations indicated by “b”.
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O(x, X100)

i CMD H CMS RMD RMS P

76 0.64 0.92 0.82 0.64 0.80 0.75

77 0.60 0.88 0.76 0.59 0.76 0.73
78 0.62 0.90 0.77 0.59 0.75 0.71

79 0.65 0.96 0.84 0.65 0.81 0.75
80 0.66 0.90 0.82 0.70 0.85 0.79

81 0.66 0.92 0.83 0.70 0.85 0.79
82 0.67 0.96 0.85 0.65 0.82 0.77

83 0.64 0.94 0.83 0.61 0.80 0.74
84 0.64 0.92 0.83 0.63 0.82 0.76
85 0.66 0.94 0.85 0.68 0.87 0.79

86 0.68 0.94 0.85 0.72 0.88 0.82
87 0.65 0.94 0.84 0.66 0.85 0.78

88 0.67 0.96 0.88 0.66 0.85 0.77
89 0.66 0.96 0.85 0.67 0.87 0.78

90 0.69 0.96 0.88 0.69 0.87 0.80
91 0.69 0.96 0.88 0.69 0.88 0.80

92 0.69 0.98 0.88 0.71 0.89 0.80
93 0.69 0.98 0.90 0.66 0.87 0.77

94 0.69 0.98 0.90 0.68 0.89 0.79
95 0.73 0.98 0.92 0.76 0.94 0.85
96 0.74 0.98 0.93 0.77 0.94 0.85

97 0.75 0.98 0.93 0.78 0.95 0.86

98 0.75 0.98 0.94 0.77 0.95 0.85

99 0.76 0.98 0.95 0.75 0.93 0.83
100 0.75 0.98 0.94 0.77 0.96 0.85

Table 1: Sample outlyingness values O(x, X100), for CMD, H, CMS, RMD, RMS, and P. Largest

outlyingness value defining relevant sample threshold λ100 is indicated in bold.
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CMD CMS

sample λ100 = 0.76 sample λ100 = 0.95

i O(x, X100) O(x, X
(A)
100) O(x, X

(B)
100) O(x, X100) O(x, X

(A)
100) O(x, X

(B)
100)

76 0.64 0.37 0.64 0.82 0.79 0.84
77 0.60 0.29 0.43 0.76 0.72 0.48

78 0.62 0.32 0.66 0.77 0.75 0.89
79 0.65 0.38 0.69 0.84 0.81 0.92
80 0.66 0.36 0.48 0.82 0.76 0.63

81 0.66 0.36 0.48 0.83 0.77 0.64
82 0.67 0.39 0.72 0.85 0.81 0.96

83 0.64 0.35 0.68 0.83 0.78 0.93
84 0.64 0.33 0.56 0.83 0.77 0.71

85 0.66 0.34 0.62 0.85 0.76 0.79

86 0.68 0.73 0.40 0.85 0.92 0.51
87 0.65 0.74 0.47 0.84 0.92 0.57

88 0.67 0.76 0.52 0.88 0.94 0.62
89 0.66 0.74 0.57 0.85 0.93 0.67

90 0.69 0.76 0.60 0.88 0.95 0.70
91 0.69 0.76 0.63 0.88 0.94 0.74
92 0.69 0.76 0.66 0.88 0.95 0.77

93 0.69 0.78 0.68 0.90 0.95 0.80
94 0.69 0.78 0.70 0.90 0.95 0.83

95 0.73 0.78 0.72 0.92 0.96 0.85
96 0.74 0.79 0.74 0.93 0.96 0.88

97 0.75 0.79 0.75 0.93 0.96 0.90
98 0.75 0.80 0.76 0.94 0.97 0.93

99 0.76 0.83 0.78 0.95 0.98 0.95

100 0.75 0.81 0.79 0.94 0.97 0.97

Table 2: Performance of nonrobust outlier identifiers, CMD and CMS, under Scenarios A and B
for replacement of 15 sample points by outliers (cases i = 86, . . . , 100). Outlyingness values at or

above relevant sample threshold λ100 are indicated in bold.
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H RMS

sample λ100 = 0.98 sample λ100 = 0.96

i O(x, X100) O(x, X
(A)
100) O(x, X

(B)
100) O(x, X100) O(x, X

(A)
100) O(x, X

(B)
100)

76 0.92 0.86 0.98 0.80 0.76 0.85
77 0.88 0.82 0.66 0.76 0.72 0.59

78 0.90 0.82 0.96 0.75 0.70 0.69
79 0.96 0.86 0.98 0.81 0.77 0.85
80 0.90 0.88 0.98 0.85 0.80 0.93

81 0.92 0.86 0.98 0.85 0.80 0.93
82 0.96 0.88 0.98 0.82 0.78 0.81

83 0.94 0.86 0.98 0.80 0.74 0.72
84 0.92 0.86 0.82 0.82 0.76 0.65

85 0.94 0.88 0.90 0.87 0.80 0.69

86 0.94 0.94 0.70 0.88 0.93 0.70
87 0.94 0.94 0.72 0.85 0.92 0.73

88 0.96 0.96 0.74 0.85 0.93 0.75
89 0.96 0.96 0.76 0.87 0.94 0.77

90 0.96 0.96 0.78 0.87 0.94 0.79
91 0.96 0.96 0.80 0.88 0.94 0.82
92 0.98 0.98 0.82 0.89 0.94 0.84

93 0.98 0.98 0.84 0.87 0.94 0.86
94 0.98 0.98 0.86 0.89 0.94 0.88

95 0.98 0.98 0.88 0.94 0.97 0.90
96 0.98 0.98 0.90 0.94 0.97 0.92

97 0.98 0.98 0.92 0.95 0.98 0.94
98 0.98 0.98 0.94 0.95 0.98 0.96

99 0.98 0.98 0.96 0.93 0.97 0.98

100 0.98 0.98 0.98 0.96 0.98 1.00

Table 3: Performance of two weakly robust outlier identifiers, H and RMS, under Scenarios A and
B for replacement of 15 sample points by outliers (cases i = 86, . . . , 100). Outlyingness values at

or above relevant sample threshold λ100 are indicated in bold.
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RMD P

sample λ100 = 0.78 sample λ100 = 0.86

i O(x, X100) O(x, X
(A)
100) O(x, X

(B)
100) O(x, X100) O(x, X

(A)
100) O(x, X

(B)
100)

76 0.64 0.64 0.64 0.75 0.75 0.76
77 0.59 0.61 0.61 0.73 0.71 0.69

78 0.59 0.60 0.60 0.71 0.71 0.76
79 0.65 0.64 0.64 0.75 0.75 0.78
80 0.70 0.69 0.69 0.79 0.78 0.79

81 0.70 0.69 0.69 0.79 0.78 0.79
82 0.65 0.65 0.65 0.77 0.76 0.81

83 0.61 0.63 0.63 0.74 0.73 0.77
84 0.63 0.64 0.64 0.76 0.74 0.72

85 0.68 0.69 0.69 0.79 0.79 0.78

86 0.72 0.92 0.81 0.82 0.95 0.87

87 0.66 0.92 0.84 0.78 0.94 0.89

88 0.66 0.91 0.86 0.77 0.94 0.90

89 0.67 0.92 0.87 0.78 0.95 0.92

90 0.69 0.92 0.89 0.80 0.95 0.93

91 0.69 0.92 0.90 0.80 0.95 0.93

92 0.71 0.92 0.91 0.80 0.95 0.94

93 0.66 0.92 0.91 0.77 0.95 0.94

94 0.68 0.92 0.92 0.79 0.95 0.95

95 0.76 0.94 0.93 0.85 0.96 0.95

96 0.77 0.94 0.93 0.85 0.96 0.95

97 0.78 0.94 0.93 0.86 0.97 0.96

98 0.77 0.95 0.94 0.85 0.97 0.96

99 0.75 0.94 0.94 0.83 0.96 0.96

100 0.77 0.95 0.94 0.85 0.97 0.96

Table 4: Performance of two strongly robust outlier identifiers, RMD and P, under Scenarios A
and B for replacement of 15 sample points by outliers (cases i = 86, . . . , 100). Outlyingness values

at or above relevant sample threshold λ100 are indicated in bold.
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