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1 Estimating Feature-Label Dependence Using
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4 Abstract—Identifying statistical dependence between the features and the label is a fundamental problem in supervised learning. This

5 paper presents a framework for estimating dependence between numerical features and a categorical label using generalized Gini

6 distance, an energy distance in reproducing kernel Hilbert spaces (RKHS). Two Gini distance based dependence measures are

7 explored:Gini distance covariance andGini distance correlation. Unlike Pearson covariance and correlation, which do not characterize

8 independence, the above Gini distance based measures define dependence as well as independence of random variables. The test

9 statistics are simple to calculate and do not require probability density estimation. Uniform convergence bounds and asymptotic bounds

10 are derived for the test statistics. Comparisons with distance covariance statistics are provided. It is shown that Gini distance statistics

11 converge faster than distance covariance statistics in the uniform convergence bounds, hence tighter upper bounds on both Type I

12 and Type II errors. Moreover, the probability of Gini distance covariance statistic under-performing the distance covariance statistic in

13 Type II error decreases to 0 exponentially with the increase of the sample size. Extensive experimental results are presented to

14 demonstrate the performance of the proposed method.

15 Index Terms—Energy distance, feature selection, Gini distance covariance, Gini distance correlation, distance covariance, reproducing

16 kernel Hilbert space, dependence test, supervised learning

Ç

17 1 INTRODUCTION

18 BUILDING a prediction model from observations of features
19 and responses (or labels) is a well-studied problem in
20 machine learning and statistics. The problem becomes partic-
21 ularly challenging in a high dimensional feature space. A
22 common practice in tackling this challenge is to reduce the
23 number of features under consideration, which is in general
24 achieved via feature combination or feature selection.
25 Feature combination refers to combining high dimensional
26 inputs into a smaller set of features via a linear or nonlinear
27 transformation, e.g., principal component analysis (PCA) [35],
28 independent component analysis (ICA) [16], curvilinear com-
29 ponents analysis [21], multidimensional scaling (MDS) [81],
30 nonnegative matrix factorization (NMF) [47], Isomap [80],
31 locally linear embedding (LLE) [63], Laplacian eigenmaps [6],
32 stochastic neighbor embedding (SNE) [33], etc. Feature selec-
33 tion, also known as variable selection, aims at choosing a sub-
34 set of features that is “relevant” to the response variable [9],
35 [40], [41]. In terms of interpretability, feature selection is more
36 appealing than feature combination because it preserves the
37 physical meaning of the original features.

38Feature selection under supervised setting can further be
39broadly categorized into filter models, wrapper models and
40embedded models. Filter models separates the feature selec-
41tion task from the classification task to avoid increasing learn-
42ing bias. A common approach is to use correlation tomeasure
43feature importance. A wrapper model aims to select a feature
44subset that achieves optimal classification performance for a
45predetermined classifier. An embedded model is one that
46achieves feature selection during the learning process, i.e., fea-
47ture selection and the training of the classifier are performed
48simultaneously. For datasets with limited sample size and
49ultrahigh dimension, both wrapper model and embedded
50model suffer from over-fitting, whereas filter models are
51more applicable. In this paper, we present a filter-based fea-
52ture selection method using new dependence measures—
53generalized Gini distance covariance and correlation. Unlike
54the commonly used Pearson correlation, which is only sensi-
55tive to linear dependence and does not characterize indepen-
56dence, our method also characterizes independence. Gini
57distance statisticsmeasures the dependence between a contin-
58ues random variable/vector and a categorical response, well
59suited for feature selection in classification tasks. They also
60have nice interpretations: Gini distance covariance is a mea-
61sure of between-group variation andGini distance correlation
62is the ratio of between group-variation and the total variation.
63The proposed statistics are closely related to distance covari-
64ance and correlation,whichmeasure the dependence between
65two continuous random variables/vectors. Theoretical results
66show that Gini distance statistics are likely to perform better
67in terms of Type II error.
68Next, we review work most related to ours. For a more
69comprehensive survey of this subject, the reader is referred
70to [30], [31], [50], [90].
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71 1.1 Related Work

72 With a common goal of improving the generalization per-
73 formance of the prediction model and providing a better
74 interpretation of the underlying process, all feature selection
75 methods are built around the concepts of feature relevance
76 and feature redundancy.

77 1.1.1 Feature Relevance

78 The concept of relevance has been studied in many fields out-
79 side machine learning and statistics [34]. In the context of fea-
80 ture selection, John et al. [40] defined feature relevance via a
81 probabilistic interpretation where a feature and the response
82 variable are irrelevant if and only if they are conditionally
83 independent given any subset of features. Following this defi-
84 nition, Nilsson et al. [57] investigated distributions under
85 which an optimal classifier can be trained over a minimal
86 number of features. Although the above definition of rele-
87 vance characterizes the statistical dependence, testing the con-
88 ditional dependence is in general a challenge for continuous
89 random variables.
90 Significant amount of efforts have been devoted to find-
91 ing a good trade-off between theoretical rigor and practical
92 feasibility in defining dependence measures. A summary of
93 related work on defining feature relevance is shown in
94 Table 1. Pearson Correlation [60] based methods [24], [25],
95 [72], [88] are among the most popular approaches. Pearson
96 correlation and its variations are in general straightforward
97 to implement, but is sensitive only to linear dependence
98 between two variables. Specifically, Pearson correlation can
99 be zero for dependent random variables. To address the

100 nonlinear dependence, many researchers tackled nonlinear
101 dependence via linearization [1], [71], [73], [92].
102 Other correlation measures, which treat linear and non-
103 linear dependence under the same framework, have been
104 developed to address the limitation of Pearson correlation
105 based methods. Among these, mutual information (diver-
106 gence) based approaches have been investigated extensively
107 [5], [38], [39], [52], [56], [58], [67], [83], [96]. As mutual infor-
108 mation is hard to evaluate, several approximations have
109 been suggested [15], [22], [44], [45], [48], [61].

110Mutual information relies on the estimation of the proba-
111bility density functions, which is especially challenging when
112the sample size is small, e.g., in the medical domain. This
113motivated the development of model-free approaches [18],
114[49], [76], [77]. Cui et al. [18] defined a new index using the
115mean variance (MV) of the conditional distribution function
116of a feature given the class variable. It considers the ranking
117of the samples in a dependence measure, hence is a robust
118method for heavy-tailed datasets. The distance covariance
119and correlation proposed by Sz�ekely et al. [76], [77] measures
120the dependence between two numerical random variables of
121arbitrary dimension. Our approach fits into the model-free
122category and is closely related to distance covariance and
123correlation, but aims to measure the dependence between
124a numerical random variable and a categorical random
125variable.

1261.1.2 Feature Redundancy

127Although one may argue that all features dependent on the
128response variable are informative, redundant features
129unnecessarily increase the dimensionality of the learning
130problem, hence may reduce the generalization perfor-
131mance [93]. Eliminating feature redundancy is, therefore, an
132essential step in feature selection [61].
133Several methods were proposed to reduce redundancy
134explicitly via a feature dependence measure [7], [10], [55],
135[82], [87], [89]. There are also many methods that formulate
136feature selection as an optimization problem where redun-
137dancy reduction is implicitly achieved via optimizing an
138objective function, for example, [13], [17], [32], [43], [66],
139[91], [95]. Particularly, class separation has been widely used
140as an objective function in redundancy reduction [11], [14],
141[86], [97]. Many researchers investigated optimal feature
142subset selection under various optimization formulations,
143such as using a special class of monotonic feature selection
144criterion functions [70], or incorporating a regularization
145term to control the sparsity of the solution [3], [19], [53], [62],
146[84], [85], [94].

1471.2 An Overview of the Proposed Approach

148For problems of large scale (large sample size and/or high
149feature dimension), feature selection is commonly per-
150formed in two steps. A subset of candidate features are first
151identified via a screening [24] (or a filtering [31]) process
152based upon a predefined “importance” measure that can be
153calculated efficiently. The final collection of features are
154then chosen from the candidate set by solving an optimiza-
155tion problem. Usually, this second step is computationally
156more expensive than the first step. Hence for problems with
157very high feature dimension, identifying a subset of “good”
158candidate features, thus reducing the computational cost of
159the subsequent optimization algorithm, is essential.
160The work presented in this article is a model-free approach
161that aims at improving the feature screening process via a
162new dependence measure. Sz�ekely et al. [76], [77] introduced
163distance covariance and distance correlation, which extended
164the classical bivariate product-moment covariance and corre-
165lation to random vectors of arbitrary dimension. Distance
166covariance (and distance correlation) characterizes indepen-
167dence: it is zero if and only if the two random vectors are

TABLE 1
Summary of Related Work on Feature Relevance

Category Representatives

Pearson correlation
(linear model) based

Stoppiglia et al. [72], Wei and
Billings [88], Fan and Lv [24], Fan
et al. [25]

Linearization based Song et al. [71], Sun et al. [73],
Armanfard et al. [1], Yao et al. [92]

Mutual information
(divergence) based

Iannarilli Jr. and Rubin [38],
Novovicov�a et al. [58], Javed et al. [39],
Wang et al. [83], Zhai et al. [96],Maji
and Pal [52], Sindhwani et al. [67],
Naghibi et al. [56]

Mutual information
approximation based

Kwak and Choi [44], [45], Peng
et al. [61], Lefakis and Fleuret [48],
Ding et al. [22]

Model-free Sz�ekely et al. [76], [77], Li et al. [49],
Cui et al. [18]
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168 independent. Moreover, the corresponding statistics are sim-
169 ple to calculate and do not require estimating the distribution
170 function of the random vectors. These properties make dis-
171 tance covariance and distance correlation particularly appeal-
172 ing to the dependence test, which is a crucial component in
173 feature selection [8], [49].
174 Although distance covariance and distance correlation can
175 be extended to handle categorical variables using a metric
176 space embedding [51], Gini distance covariance and Gini dis-
177 tance correlation [20] provide a natural alternative to measur-
178 ing dependence between a numerical random vector and a
179 categorical random variable. In this article, we investigate
180 selecting informative features for supervised learning prob-
181 lems with numerical features and a categorical response vari-
182 able using generalized Gini distance covariance and Gini
183 distance correlation. The contributions of this paper are given
184 as follows:

185 � Generalized Gini Distance Covariance and Gini Distance
186 Correlation. We extend Gini distance covariance and
187 Gini distance correlation to RKHS via positive definite
188 kernels. The choice of kernel not only brings flexibility
189 to the dependence tests, but also makes it easier to
190 derive theoretical performance bounds on the tests.
191 � Simple Dependence Tests.Gini distance statistics are sim-
192 ple to calculate. We prove that when there is depen-
193 dence between the feature vector and the response
194 variable, the probability of Gini distance covariance
195 statistic under-performing distance covariance statistic
196 approaches 0with the growth of the sample size.
197 � Uniform Convergence Bounds and Asymptotic Analysis.
198 Under the bounded kernel assumption, we derive uni-
199 form convergence bounds for both Type I and Type II
200 errors. Compared with distance covariance and dis-
201 tance correlation statistics, the bounds for Gini dis-
202 tance statistics are tighter. Asymptotic analysis is also
203 presented.

204 1.3 Outline of the Paper

205 The remainder of the paper is organized as follows: Section 2
206 motivates Gini distance covariance and Gini distance corre-
207 lation from energy distance. We then extend them to RKHS
208 and present a connection between generalized Gini distance
209 covariance and generalized distance covariance. Section 3
210 provides estimators of Gini distance covariance and Gini
211 distance correlation. Dependence tests are developed using
212 these estimators. We derive uniform convergence bounds
213 for both Type I and Type II errors of the dependence tests.
214 In Section 3.3 we present connections with dependence tests
215 using distance covariance. A connection to maximum mean
216 discrepancy (MMD) [29] is shown in Section 3.4. Asymp-
217 totic results are given in Section 3.5. We discuss several
218 algorithmic issues in Section 4. In Section 5, we explain the
219 extensive experimental studies conducted and demonstrate
220 the results. We conclude and discuss the strengths and limi-
221 tations of the proposed method in Section 6.

222 2 GINI DISTANCE COVARIANCE AND CORRELATION

223 In this section, we first present a brief review of the energy
224 distance. As an instance of the energy distance, Gini

225distance covariance is introduced to measure dependence
226between numerical and categorical random variables. Gini
227distance covariance and correlation are then generalized to
228reproducing kernel Hilbert spaces (RKHS) to facilitate con-
229vergence analysis in Section 3. Connections with distance
230covariance are also discussed.

2312.1 Energy Distance

232Energy distance was first introduced in [4], [74], [75] as a
233measure of statistical distance between two probability dis-
234tributions with finite first order moments. The energy dis-
235tance between the q-dimensional independent random
236variablesX and Y is defined as [78]

EðX;Y Þ ¼ 2EjX � Y jq � EjX �X0jq � EjY � Y 0jq; (1)
238238

239where j � jq is the euclidean norm in Rq, EjXjq þ EjY jq < 1,
240X0 is an iid copy ofX, and Y 0 is an iid copy of Y .
241Energy distance has many interesting properties. It is
242scale equivariant: for any a 2 R,

EðaX; aY Þ ¼ jajEðX;Y Þ:
244244

245It is rotation invariant: for any rotation matrix R 2 Rq�q

EðRX;RY Þ ¼ EðX;Y Þ:
247247

248Test statistics of an energy distance are in general relatively
249simple to calculate and do not require density estimation
250(Section 3). Most importantly, as shown in [75], if ’X and ’Y

251are the characteristic functions of X and Y , respectively, the
252energy distance (1) can be equivalently written as

EðX;Y Þ ¼ cðqÞ
Z
Rq

’XðxÞ � ’Y ðxÞ½ �2

jxjqþ1
q

dx; (2)

254254

255where cðqÞ > 0 is a constant only depending on q. Thus
256E � 0with equality to zero if and only if X and Y are identi-
257cally distributed. The above properties make energy dis-
258tance especially appealing to testing identical distributions
259(or dependence).

2602.2 Gini Distance Covariance and Gini Distance
261Correlation

262Gini distance covariance was proposed in [20] to measure
263dependence between a numerical random variable X 2 Rq

264from function F (cumulative distribution function, CDF) and a
265categorical variable Y withK values L1; . . . ; LK . If we assume
266the categorical distribution PY of Y isPrðY ¼ LkÞ ¼ pk and the
267conditional distribution ofX given Y ¼ Lk is Fk, the marginal
268distribution ofX is

F ðxÞ ¼
XK
k¼1

pkFkðxÞ:

270270

271When the conditional distribution of X given Y is the same
272as the marginal distribution ofX,X and Y are independent,
273i.e., there is no correlation between them. However, when
274they are dependent, i.e., F 6¼ Fk for some k, the dependence
275can be measured through the difference between the mar-
276ginal distribution F and conditional distribution Fk.

ZHANG ET AL.: ESTIMATING FEATURE-LABEL DEPENDENCE USING GINI DISTANCE STATISTICS 3
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277 This difference is measured by Gini distance covariance,
278 gCovðX; Y Þ, which is defined as the expected weighted L2

279 distance between characteristic functions of the conditional
280 and marginal distributions (if the expectation is finite):

gCovðX;Y Þ :¼ cðqÞ
XK
k¼1

pk

Z
Rq

½’kðxÞ � ’ðxÞ�2

jxjqþ1
q

dx;

282282

283 where cðqÞ is the same constant as in (2), ’k and ’ are the
284 characteristic functions for the conditional distribution Fk

285 and marginal distribution F , respectively. It follows imme-
286 diately that gCovðX;Y Þ ¼ 0 mutually implies independence
287 between X and Y . Based on (1) and (2), the Gini distance
288 covariance is clearly a weighted energy distance, hence can
289 be equivalently defined as

gCovðX;Y Þ

¼
XK
k¼1

pk 2EjXk �Xjq � EjXk �Xk
0jq � EjX �X0jq

h i
;

(3)
291291

292 where ðXk;Xk
0Þ and ðX;X0Þ are independent pair variables

293 from Fk and F , respectively.
294 Gini distance covariance can be standardized to have a
295 range of [0, 1], a desired property for a correlation measure.
296 The resulting measure is called Gini distance correlation,
297 denoted by gCorðX;Y Þ, which is defined as

gCorðX;Y Þ

¼
PK

k¼1 pk 2EjXk �Xjq � EjXk �Xk
0jq � EjX �X0jq

h i
EjX �X0jq

;

(4)
299299

300 provided that EjXjq þ EjXkjq < 1 and F is not a degener-
301 ate distribution. Gini distance correlation satisfies the fol-
302 lowing properties [20].

303 1) 0 � gCorðX;Y Þ � 1.
304 2) gCorðX;Y Þ ¼ 0 if and only if X and Y are
305 independent.
306 3) gCorðX;Y Þ ¼ 1 if and only if Fk is a single point mass
307 distribution almost surely for all k ¼ 1; . . . ; K.
308 4) gCorðaRX þ b; Y Þ ¼ gCorðX; Y Þ for all a 6¼ 0, b 2 Rq,
309 and any orthonormal matrix R 2 Rq�q.
310 Property 2 are especially useful in testing dependence.

311 2.3 Gini Distance Statistics in RKHS

312 Energy distance based statistics naturally generalizes from a
313 euclidean space tometric spaces [51]. By using a positive defi-
314 nite kernel (Mercer kernel) [54], distributions aremapped into
315 a RKHS [69] with a kernel induced distance. Hence one can
316 extend energy distances to a much richer family of statistics
317 defined in RKHS [64]. Let M : Rq �Rq ! R be a Mercer ker-
318 nel [54]. There is an associated RKHSHM of real functions on
319 Rq with reproducing kernel M, where the function
320 d : Rq �Rq ! R defines a distance inHM ,

dMðx;x0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðx; xÞ þMðx0; x0Þ � 2Mðx;x0Þ

p
: (5)

322322

323Hence Gini distance covariance and Gini distance correla-
324tion are generalized to RKHS,HM , as

gCovMðX; Y Þ

¼
XK
k¼1

pk 2EdMðXk;XÞ � EdMðXk;Xk
0Þ � EdMðX;X0Þ½ �;

(6)
326326

327

gCorMðX;Y Þ

¼
PK

k¼1 pk 2EdMðXk;XÞ � EdMðXk;Xk
0Þ � EdMðX;X0Þ½ �

EdMðX;X0Þ :

(7)
329329

330The choice of kernels allows one to design various tests. In
331this paper, we focus on bounded translation and rotation
332invariant kernels. Our choice is based on the following
333considerations:

3341) The boundedness of a positive definite kernel implies
335the boundedness of the distance in RKHS, which
336makes it easier to derive strong (exponential) conver-
337gence inequalities based on bounded deviations (dis-
338cussed in Section 3);
3392) Translation and rotation invariance is an important
340property to have for testing of dependence.
341Same as in Rq, Gini distance covariance and Gini distance
342correlation in RKHS also characterize independence, i.e.,
343gCovMðX;Y Þ ¼ 0 and gCorMðX;Y Þ ¼ 0 if and only if X and
344Y are independent. This is derived as the following from
345the connection between Gini distance covariance and dis-
346tance covariance in RKHS. Distance covariance was intro-
347duced in [76] as a dependence measure between random
348variablesX 2 Rp and Y 2 Rq. If X and Y are embedded into
349RKHS’s induced by MX and MY , respectively, the general-
350ized distance covariance ofX and Y is [64]:

dCovMX;MY
ðX; Y Þ

¼ EdMX
ðX;X0ÞdMY

ðY; Y 0Þ þ EdMX
ðX;X0ÞEdMY

ðY; Y 0Þ
� 2E EX0dMX

ðX;X0ÞEY 0dMY
ðY; Y 0Þ

� �
:

(8)

352352

353

354In the case of Y being categorical, one may embed it
355using a set difference kernelMY ,

MY ðy; y0Þ ¼
1
2 if y ¼ y0;
0 otherwise:

�
(9)

357357

358This is equivalent to embedding Y as a simplex with edges
359of unit length [51], i.e., Lk is represented by aK dimensional
360vector of all zeros except its kth dimension, which has the
361value

ffiffi
2

p

2 . The distance induced by MY is called the set dis-
362tance, i.e., dMY

ðy; y0Þ ¼ 0 if y ¼ y0 and 1 otherwise. Using the
363set distance, we have the following results on the general-
364ized distance covariance between a numerical and a cate-
365gorical random variable.

366Lemma 1. Suppose thatX 2 Rq is from distribution F and Y is a
367categorical variable with K values L1; . . . ; LK . The categorical
368distribution PY of Y is P ðY ¼ LkÞ ¼ pk and the conditional dis-
369tribution of X given Y ¼ Lk is Fk, the marginal distribution of
370X is F ðxÞ ¼

PK
k¼1 pkFkðxÞ: Let MX : Rq �Rq ! R be a

4 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 41, NO. X, XXXXX 2019
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371 Mercer kernel andMY a set difference kernel. The generalized dis-
372 tance covariance dCovMX;MY

ðX;Y Þ is equivalent to

dCovMX;MY
ðX;Y Þ :¼ dCovMX

ðX;Y Þ

¼
XK
k¼1

p2k 2EdMX
ðXk;XÞ � EdMX

ðXk;Xk
0Þ � EdMX

ðX;X0Þ
� �

:

(10)
374374

375

376 From (6) and (10), it is clear that the generalized Gini
377 covariance is always larger than or equal to the generalized
378 distance covariance under the set difference kernel and the
379 sameMX , i.e.,

1

gCovMX
ðX;Y Þ � dCovMX

ðX;Y Þ; (11)
381381

382 where they are equal if and only if both are 0, i.e., X and Y
383 are independent. This yields the following theorem. The
384 proof of Lemma 1 is given in Appendix A, which can be
385 found on the Computer Society Digital Library at http://
386 doi.ieeecomputersociety.org/TPAMI.2019.2960358.

387 Theorem 2. For any bounded Mercer kernel M : Rq �Rq ! R,
388 gCovMðX;Y Þ ¼ 0 if and only if X and Y are independent. The
389 same result holds for gCorMðX;Y Þ assuming that the marginal
390 distribution ofX is not degenerate.

391 Proof. The proof of the sufficient part for gCovMðX;Y Þ is
392 immediate from the definition (6). The inequality (11)
393 suggests that dCovM ¼ 0 when gCovM ¼ 0. Hence the
394 proof of the necessary part is complete if we show that
395 dCovM ¼ 0 implies independence. This is proven as the
396 following.
397 Let X and Y be the RKHS induced byM and the set dif-
398 ference kernel (9), respectively, with the associated dis-
399 tance metrics defined according to (5). X and Y are both
400 separableHilbert spaces [2], [12] as they each have a count-
401 able set of orthonormal basis [54]. Hence X and Y are of
402 strong negative type (Theorem 3.16 in [51]). Because the
403 metrics on X and Y are bounded, the marginals of ðX;Y Þ
404 on X � Y have finite first moment in the sense defined
405 in [51]. Therefore, dCovMðX;Y Þ ¼ 0 implies that X and Y
406 are independent (Theorem 3.11 [51]).
407 Finally, the proof for gCorMðX; Y Þ follows from the
408 above and the condition thatX is not degenerate. tu

409 In the remainder of the paper, unless noted otherwise,
410 we use the default distance function 2

dMðx; x0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e

�
jx�x0 j2q

s2

r
;

412412

413 induced by a weighted Gaussian kernel, Mðx;x0Þ ¼ 1
2 e

�jx�x0 j2q
s2 :

414 It is immediate that the above distance function is translation
415 and rotation invariant and is bounded with the range [0, 1).
416 Moreover, using Taylor expansion, it is not difficult to show

417that gCorM approaches gCor when the kernel parameter s

418approaches1.

4193 DEPENDENCE TESTS

420We first present an unbiased estimator of the generalized Gini
421distance covariance. Probabilistic bounds for large deviations
422of the empirical generalized Gini distance covariance are then
423derived. These bounds lead directly to two dependence tests.
424We also provide discussions on connections with the depen-
425dence test using generalized distance covariance and connec-
426tion with maximum mean discrepancy (MMD) [29]. Finally,
427asymptotic analysis of the test statistics is presented.

4283.1 Estimation

429In Section 2.2, Gini distance covariance and Gini distance
430correlation were introduced from an energy distance point
431of view. An alternative interpretation based on Gini mean
432difference was given in [20]. This definition yields simple
433point estimators.
434Let X 2 Rq be a random variable from distribution F . Let
435Y 2 Y ¼ fL1; . . . ; LKg be a categorical random variable with
436K values and PrðY ¼ LkÞ ¼ pk 2 ð0; 1Þ. The conditional dis-
437tribution of X given Y ¼ Lk is Fk. Let ðX;X0Þ and ðXk;Xk

0Þ
438be independent pair variables from F and Fk, respectively.
439The Gini distance covariance (3) and Gini distance correla-
440tion (4) can be equivalently written as

gCovðX;Y Þ ¼ D�
XK
k¼1

pkDk; (12) 442442

443

gCorðX;Y Þ ¼ D�
PK

k¼1 pkDk

D
; (13)

445445

446where D ¼ EjX �X0jq and Dk ¼ EjXk �Xk
0jq are the Gini

447mean difference (GMD) of F and Fk in Rq [26], [27], [42],
448respectively. This suggests that Gini distance covariance is a
449measure of between-group variation and Gini distance cor-
450relation is the ratio of between-group variation and the total
451Gini variation. Replacing j � jq with dMð�; �Þ in (12) and (13)
452yields the GMD version of (6) and (7).
453Given an iid sample data D ¼ ðxi; yiÞ 2 Rq � Y : i ¼f
4541; . . . ; ng, let Ik be the index set of sample points with yi ¼ Lk.
455The probability pk is estimated by the sample proportion of
456category k, i.e., p̂k ¼ nk

n where nk ¼ jIkj > 2. The point esti-
457mators of the generalized Gini distance covariance and Gini
458distance correlation for a given kernelM are

gCovnM :¼ D̂�
XK
k¼1

p̂kD̂k; (14) 460460

461

gCornM :¼ D̂�
PK

k¼1 p̂kD̂k

D̂
; (15)

463463

464where

D̂k ¼
nk

2

� ��1 X
i < j2Ik

dMðxi; xjÞ; (16)
466466

467

D̂ ¼ n

2

� ��1X
i< j

dMðxi; xjÞ: (17)
469469

1. The inequality holds for Gini covariance and distance covariance
as well, i.e., gCovðX;Y Þ � dCovðX;Y Þ where X 2 Rd and Y is categori-
cal. The notations of gCovMX

ðX;Y Þ and gCovMðX;Y Þ are used
‘interchangeably with bothMX andM representing a Mercer kernel.

2. Since any bounded translation and rotation invariant kernels can
be normalized to define a distance function with the maximum value
no greater than 1, the results in Sections 2.3 and 3 hold for these kernels
as well.

ZHANG ET AL.: ESTIMATING FEATURE-LABEL DEPENDENCE USING GINI DISTANCE STATISTICS 5



IEE
E P

ro
of

470471 Theorem 3. The point estimator (14) of the generalized Gini dis-
472 tance covariance is unbiased.

473 Proof. Clearly, D̂k and D̂ are unbiased because they are U-
474 statistics of size 2. Also p̂kD̂k is unbiased since E½p̂kD̂k� ¼
475 EE½p̂kD̂kjnk� ¼ E½nkn Dk� ¼ pkDk. This leads to the unbiased-
476 ness of gCovnM . tu

477 3.2 Uniform Convergence Bounds

478 We derive two probabilistic inequalities, from which depen-
479 dence tests using point estimators (14) and (15) are
480 established.

481 Theorem 4. Let D ¼ ðxi; yiÞ 2 Rq � Y : i ¼ 1; . . . ; nf g be an
482 iid sample of ðX;Y Þ and M a Mercer kernel over Rq �Rq that
483 induces a distance function dMð�; �Þ with bounded range [0, 1).
484 For every � > 0,

Pr gCovnM � gCovMðX;Y Þ � �
� �

� exp
�n�2

12:5

� 	
; and

Pr gCovMðX; Y Þ � gCovnM � �
� �

� exp
�n�2

12:5

� 	
:486486

487

488 Theorem 5. Under the condition of Theorem 4, for every � > 0

Pr½D̂� D � �� � exp
�n�2

2

� 	
; and

Pr½D� D̂ � �� � exp
�n�2

2

� 	
:490490

491

492 Proofs of Theorem 4 and Theorem 5 are given in Appen-
493 dix B, available in the online supplemental material. Next
494 we consider a dependence test based on gCovnM . Theorem 2
495 shows that gCovMðX;Y Þ ¼ 0mutually implies that X and Y
496 are independent. This suggests the following null and alter-
497 native hypotheses:

H0 : gCovMðX;Y Þ ¼ 0;

H1 : gCovMðX;Y Þ � 2cn�t; c > 0 and t > 0:
499499

500 The null hypothesis is rejected when gCovnM � cn�t where
501 c > 0 and t 2 0; 12


 �
. Next we establish upper bounds for the

502 Type I and Type II errors of the above dependence test.

503 Corollary 6. Under the conditions of Theorem 4, the following
504 inequalities hold for any c > 0 and t 2 0; 12


 �
:

Type I : Pr gCovnM � cn�tjH0

� �
� exp � c2n1�2t

12:5

� 	
;

(18)

506506

507

Type II : Pr gCovnM � cn�tjH1

� �
� exp � c2n1�2t

12:5

� 	
:

(19)
509509

510

511 Proof. Let � ¼ cn�t. The Type I bound is immediate from
512 Theorem 4. The Type II bound is derived from the follow-
513 ing inequality and Theorem 4.

Pr gCovnM � cn�tjH1

� �
� Pr cn�t � gCovnM þ gCovMðX;Y Þ � 2cn�t � 0jH1

� �
¼ Pr gCovMðX;Y Þ � gCovnM � cn�tjH1

� �
:

515515

516 tu

517A dependence test can also be performed using the
518empirical Gini distance correlation under the above null
519and alternative hypotheses with gCorM replacing gCovM .
520The null hypothesis is rejected when gCornM � cn�t where
521c > 0 and t 2 0; 14


 �
. Type I and Type II bounds are pre-

522sented as below.

523Corollary 7. Under the conditions of Theorem 4 and Theorem 5
524where additionally D � 2n�t, the following inequalities hold

525for any c > 0 and t 2 0; 14

 �

:

Type I : Pr gCornM � cn�tjH0

� �
� exp � c2n1�4t

12:5

� 	
þ exp �n1�2t

2

� 	
;

(20) 527527

528

Type II : Pr gCornM � cn�tjH1

� �
� exp � c2n1�2t

12:5

� 	
:

(21)

530530

531

532Proof. From (15), we have

Pr gCornM � cn�tjH0

� �
� Pr gCovnM � cn�2t OR D̂ � n�tjH0

h i
� Pr gCovnM � cn�2tjH0

� �
þ Pr D̂ � n�tjH0

h i
� Pr gCovnM � cn�2tjH0

� �
þ Pr D� D̂ � n�tjH0

h i
:

534534

535Let �1 ¼ cn�2t and �2 ¼ n�t. The Type I bound is derived
536from Theorem 4 and Theorem 5. The boundedness of
537dMð�; �Þ implies that D̂ < 1. Therefore,

Pr gCornM � cn�tjH1

� �
� Pr gCovnM � cn�tjH1

� �
� Pr gCovMðX;Y Þ � gCovnM � cn�tjH1

� �
:

539539

540Hence the Type II bound is given by Theorem 4 with
541� ¼ cn�t. tu

5423.3 Connections to Generalized Distance
543Covariance

544In Section 2.3, generalized Gini distance covariance is related
545to generalized distance covariance through (11). Under the
546conditions of Lemma 1, dCovMX;MY

ðX;Y Þ ¼ 0 if and only ifX
547and Y are independent. Hence dependence tests similar to
548those in Section 3.2 can be developed using empirical esti-
549mates of dCovMX;MY

ðX;Y Þ. Next, we establish a result similar
550to Theorem 4 for generalized distance covariance.We demon-
551strate that generalized Gini distance covariance has a tighter
552probabilistic bound for large deviations than its generalized
553distance covariance counterpart.
554Using the unbiased estimator for distance covariance
555developed in [79], we generalize it to an unbiased estimator
556for dCovMX;MY

ðX;Y Þ defined in (8). Let D ¼ ðxi; yiÞ 2 Rq�f
557Rp : i ¼ 1; . . . ; ng be an iid sample from the joint distribution
558of X and Y . Let A ¼ ðaijÞ be a symmetric, n� n, centered
559kernel distance matrix of sample x1; . . . ; xn. The ði; jÞth entry
560ofA is

Aij ¼ aij � 1
n�2 ai� � 1

n�2 a�j þ 1
ðn�1Þðn�2Þ a��; i 6¼ j;

0; i ¼ j;

�
562562
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563 where aij ¼ dMX
ðxi; xjÞ, ai� ¼

Pn
j¼1 aij, a�j ¼

Pn
i¼1 aij, and

564 a�� ¼
Pn

i;j¼1 aij. Similarly, using dMY
ðyi; yjÞ, a symmetric,

565 n� n, centered kernel distance matrix is calculated for sam-
566 ples y1; . . . ; yn and denoted by B ¼ ðbijÞ. An unbiased esti-
567 mator of dCovMX;MY

ðX; Y Þ is given as

dCovnMX;MY
¼ 1

nðn� 3Þ
X
i 6¼j

AijBij: (22)

569569

570 We have the following result on the concentration of
571 dCovnMX;MY

around dCovMX;MY
ðX; Y Þ.

572 Theorem 8. Let D ¼ ðxi; yiÞ 2 Rq �Rp : i ¼ 1; . . . ; nf g be an
573 iid sample of ðX;Y Þ. Let MX : Rq �Rq ! R and
574 MY : Rp �Rp ! R be Mercer kernels. dMX

ð�; �Þ and dMY
ð�; �Þ

575 are distance functions induced by MX and MY , respectively.
576 Both distance functions have a bounded range [0, 1). For every
577 � > 0,

Pr dCovnMX;MY
� dCovMX;MY

ðX;Y Þ � �
h i

� exp
�n�2

512

� 	
;

and

Pr dCovMX;MY
ðX; Y Þ � dCovnMX;MY

� �
h i

� exp
�n�2

512

� 	
:579579

580

581 The proof is provided in Appendix C, available in the
582 online supplemental material. Note that the above result is
583 established for both X and Y being numerical. When Y is
584 categorical, it can be embedded into RK using the set differ-
585 ence kernel (9). Therefore, in the following discussion, we
586 use the simpler notation introduced in Lemma 1 where
587 dCovMX;MY

is denoted by dCovMX
.

588 The upper bounds for generalized Gini distance covari-
589 ance is clearly tighter than those for generalized distance
590 covariance. Replacing gCovMðX; Y Þ in H0 and H1 with
591 dCovMX

ðX;Y Þ, one may develop dependence tests parallel
592 to those in Section 3.2: reject the null hypothesis when
593 dCovnMX

� cn�t where c > 0 and t 2 0; 12

 �

. Upper bounds
594 on Type I and Type II errors can be established in a result
595 similar to Corollary 6 with the only difference being replac-
596 ing the constant 12.5 with 512. Hence the bounds on the gen-
597 eralized Gini distance covariance based dependence test are
598 tighter than those on the generalized distance covariance
599 based dependence test.
600 To further compare the two dependence tests, we con-
601 sider the following null and alternative hypotheses:

H0 : SðX; Y Þ ¼ 0;

H1 : SðX; Y Þ � T ; T > 0;
603603

604 where SðX;Y Þ ¼ gCovMX
ðX;Y Þ or dCovMX

ðX; Y Þ with the

605 corresponding test statistics Sn ¼ gCovnMX
or dCovnMX

,

606 respectively. The null hypothesis is rejected when Sn � t

where 0 < t � T . Note that this test is more general than

the dependence test discussed in Section 3.2, which is a spe-

cial case with T ¼ 2cn�t and t ¼ cn�t. Upper bounds on

Type I errors follow immediately from (18) by replacing
cn�t with t. Type II error bounds, however, are more diffi-

cult to derive due to the fact that t ¼ T would make devia-

tion nonexistent. Next, we take a different approach by

establishing which one of gCovnMX
and dCovnMX

is less likely
to underperform in terms of Type II errors.

607Under the alternative hypothesis

H1
0 : dCovMX

ðX; Y Þ � T ; T > 0;
609609

610we compare two dependence tests:

611� acceptingH1
0 when gCovnMX

� t, 0 < t � T ;

612� acceptingH1
0 when dCovnMX

� t, 0 < t � T .

613We call that “gCovnMX
underperforms dCovnMX

” if and only if

gCovnMX
< t � dCovnMX

;
615615

616i.e., the dependence betweenX and Y is detected by dCovnMX

617but not by gCovnMX
. The following theorem demonstrates an

618upper bound on the probability that gCovnMX
underperforms

619dCovnMX
.

620Theorem 9. UnderH1
0 and conditions of Theorem 8, there exists

621g > 0 such that the following inequality holds for any T > 0
622and 0 < t � T :

Pr gCovnMX
underperforms dCovnMX

jH1
0

h i
� 2e�ng2 : 624624

625

626Proof. Lemma 1 implies that gCovMX
ðX;Y Þ � dCovMX

ðX;Y Þ
627where the equality holds if and only if both are 0, i.e.,X and

628Y are independent. Therefore, under H1
0, for any T > 0

629and 0 < t � T , we define

g ¼
gCovMX

ðX;Y Þ � dCovMX
ðX;Y Þffiffiffiffiffiffiffiffiffi

12:5
p

þ
ffiffiffiffiffiffiffiffi
512

p > 0:

631631

632It follows that

Pr gCovnMX
underperforms dCovnMX

jH1
0

h i
¼ Pr gCovnMX

< t � dCovnMX
jH1

0
h i

� Pr gCovnMX
< dCovnMX

jH1
0

h i
� Pr gCovMX

ðX; Y Þ � gCovnMX
�

ffiffiffiffiffiffiffiffiffi
12:5

p
g OR

h
dCovnMX

� dCovMX
ðX; Y Þ �

ffiffiffiffiffiffiffiffi
512

p
gjH1

0
i

� Pr gCovMX
ðX; Y Þ � gCovnMX

�
ffiffiffiffiffiffiffiffiffi
12:5

p
gjH1

0
h i

þ Pr dCovnMX
� dCovMX

ðX;Y Þ �
ffiffiffiffiffiffiffiffi
512

p
gjH1

0
h i

� 2e�ng2 ;
634634

635where the last step is from Theorems 4 and 8. tu

6363.4 Connections to Maximum Mean Discrepancy

637In [29], Gretton et al. proposed a method in testing if two sam-
638ples are drawn from different distributions based on maxi-
639mum mean discrepancy (MMD), defined as the largest
640difference in expectations over functions in a RKHS. Sejdi-
641novic et al. [64] showed the equivalence of distance-based and
642RKHS-based methods in hypothesis testing. In particular, it
643was shown that distance covariance and HSIC are equivalent,
644andMMD is equivalent to energy distance when the distance
645is computedwith a semimetric of negative type.
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646 The Gini distance statistics was generalized to RKHS via a
647 kernel induced energy distancewhileMMDmeasures the dif-
648 ference between two distributions in RKHS. The following
649 result shows a close connection between Gini distance covari-
650 ance in RKHS and the average of squared MMD between the
651 margin distributionF and conditional distributionsFk’s.

652 Corollary 10. Suppose that X 2 Rq is from distribution F and
653 Y is a categorical variable with K values L1; . . . ; LK . The cate-
654 gorical distribution PY of Y is P ðY ¼ LkÞ ¼ pk and the condi-
655 tional distribution of X given Y ¼ Lk is Fk, the marginal
656 distribution of X is F ðxÞ ¼

PK
k¼1 pkFkðxÞ: For any Mercer

657 kernel M : Rq �Rq ! R, there exists a Mercer kernel
658 bM : Rq �Rq ! R such that

gCovMðX;Y Þ ¼
XK
k¼1

2pkd
2bMðF; FkÞ;

660660

661 where d2bMðF; FkÞ is the squared MMD between F and Fk in

662 RKHS of bM.

663 Proof. Let dMðx; x0Þ be a distance induced by M as defined
664 in (5). We construct a distance induced kernel bM centered
665 at x0 as

bMðx; x0Þ ¼ 1

2
½dMðx; x0Þ þ dMðx0; x0Þ � dMðx; x0Þ�:

667667

668 bM is positive definite (Lemma 12, [64]). From Theorem 22
669 of [64], we have

2EdMðXk;XÞ � EdMðXk;Xk
0Þ � EdMðX;X0Þ ¼ 2d2bMðF; FkÞ:

671671

672 The proof follows (6). tu

673 The result above means that for any Mercer kernel M,
674 one can construct another Mercer kernel bM such that the
675 Gini covariance in M is equivalent to a weighted average of
676 squared MMD in bM.

677 3.5 Asymptotic Analysis

678 We now present asymptotic distributions for the proposed
679 Gini covariance and Gini correlation.

680 Theorem 11. Assume Eðd2MðX;X0ÞÞ < 1 and pk > 0 for
681 k ¼ 1; . . . ; K. Under dependence of X and Y , gCovnMX

and
682 gCornMX

have the asymptotic normality property. That is,

ffiffiffi
n

p
ðgCovnMX

� gCovMX
ðX;Y ÞÞD!Nð0; s2

vÞ; (23)
684684

685

ffiffiffi
n

p
ðgCornMX

� gCorMX
ðX;Y ÞÞD!Nð0; s

2
v

D2
Þ; (24)

687687

688 where s2
v is given in the proof.

689 Under independence of X and Y , gCovnMX
and gCornMX

690 converge in distribution, respectively, according to

nðgCovnMX
ÞD!

X1
l¼1

�lðx2
1l � 1Þ; (25)692692

693

nðgCornMX
ÞD! 1

D

X1
l¼1

�lðx2
1l � 1Þ; (26)

695695

696where �1; ::: are non-negative constants dependent on F and
697x2

11;x
2
12; . . . ; are independent x

2
1 variates.

698Note that the boundedness of the positive definite kernel
699M implies the condition of Eðd2MðX;X0ÞÞ < 1.

700Proof.We focus on a proof for the generalized Gini distance
701covariance and results for the correlation follow immedi-
702ately from Slutsky’s theorem [68] and the fact that D̂ is a
703consistent estimator of D.
704Let gðxÞ ¼ EdMðx;X0Þ � EdMðX;X0Þ. With the U-sta-
705tistic theorem, we have

ffiffiffi
n

p
ðD̂� DÞD!Nð0; v2Þ;

707707

708where v2 ¼ 4Eg2ðXÞ ¼ 4
P

k pkEg
2ðXkÞ. Similarly, let

709gkðxÞ ¼ EdMðx;X0
kÞ � EdMðXk;X

0
kÞ for k ¼ 1; 2; . . . ; K

710and v2k ¼ 4Eg2kðXkÞ=pk. We have

ffiffiffi
n

p
ðD̂k � DkÞ

D
!Nð0; v2kÞ: 712712

713

714Let SS be the variance and covariance matrix for ~gg ¼
7152ðg1ðX1Þ; . . . ; gKðXKÞ; gðXÞÞT , where X ¼ Xk with proba-
716bility pk. In other words, SS ¼ E~gg~ggT . Denote ðD̂1; . . . ;
717D̂K; D̂ÞT as d̂d and ðD1; . . . ;DK;DÞT as dd. From the U-statistic

718theorem [36], we have
ffiffiffi
n

p
ðd̂d� ddÞD!Nð00;SSÞ. Let bb ¼ ð�p1;

719. . . ;�pK; 1ÞT be the gradient vector of gCovMX
ðX;Y Þ with

720respect to dd. Then s2
v ¼ bbTSSbb > 0 under the assumption of

721dependence ofX and Y , since

hðxÞ :¼ bbT~ggðxÞ ¼ 2
X
k

pkðgðxkÞ � gkðxkÞÞ

¼ 2
X
k

pkðEdMðxk;XÞ � EdMðxk;XkÞÞ � 2ðD�
X
k

pkDkÞ

6¼ 0;
723723

724and s2
v ¼

P
k pkE½hðXkÞ2�. In this case, by theDeltamethod,

725
ffiffiffi
n

p
bbT ðd̂d� ddÞ is asymptotically normally distributed with 0

mean and variance s2
v. With the result of b̂b ¼ ð�p̂1; . . . ;

�p̂K; 1ÞT being a consistent estimator of bb and by the

Slutsky’s theorem,we have the same limiting normal distri-

bution for gCovnMX
¼ b̂bT d̂d as that of bbT d̂d. Therefore, the result

of (23) is proved.
726However, under the independence assumption, s2

v ¼ 0
727because hðxÞ ¼ 0, resulting from the same distribution of
728X and Xk. This corresponds to the degenerate case of U-

729statistics and bbT d̂d has a mixture of x2 distributions [65].

Hence the result of (25) holds. tu

730One way to use the results of (23) and (24) is to test H0

731based on the confidence interval approach. More specifi-
732cally, an asymptotically ð1� aÞ100 percent confidence inter-
733val for gCovMX

ðX;Y Þ is

gCovnMX
ðX; Y Þ 	 Z1�a=2

ŝ2
vffiffiffi
n

p ;

735735

736where ŝ2
v is a consistent estimator of s2

v and Z1�a=2 is the
7371� a=2 quantile of the standard normal random variable. If
738this interval does not contain 0, we can reject H0 at signifi-
739cance level a=2. This test controls Type II error to be a=2.
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740 On the other hand, if a test to control Type I error is pre-
741 ferred, we usually need to rely on a permutation test rather
742 than the results of (25) and (26) since �’s depend on the dis-
743 tribution F , which is unknown. Details of the permutation
744 test are in the next section.

745 4 AN ALGORITHMIC VIEW

746 Although the uniform convergence bounds for generalized
747 Gini distance covariance and generalized Gini distance cor-
748 relation in Sections 3.2 and 3.3 are established upon the
749 bounded kernel assumption, all the results also hold for
750 Gini distance covariance and Gini distance correlation if the
751 features are bounded. This is because when the features are
752 bounded, they can be normalized so that supx;x0 jx� x0jq ¼ 1.
753 The calculation of test statistics (14) and (15) requires evalu-
754 ating distances between all unique pairs of samples. Its time
755 complexity is therefore Qðn2Þ, where n is the sample size. In
756 the one dimension case, i.e., q ¼ 1, Gini distance statistics can
757 be calculated in QðnlognÞ time [20].3 Note that distance
758 covariance and distance correlation can also be calculated in
759 QðnlognÞ time [37]. Nevertheless, the implementation for
760 Gini distance statistics is much simpler as it does not require
761 the centering process.
762 Generalized Gini distance statistics are functions of the
763 kernel parameter s. Fig. 1a shows gCovnM and gCornM of X1

764 and Y1 for n ¼ 2000. The numerical random variable X1 is
765 generate from amixture of two dimensional normal distribu-

766 tions: N1 
 Nð½1; 2�T ; diag½2; :5�Þ; N2 
 Nð½�3;�5�T ; diag½1;
767 1�Þ, and N3 
 Nð½�1; 2�T ; diag½2; 2�Þ. The three components
768 have equal mixing proportions. The categorical variable
769 Y1 2 fy1; y2; y3g is independent of X1. The results in Fig. 1b
770 are calculated from X2 and Y2 for n ¼ 2000. The numerical
771 random variableX2 is generated byNi if and only if Y2 ¼ yi,
772 i ¼ 1; 2; 3. The categorical distribution of Y2 is PrðY2 ¼
773 yiÞ ¼ 1

3 . It is clear thatX2 and Y2 are dependent on each other.
774 Fig. 1 shows the impact of kernel parameter s on the

775estimated generalized Gini distance covariance and Gini dis-
776tance correlation. As a result, this affects the Type I and Type
777II error bounds given in Section 3.2. In this example, under
778H0 (or H1), the minimum (or maximum) gCovnM is achieved
779at s2 ¼ 50 (or s2 ¼ 29). These extremes yield tightest bounds
780in (18) and (19).4 Note that gCovnM is an unbiased estimate of
781gCovM . Although gCovM can never be negative, gCovnM can
782be negative, especially underH0.
783This example also suggests that in addition to the theoreti-
784cal importance, the inequalities in (18) and (19) may be
785directly applied to dependence tests. Given a desired bound
786(or significance level), a, on Type I and Type II errors, we call
787the value that determines whether H0 should be rejected
788(hence to acceptH1) the critical value of the test statistic. Based
789on (18) and (19), the critical value for gCovnM, cvða; nÞ, which is
790a function of a and the sample size n, is calculated as

cvða; nÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12:5log 1

a

n

s
:

792792

793The three horizontal dashed lines in Fig. 1b illustrate the criti-
794cal values for a ¼ 0:01, a ¼ 0:05, and a ¼ 0:15, respectively.
795The population Gini distance covariance estimated using
79620,000 iid samples is not included in the figure because of its
797closeness to gCovnM. With a proper choice of s, H1 should be
798accepted based on the 2000 samples of ðX2; Y2Þ with both
799Type I and Type II errors no greater than 0.05. Note that we
800could not really accept H1 at the level a ¼ 0:01 because the
801estimated maximum gCovM is around 0.28, which is smaller
802than 0.3393 (two times the critical value at a ¼ 0:01).
803The above test, although simple, has two limitations:

804� Choosing an optimal s is still an open problem.
805Numerical search is computationally expensive even
806if it is in one dimension;

Fig. 1. Estimates of the generalized Gini distance covariance and generalized Gini distance correlation for different kernel parameters using 2000 iid
samples: (a) independent case; (b) dependent case. Three critical values are shown in (b). They are calculated for significance levels 0.01, 0.05,
and 0.15, respectively. In terms of the uniform convergence bounds, the optimal value of the kernel parameter s is defined by the minimizer (or
maximizer) of the test statistics underH0 (orH1).

3. When the inner produce kernel Mðx; x0Þ ¼ xTx0 is chosen,
generalized Gini distance statistics reduces to Gini distance statistics.

4. The kernel parameter s also affects the Type I and Type II error
bounds for gCornM in (20) and (21). The Type I error bound for gCovnM is
significantly tighter than that for gCornM .

ZHANG ET AL.: ESTIMATING FEATURE-LABEL DEPENDENCE USING GINI DISTANCE STATISTICS 9
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807 � The simplicity of the distribution free critical value
808 cvða; nÞ comeswith a price: itmight not be tight enough
809 formany distributions, especiallywhenn is small.
810 Therefore, we apply permutation test [23], a commonly
811 used statistical tool for constructing sampling distributions, to
812 handle scenarios that the test based on cvða; nÞ is not feasible.
813 We randomly shuffle the samples of X and keep the samples
814 of Y untouched. We expect the generalized Gini distance sta-
815 tistics of the shuffled data should have values close to 0
816 because the random permutation breaks the dependence
817 between samples of X and samples of Y . Repeating the ran-
818 dom permutation many times, we may estimate the critical
819 value for a given significance level a based on the statistics of
820 the permuted data. A simple approach is to use the percentile
821 defined by a, e.g., when a ¼ 0:05 the critical value is 95th per-
822 centile of the test statistic of the permuted data. The null
823 hypothesis H0 is rejected when the test statistic is larger than
824 the critical value.
825 Fig. 2 shows the permutation test results of data gener-
826 ated from the same distributions used in Fig. 1. The plots on
827 the top are gCovnM and the critical values. The plots at the

828 bottom are gCornM and the critical values. Test statistics are
829 calculated from 500 samples. The critical values are esti-
830 mated from 5000 random permutations at a ¼ 0:05. As illus-
831 trated in Fig. 2a, when X and Y are independent, the
832 permutation tests do not reject H0 at significance level 0.05.
833 Fig. 2b shows that when X and Y are dependent, H0 is
834 rejected at significance level 0.05 by the permutation tests. It
835 is interesting to note that the decision to reject or accept H0

836 is not influenced by the value of the kernel parameter s. 5

837 5 EXPERIMENTS

838 We first compare Gini distance statistics with distance statis-
839 tics on artificial datasets where the dependent features are
840 known.We then provide comparisons on real world datasets

841including the MNIST dataset, a breast cancer dataset and 19
842publicly available datasets. For these real world datasets, we
843also include another three baseline methods: Pearson R2,
844mean variance (MV) [18] and a direct average of squared
845MMD (avgMMD2), i.e., 1

K

PK
k¼1 dM

2ðF; FkÞ, where M is the
846sameGaussian kernel used for Gini and distance statistics.

8475.1 Simulation Results

848In this experiment, we compare dependence tests using four
849statistics, dCovnM , dCornM , gCovnM , and gCornM , on artificial
850datasets. The kernel parameter was fixed at s2 ¼ 10. The
851data were generated from three distribution families: nor-
852mal, exponential, and Gamma distributions under both H0

853(X and Y are independent) and H1 (X and Y are depen-
854dent). Given a distribution family, we first randomly choose
855a distribution F0 and generate n iid samples of X. Samples
856of the categorical Y are then produced independent of X.
857Repeating the process, we create a total of m independent
858datasets under H0. In the dependent case, X is produced by
859F ¼

PK
k¼1 pkFk, a mixture of K distributions where K is the

860number of different values that Y takes, pk is the probability
861that Y ¼ yk, and Fk is a distribution from the same family
862that yields the data under H0. The dependence between X
863and Y is established by the data generating process: a sam-
864ple ofX is created by Fk if Y ¼ yk. The mixture model is ran-
865domly generated, i.e., pk and Fk are both randomly chosen.
866For each Y ¼ yk (k ¼ 1; . . . ; K), nk ¼ n � pk iid samples of X
867are produced following Fk. This results in one data set of
868size n ¼

PK
k¼1 nk under H1. Following the same procedure,

869we obtain m independent data sets under H1 each corre-
870sponding to a randomly selected K-component mixture
871model F . In our experiments, n ¼ 100 andm ¼ 10; 000.
872Table 2 summarizes the model parameters of the three
873distribution families. Ið�Þ is the indicator function. Gð�Þ is
874the gamma function. Nðm; sÞ denotes the normal distribu-
875tion with mean m and standard deviation s. Gða;bÞ denotes
876the gamma distribution with shape a and rate b. Uða; bÞ
877denotes the uniform distribution over interval ½a; b�. DirðaÞ
878denotes the Dirichlet distribution with concentration a. A

Fig. 2. Permutation tests of the generalized Gini distance covariance and generalized Gini distance correlation for different kernel parameters using
200 iid samples and 5000 random permutations: (a) independent case; (b) dependent case. The 95 percentile curves define the critical values for
a ¼ 0:05. They are calculated from the permuted data. Test statistics higher (lower) than the critical value suggest acceptingH1 (H0).

5. Although the decision to reject or accept H0 is not affected by s,
the p-value of the test does vary with respect to s.
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880 (s). The unbiasedness of gCovnM requires that there are at
881 least two data points for each value of Y . Therefore, random
882 proportions that do not meet this requirement are removed.
883 Fig. 3 shows the performance of dCovnM and gCovnM in
884 terms of type I and type II errors with the critical value t

885 set to different values. As Theorem 9 suggests, for any t,
886 gCovnM outperforms dCovnM in type II error. However,
887 with the same value of t, gCovnM underperforms dCovnM
888 in terms of type I error. The results presented by Fig. 3
889 motivates us to compare Gini and distance statistics using
890 power (with type I error a controlled at 0.05) and area
891 under the curve (AUC). Both measures have values

892between 0 and 1 with a value closer to 1 indicating better
893performance. Table 3 illustrates the performance of the
894four test statistics under different values of K for the
895three distribution families. The highest power and AUC
896among the four test statistics are shown in bold and the
897second highest are underlined. In this experiment, gCovnM
898appears to be the most competitive test statistics in terms
899of power and ROC at all values of K. In addition, both
900gCovnM and gCornM outperform dCovnM and dCornM in most
901of the cases. We also tested the influence of s2 and
902observed stable results (figures are provided in supple-
903mentary materials, which can be found on the Computer
904Society Digital Library at http://doi.ieeecomputersociety.
905org/TPAMI.2019.2960358.).

9065.2 The MNIST Dataset

907We first tested feature selection methods using different test
908statistics on the MNIST data. The advantage of using an
909image dataset like MNIST is that we can visualize the
910selected pixels. We expect useful/dependent pixels to
911appear in the center part of the image. Some descriptions of
912the MNIST data are listed in Table 4.
913The 7 test statistics under comparisons are: Pearson R2,
914MV, avgMMD2, dCovnM , dCornM , gCovnM , and gCornM . For
915each method, the top k features were selected by ranking

TABLE 2
Models of Different Distribution Families

pðxjuÞ u

Normal 1ffiffiffiffiffiffiffiffi
2ps2

p e
�ðx�mÞ2

s2
m 
 Nð0; 5Þ
s2 
 1=Gð1; 1Þ

Exponential �e��xIðx � 0Þ � 
 Uð0; 5Þ

Gamma baxa�1e�bx

GðaÞ Iðx � 0Þ
a 
 Uð0; 10Þ
b 
 Uð0; 10Þ

Proportions pk 
 Dirð1Þ

Fig. 3. Simulation results using normal distribution with K = 3: (a) Type I error; (b) Type II error.

TABLE 3
Power (a ¼ 0:05) and AUC

Power AUC

dCovnM dCornM gCovnM gCornM dCovnM dCornM gCovnM gCornM

K ¼ 3 Normal 0.991 0.993 0.996 0.996 0.998 0.998 0.999 0.999
Exponential 0.666 0.669 0.701 0.681 0.871 0.875 0.880 0.881
Gamma 0.956 0.960 0.974 0.971 0.988 0.989 0.992 0.992

K ¼ 4 Normal 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000
Exponential 0.737 0.734 0.774 0.756 0.908 0.909 0.920 0.918
Gamma 0.987 0.987 0.994 0.992 0.997 0.997 0.998 0.998

K ¼ 5 Normal 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Exponential 0.790 0.776 0.823 0.805 0.931 0.930 0.941 0.939
Gamma 0.995 0.993 0.998 0.996 0.999 0.999 0.999 0.999

ZHANG ET AL.: ESTIMATING FEATURE-LABEL DEPENDENCE USING GINI DISTANCE STATISTICS 11
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916 the test statistics in descending order. Then the selected fea-
917 ture set was used to train the same classifier and the test
918 accuracies were compared. The classifier used was a ran-
919 dom forest consisting of 100 trees. We used the training and
920 test set provided by [46] for training and testing. To reduce
921 computation cost, we randomly selected 5000 samples to
922 calculate test statistics for all methods. For avgMMD2, Gini
923 and distance statistics, each feature was standardized by
924 subtracting the mean and dividing by the standard devia-
925 tion. Pearson R2 and MV are not affected by data standardi-
926 zation. The kernel parameter s2 was set to be 10. Because of
927 the randomness involved in training random forest, each
928 experiment was repeated 10 times and the average test
929 accuracy was used for comparison.
930 The results of the MNIST data are summarized in Fig. 4.
931 From Fig. 4a we can see the clear increasing trend in accuracy
932 as more features are selected, as expected. Among all meth-
933 ods, Pearson R2 performs the poorest. The discrepancy in
934 accuracy between Pearson R2 and the other six test statistics
935 comes from the ability of characterizing non-linear depen-
936 dence. The other five methods behave similar in terms of clas-
937 sification accuracy. Specifically, we expect dCovnM and gCovnM
938 to be very similar becauseMNIST is a balanced dataset. Under
939 the following two scenarios dCovMðX;Y Þ and gCovMðX;Y Þ
940 will give the same ranking of the the features because their
941 ratio is a constant (Remark 2.8 & 2.9 of [20]):

942 1) When the data is balanced, i.e., p1 ¼ p2 ¼ ::: ¼ pK ¼ 1
K,

943 dCovMðX;Y Þ ¼ 1
K gCovMðX;Y Þ;

944 2) When the data has only 2 classes, i.e., K ¼ 2,
945 dCovMðX; Y Þ ¼ 2p1p2gCovMðX;Y Þ.
946 Hence, when n is sufficiently large, dCovnM and gCovnM
947 will have the same ranking for the features.
948 The difference between Gini and distance statistics is
949 more observable in the value range, as shown in Fig. 4b.
950 Both dCornM and gCornM are bounded between 0 and 1, but

951 clearly gCornM takes a much wider range than dCornM .

952Therefore, gCornM is a more sensitive measure of depen-

953dence than dCornM . gCovnM is also more sensitive than

954dCovnM as shown both empirically in Fig. 4b and theoreti-
955cally by (11).
956Fig. 4c shows the visualization of the selected pixels as
957white. Pearson R2 and avgMMD2 are not able to select some
958of the pixels in the center part even when k is greater than
959400. Other four methods behave similar in this graph.

9605.3 The Breast Cancer Dataset

961We then compared the 7 feature selection methods on a gene
962selection task. The dataset used in this experiment was the
963TCGA breast cancer microarray dataset from the UCSC Xena
964database [28]. This data contains expression levels of 17278
965genes from 506 patients and each patient has a breast cancer
966subtype label (luminal A, luminal B, HER2-enriched, or basal-
967like). PAM50 is a gene signature consisting of 50 genes
968derived from microarray data and is considered as the gold-
969standard for breast cancer subtype prognosis and predic-
970tion [59]. In this experiment,we randomly hold-out 20 percent
971as test data, used eachmethod to select top k genes, then eval-
972uated the classification performance and compared the
973selected genes with the PAM50 gene signature. Because this
974dataset has a relatively small sample size, all training exam-
975ples were used to calculate test statistics and train the classi-
976fier, and we repeated each classification test 30 times. Other
977experiment setupswere kept the same as previous.
978The results are shown in Fig. 5. Fig. 5a shows the classifi-
979cation performance using selected top k genes using differ-
980ent test statistics as well as using all PAM50 genes (shown as
981a green dotted line). Note that the accuracy of PAM50 is the
982averaged value from 30 runs. We plot it as a line across the
983entire k range for easier comparison with other methods.
984Among the 7 selection methods under comparison, gCovnM
985has the best overall performance, even outperforms PAM50
986with k ¼ 30. This suggests that gCovnM is able to select a
987smaller number of genes and the prediction is better than the
988gold standard. We also observe that gCornM outperforms
989PAM50 with k ¼ 40 and k ¼ 50. Pearson R2, MV, avgMMD2,
990dCovnM , and dCornM are not able to exceed PAM50 within 50
991genes. Fig. 5b shows the number of PAM50 genes appear in
992the top k selected genes for each selection method. It is obvi-
993ous to see that PearsonR2 and avgMMD2 selectmuch smaller
994number of PAM50 compared to others. Gini statistics are
995able to select more PAM50 genes than distance statistics as k
996increases. The small ratio of PAM50 included in the selected
997genes by any method is because of the high correlation
998between genes. PAM50 was derived by not only selecting
999most subtype dependent genes, but also less mutually
1000dependent genes to obtain a smaller set of genes for the same
1001prediction accuracy. Even though any of the selection meth-
1002ods under comparison does not take the feature-feature
1003dependence into consideration, both gCovnM and gCornM are
1004able to select a better gene set than PAM50 for classification.

10055.4 Other Publicly Available Datasets

1006We further tested the 7 feature selection methods on a total of
100719 publicly available datasets of classification tasks. The 19
1008datasets cover a wide range of data type, sample size, and fea-
1009ture set size. Specifically, we avoided binary-class and

TABLE 4
Data set summary

Data Set Train/Test Size Features Classes

MNIST 60000/10000 784 10
Breast Cancer 405/101 17278 4
GDC PANCAN 2076/519 24981 12
Head and Neck Cancer 2010/502 23686 4
Pancreatic Cancer 77/19 18278 4
Medulloblastoma 228/57 33297 3
Gene Expression (UCI) 641/160 20531 5
Gastrointestinal Lesions 61/15 1396 3
Satellite 4435/2000 36 6
Ecoli 269/67 7 8
Glass 171/43 9 6
Urban Land Cover 168/507 147 9
Wine 142/36 13 3
Anuran Calls 5756/1439 22 4
Breast Tissue 85/21 9 4
Cardiotocography 1701/425 21 10
Leaf 272/68 14 30
Mice Protein Expression 864/216 77 8
HAR 4252/1492 561 6
UJIndoorLoc 19937/1111 520 13
Forest Types 198/325 27 4
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1010 balanced datasets because dCovnM and gCovnM give the same
1011 ranking on these datasets when sufficient training samples are
1012 given. For datasets without training and test sets provided, we
1013 randomly hold out 20 percent as the test set. The descriptions
1014 of these datasets used are summarized in Table 4. GDC PAN-
1015 CAN,Head andNeckCancer, Pancreatic Cancer andMedullo-
1016 blastoma are gene datasets from the UCSC Xena database [28].
1017 GDC PANCAN used DNA methylation features, Pancreatic
1018 Cancer used RNA-seq features, Head and Neck used single-
1019 cell RNA-seq features and Medulloblastoma used microarray
1020 features. The Gene Expression fromUCI is also a gene data for
1021 PANCAN analysis but used RNA-seq features. The remaining
1022 datasets are all from UCI. For the UJInddorLoc datasets, we

1023randomly selected 5000 samples from the training set to calcu-
1024late test statistics. For the remaining datasets, all training sam-
1025ples were used. For each dataset, each method was used to
1026select top k features for training with three different values of
1027k. Each classification testwas repeated 10 times.
1028As we do not have the ground truth of the dependent
1029features, only classification accuracy was used for evalua-
1030tion. The average test accuracy (from 10 runs) of the 7 meth-
1031ods under comparison with different values of k on the 19
1032datasets are summarized in Table 5. Of all methods, the
1033highest accuracy is shown in bold and the second highest
1034one is underlined. The top 1 (top 2) statistic is determined
1035by the number of times a method is shown in bold (bold or

Fig. 4. The MNIST dataset. (a) Test accuracy using the top k selected features. (b) Test statistics of features in descending order. (c) Visualization of
the top k pixels selected. White: selected. Black: not selected. Test accuracy using the selected pixels is labeled on the top of each image.
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1036 underlined). Among all methods, gCornM appears 19 times
1037 as top 1 and 33 times in top 2, outperforming all other meth-
1038 ods. MV, dCovnM , and gCovnM have similar performance, fol-
1039 lowed by avgMMD2 and then dCornM . Pearson R2 is ranked
1040 the last, with 8 times as top 1 and 14 times in top 2. We
1041 observed that the performance of gCornM is more superior
1042 on the gene datasets evaluated, namely, Breast Cancer,
1043 GDC PANCAN, Head and Neck Cancer, Pancreatic Cancer,
1044 Medulloblastoma, and Gene Expression (UCI). Gene data-
1045 sets typically have a large number of features, which is usu-
1046 ally an order of magnitude greater than the sample size,
1047 making selecting a small set of good features necessary yet
1048 challenging. The empirical results on five gene datasets sug-
1049 gests gCornM to be a more competitive feature selection
1050 method than other methods under comparison.

1051 6 CONCLUSION

1052 We proposed a feature selection framework based on a new
1053 dependence measure between a numerical feature X and a
1054 categorical label Y using generalized Gini distance statistics:
1055 Gini distance covariance gCovðX;Y Þ and Gini distance corre-
1056 lation gCorðX;Y Þ. We presented estimators of gCovðX;Y Þ
1057 and gCorðX;Y Þ using n iid samples, i.e., gCovnM and gCornM ,
1058 and derived uniform convergence bounds. We showed that
1059 gCovnM converge faster than its distance statistic counterpart

1060 dCovnM , and the probability of gCovnM under-performing

1061 dCovnM in terms of Type II error decreases to 0 exponentially

1062 as the sample size increases. gCovnM and gCornM are also sim-

1063 pler to calculate than dCovnM and dCornM . Extensive experi-

1064 ments were performed to compare gCovnM and gCornM with

1065 other dependence measures in feature selection tasks using
1066 artifical and realworld datasets, includingMNIST, breast can-
1067 cer and 19 publicly available daatsets. For simulated data,
1068 gCovnM and gCornM perform better in terms of power and

1069 AUC. For real world datasets, on average, gCornM is able to

1070 select more meaningful features and has better classification
1071 performances. Notice that the advantage of Gini statistics
1072 over distance statistics is less observable in real world datasets
1073 than in simulation settings. This is because for real world
1074 datasets the ground truth is unavailable and the difference is

1075more difficult to see using classification accuracy as the per-
1076formancemeasure.However, when the data dimension is suf-
1077ficiently large, the difference between methods under
1078comparison is more significant. As we see on the gene data-
1079sets, gCornM is significantly better than the baseline methods.
1080Therefore, we would recommend the use of gCornM for high
1081dimension data. In spite of the equivalence between gCovM
1082and a weighted average of squared MMD in bM, gCovnM is
1083superior to a direct average of squared MMD using the same
1084kernel M in many settings, suggesting the importance of
1085usingweighted average and the choice of kernel.
1086The proposed feature selection method using generalized
1087Gini distance statistics have several limitations:

1088� Choosing an optimal s is still an open problem. In
1089our experiments we used s2 ¼ 10 after data
1090standardization;
1091� The computation cost for gCovnM and gCornM is Oðn2Þ,
1092which is same as avgMMD2, dCovnM and dCornM , but

1093more expensive than MV (OðnlognÞ) and Pearson R2

1094(OðnÞ). For large datasets, a sampling of data is desired.
1095� Features selected by Gini distance statistics, as well as
1096other dependence measure based methods, can be
1097redundant, hence a subsequent feature elimination
1098may be needed for the sake of feature subset selection.
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Classification Accuracies Using Top k Dependent Features
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Gene Expression (UCI) Gastrointestinal Lesions Satellite Ecoli
k 5 7 10 10 100 200 5 10 15 2 3 4

Pearson R2 0.909 0.917 0.934 0.747 0.700 0.660 0.598 0.830 0.869 0.624 0.772 0.776
MV 0.936 0.961 0.982 0.660 0.660 0.673 0.831 0.885 0.900 0.713 0.760 0.781
avgMMD2 0.711 0.696 0.819 0.547 0.680 0.693 0.770 0.834 0.860 0.624 0.772 0.845
dCovnM 0.889 0.907 0.963 0.700 0.607 0.673 0.627 0.860 0.896 0.712 0.766 0.788
dCornM 0.851 0.928 0.937 0.787 0.633 0.680 0.808 0.887 0.903 0.713 0.764 0.787

gCovnM 0.923 0.933 0.948 0.560 0.647 0.693 0.834 0.870 0.881 0.718 0.766 0.781
gCornM 0.741 0.980 0.972 0.607 0.700 0.653 0.838 0.873 0.898 0.634 0.758 0.803

Glass Urban Land Cover Wine Anuran Calls
k 3 5 7 30 60 90 2 4 6 5 10 15

Pearson R2 0.702 0.730 0.707 0.764 0.778 0.798 0.753 0.969 0.972 0.927 0.957 0.975
MV 0.702 0.667 0.758 0.782 0.799 0.805 0.917 0.992 0.997 0.933 0.958 0.980
avgMMD2 0.707 0.670 0.744 0.778 0.796 0.799 0.758 0.903 0.942 0.934 0.958 0.979
dCovnM 0.702 0.691 0.744 0.786 0.795 0.809 0.897 0.997 1.000 0.938 0.957 0.979
dCornM 0.707 0.672 0.751 0.781 0.817 0.809 0.881 0.992 0.997 0.937 0.956 0.978

gCovnM 0.705 0.674 0.663 0.784 0.790 0.804 0.881 0.997 0.997 0.938 0.956 0.979
gCornM 0.693 0.665 0.670 0.787 0.804 0.805 0.900 0.997 1.000 0.937 0.958 0.980

Breast Tissue Cardiotocography Leaf Mice Protein Expression
k 3 5 7 5 10 15 4 7 10 10 20 30

Pearson R2 0.810 0.857 0.833 0.831 0.890 0.894 0.437 0.637 0.647 0.978 0.942 0.980
MV 0.810 0.857 0.843 0.805 0.880 0.893 0.494 0.576 0.676 0.868 0.964 0.982
avgMMD2 0.810 0.857 0.857 0.675 0.860 0.894 0.443 0.601 0.676 0.977 0.970 0.980
dCovnM 0.819 0.857 0.852 0.773 0.874 0.891 0.471 0.690 0.663 0.893 0.950 0.985
dCornM 0.810 0.857 0.838 0.816 0.849 0.894 0.506 0.606 0.704 0.890 0.952 0.977

gCovnM 0.810 0.857 0.852 0.817 0.878 0.895 0.468 0.688 0.654 0.888 0.945 0.983
gCornM 0.810 0.857 0.857 0.766 0.880 0.887 0.503 0.594 0.706 0.888 0.943 0.982

HAR UJIndoorLoc Forest Types Top 1 Top 2
k 100 200 300 100 200 300 5 10 15 (times) (times)

Pearson R2 0.756 0.780 0.856 0.695 0.811 0.847 0.751 0.756 0.795 8 14
MV 0.719 0.778 0.775 0.753 0.864 0.873 0.699 0.758 0.806 11 25
avgMMD2 0.781 0.832 0.863 0.731 0.867 0.869 0.764 0.757 0.794 11 18
dCovnM 0.765 0.779 0.859 0.768 0.866 0.873 0.652 0.809 0.807 11 22
dCornM 0.767 0.780 0.853 0.793 0.863 0.871 0.715 0.752 0.802 8 19

gCovnM 0.766 0.853 0.858 0.763 0.864 0.872 0.651 0.818 0.804 11 26
gCornM 0.821 0.853 0.853 0.797 0.864 0.872 0.696 0.734 0.806 19 33
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