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A ZERO DIVISOR GRAPH DETERMINED BY EQUIVALENCE
CLASSES OF ZERO DIVISORS
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We study the zero divisor graph determined by equivalence classes of zero divisors of
a commutative Noetherian ring R. We demonstrate how to recover information about
R from this structure. In particular, we determine how to identify associated primes
from the graph.
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INTRODUCTION

Beck first introduced the notion of a zero divisor graph of a ring R in 1988 [5]
from the point of view of colorings. Since then, others have studied and modified
these graphs, whose vertices are the zero divisors of R, and found various properties
to hold. Inspired by ideas from Mulay in [10, §3], we study the graph of equivalence
classes of zero divisors of a ring R, which is constructed from classes of zero divisors
determined by annihilator ideals, rather than individual zero divisors themselves.
It will be denoted by �E�R).

This graph has some advantages over the earlier zero divisor graph ��R�

in [2–5], or subsequent zero divisor graph determined by an ideal of R in
[8, 11]. In many cases �E�R� is finite when ��R� is infinite. For example, if
S=��X� Y�/�X3� XY�, then ��S) is an infinite graph, while �E�S) has only four
vertices. To be specific, although x2� 2x2� 3x2� � � � , are distinct zero divisors, where x

denotes the image of X in S, they all have the same annihilator; they are represented
by a single vertex in �E�S). In addition, there are no complete �E�R) graphs with
three or more vertices since the graph would collapse to a single point. These are
two ways in which �E�R) represents a more succinct description of the “zero divisor
activity” in R.
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EQUIVALENCE CLASSES OF ZERO DIVISORS 2339

Another important aspect of graphs of equivalence classes of zero divisors is
the connection to associated primes of the ring. For example, in the ring S above,
the annihilator of x2 is an associated prime. In general, all of the associated primes
of a ring R correspond to distinct vertices in �E�R�. Moreover, every vertex in a
graph either corresponds to an associated prime or is connected to one. The study
of the structure of associated primes in �E�R) is one of our main motivations.

In Section 1, we compare and contrast �E�R) with the more familiar ��R)
defined by D. Anderson and P. Livingston [2]. In Section 2, we consider infinite
graphs and star graphs and answer the question of whether or not the Noetherian
condition on R is enough to force �E�R� to be finite. Section 3 is devoted to the
relation between the associated primes of R and the vertices of �E�R�. In particular,
we demonstrate how to identify some elements of Ass�R�.

Throughout, R will denote a commutative Noetherian ring with unity, and all
graphs are simple graphs in the sense that there are no loops or double edges.

1. DEFINITIONS AND BASIC RESULTS

Let Z∗�R� denote the zero divisors of R and Z�R� = Z∗�R� ∪ �0	. For x� y ∈
R, we say that x ∼ y if and only if ann�x� = ann�y�. As noted in [10], ∼ is
an equivalence relation. Furthermore, if x1 ∼ x2 and x1y = 0, then y ∈ ann�x1� =
ann�x2� and, hence, x2y = 0. It follows that multiplication is well defined on the
equivalence classes of ∼; that is, if �x� denotes the class of x, then the product
�x� · �y� = �xy� makes sense. Note that �0� = �0	 and �1� = R− Z�R�; the other
equivalence classes form a partition of Z∗�R�.

Definition 1.1. The graph of equivalence classes of zero divisors of a ring R, denoted
�E�R), is the graph associated to R whose vertices are the classes of elements in
Z∗�R�, and with each pair of distinct classes �x�� �y� joined by an edge if and only if
�x� · �y� = �0�.

In [10], Mulay first defines �E�R� using different terminology and asserts
several properties of �E�R�, in particular, that �E�R� is connected. He then uses the
automorphism group of �E�R� to help describe the automorphism group of the zero
divisor graph of R. The graph of equivalence classes of zero divisors has also been
studied by several others in different contexts, see, for example, [1, 12]. In addition,
the set of equivalence classes forms a semigroup with a zero element. The zero
divisor graph of such semigroups have been studied extensively, beginning with [7]
and continuing in [6] among many others.

Recall that a prime ideal � of R is an associated prime if � = ann�y� for some
y ∈ R. The set of associated primes is denoted Ass�R�; it is well known that for a
Noetherian ring R, Ass�R� is finite, and any maximal element of the family of ideals
� = �ann�x� � 0 �= x ∈ R	 is an associated prime. There is a natural injective map
from Ass�R� to the vertex set of �E�R� given by � �→ �y� where � = ann�y�. As a
result, we will slightly abuse terminology and refer to �y� as an associated prime.

Lemma 1.2. Any two distinct elements of Ass�R� are connected by an edge.
Furthermore, every vertex �v� of �E�R� is either an associated prime or adjacent to an
associated prime maximal in �.
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2340 SPIROFF AND WICKHAM

Proof. The proof of the first statement is essentially the same as in [4, Lemma 2.1].
If � = ann�x� and � = ann�y� are primes, then one can assume that there is an
element r ∈ �\�. Since rx = 0 ∈ �, x ∈ ann�y�, and hence �x� · �y� = 0. Next, suppose
�v� ∈ �E�R� is not an associated prime. Since v is a zero divisor, v ∈ ann�z� for some
z maximal in �; thus, there is an edge between �v� and �z�. �

Example 1.3. The associated primes of R = �4 × �4 are ��2� 0�� and ��0� 2��.

The degree of a vertex v in a graph, denoted deg v, is the number of edges incident to
v. When deg v = 1, we call v an end. A regular graph is one in which deg v = degw
for every pair of vertices v and w of the graph. A path of length n between two
vertices u and w is a sequence of distinct vertices vi of the form u = v0 − v1 − · · · −
vn = w such that vi−1 − vi is an edge for each i = 1� � � � � n. The distance between a
pair of vertices is the length of the shortest path between them; if no path exists, the
distance is infinite. The diameter of a graph is the greatest distance between any two
distinct vertices.

The next proposition follows from previous work on zero divisor graphs of
semigroups (in particular, see [7, Theorem 1.2]). We include a proof specific to �E�R�
to give the reader a feel for some of the techniques subsequently used in this article.
One could also obtain this result by noting that �E�R� is a quotient graph of the
zero divisor graph of R which has the same properties, see [1, Proposition 4.5] for
the special case in which R is a von Neumann regular ring.

Proposition 1.4. The graph �E�R) is connected and diam �E�R� ≤ 3.

Proof. Let �x� and �y� be two non-adjacent vertices. At worst, neither �x� nor �y�
is an associated prime. By Lemma 1.2, there are associated primes �v1� and �v2�
adjacent to �x� and �y�, respectively, providing a path �x�− �v1�− �v2�− �y�, where
�v1� may or may not equal �v2�. In any case, �E�R) is connected and diam �E�R� ≤ 3.

�

Connectivity and a restricted diameter are two similarities between �E�R� and
��R�, [2, Theorem 2.3]. One important difference between �E�R� and ��R� lies in
the study of complete graphs. The idea in the next proposition is that complete
zero divisor graphs determined by equivalence classes, with the exception of graphs
consisting of a single edge (e.g., �E��pq� and �E��p3� where p and q are distinct
primes p and q), all collapse to a single point. Each vertex in �E�R� is representative
of a distinct class of zero divisor activity in R.
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EQUIVALENCE CLASSES OF ZERO DIVISORS 2341

Proposition 1.5. Let R be such that �E�R) has at least three vertices. Then �E�R� is
not complete.

Proof. Suppose �E�R) is a complete graph and �x�� �y�� and �z� are three distinct
vertices. We may assume that ann�z� is a maximal element of � and hence is not
contained in either ann�x� or ann�y�. Then there is an element w ∈ ann�z� such that
w 
 ann�x� ∪ ann�y�. This immediately contradicts the assumption that the graph is
complete. �

Corollary 1.6. There is only one graph �E�R) with exactly three vertices that can be
realized as a graph of equivalence classes of zero divisors for some ring R.

Proof. Since every graph is connected, by Proposition 1.5, we need only note that
the graph of R = �4�X� Y�/�X

2� XY� 2X�, for example, is �2�—�x�—�y�, where x and
y denote the images of X and Y , respectively. �

The simplification, or collapse, of complete �E�R) graphs applies also to
complete r-partite diagrams, with the exclusion of star graphs Kn�1, like the one
above. (The latter are considered in the next section.) A graph is complete bipartite
if there is a partition of the vertices into two subsets �ui	 and �vj	 such that ui is
adjacent to vj for all pairs i� j, but no two elements of the same subset are adjacent.
More generally, a graph is complete r-partite if the vertices can be partitioned into r
distinct subsets such that each element of a subset is adjacent to every element not
in the same subset, but no two elements of the same subset are adjacent.

Proposition 1.7. Let R be a ring such that �E�R� is complete r-partite. Then r = 2
and �E�R� = Kn�1 for some n ≥ 1.

Proof. First suppose �E�R� = Kn1�n2�����nr
for some r ≥ 3. Proposition 1.5 implies

that not all ni = 1; without loss of generality assume n1 > 1. Suppose for the
moment that n2 > 1. Then there are two pairs of non-adjacent vertices, say �u1�� �u2�
and �v1�� �v2� such that uivj = 0 for i� j ∈ �1� 2	. Since �u1� �= �u2�, we may assume
there is z ∈ ann�u1�\ann�u2�. But �u1� and �u2� have the same set of neighbors, hence
ann�u1�\�u1� = ann�u2�\�u2�. It follows that z ∈ �u1�, that is, ann�z� = ann�u1�, and
so u2

1 = 0. Similarly, v21 = 0. This implies that �u1 + v1� is adjacent to both �u1� and
�v1�, but not to either �u2� or �v2�, a contradiction. Thus n2 = 1. A similar argument
shows that n2 = · · · = nr = 1.

Now let �u1� and �u2� be as above. Since we are assuming that r ≥ 3, let �v�
and �w� be two adjacent vertices of �E�R� both of which are adjacent to �u1� and
�u2�. If v

2 = 0 and w2 = 0, then ann�v� = Z∗�R� = ann�w� implying that �v� = �w�.
Therefore, we may assume that w2 �= 0. Consider u1 + w, which is a zero divisor
since �u1 + w�v = 0. Note that �u1 + w�2 = w2 �= 0, so �u1 + w� �= �u1�. However,
�u1 + w� is adjacent to �u1�, but not to �u2�. Since this is impossible, we must have
r = 2 and hence �E�R� = Kn�1. �

A second look at the above results allows us to deduce some facts about cycle
graphs, which are n-gons. An immediate consequence of Proposition 1.4 is that there
are no cycle graphs with eight or more vertices. Likewise, Proposition 1.7 tells us
that there are no 3- or 4-cycle graphs, i.e., K1�1�1 or K2�2, respectively.
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2342 SPIROFF AND WICKHAM

Proposition 1.8. For any R, �E�R) is not a cycle graph.

Proof. As mentioned above, it suffices to show that cycle graphs which contain a
path of length five are not possible. Suppose �x�− �y�− �z�− �w�− �v� is a path in
the graph. Then �yw� is annihilated by �x�, �z�, and �v�, but no such class exists. �

For a vertex v of a simple graph G, the set of vertices adjacent to v is called
the neighborhood of v and denoted NG�v�, or simply N�v� if the graph is understood.

Lemma 1.9. Let G be a finite, simple graph with the property that two distinct vertices
v and w of G are non-adjacent if and only if NG�v� = NG�w�. Then G is a complete
r-partite graph for some positive integer r.

Proof. We induct on the number of vertices of G. If G has one vertex, then G
is a complete 1-partite graph. So suppose G has more than one vertex. Let I =
�y1� y2� � � � � yn	 be a maximal set of pairwise non-adjacent vertices in G (that is, I
is an independent set of G), and let N = �x1� � � � � xd	 be the common neighborhood
of the elements of I . Then I and N are disjoint and the vertices of G are precisely
I ∪ N . If N = �, then G is 1-partite, and we are done. So assume N �= �. Let H
be the graph induced by N . Note that NH�v� = NG�v� ∩ N and NG�v� = NH�v� ∪ I
for any vertex v of H , hence two distinct vertices v and w of H are non-adjacent
if and only if NH�v� = NH�w�. Since H has fewer vertices than G, the induction
hypothesis implies that H is a complete �r − 1�-partite graph for some r ≥ 2. But
by the definition of I , this implies that G is a complete r-partite graph. �

Proposition 1.10. For any ring R, there are no finite regular graphs �E�R� with more
than two vertices.

Proof. Suppose that R is a ring such that �E�R� is a regular graph of degree
d with at least 3 vertices. By earlier results, d ≥ 2 and �N��x��� = d for all �x� ∈
�E�R�. Since �E�R� is not complete, there exists two non-adjacent vertices �y1�
and �y2�. If N��y1�� �= N��y2��, then without loss of generality we may assume that
there is a vertex �u� ∈ N��y1��\N��y2��. Thus uy1 = 0 but uy2 �= 0. This implies �u� ∈
N��y1y2�� and so N��y2�� �= N��y1y2��. But N��y2�� ⊆ N��y1y2�� and, since each set has
cardinality d, we must have equality, which leads to a contradiction. Therefore, any
two non-adjacent vertices on the graph have the same neighborhood, and clearly the
converse is true. Thus by Lemma 1.9 and Proposition 1.7, �E�R� = Kn�1 for some
n ≥ 1. Since �E�R� has at least 3 vertices, n ≥ 2, which contradicts the assumption
that �E�R� is regular. �

Finally, we give the connection between �E�R� and the zero divisor graph ��R�
in [2]. Let � be a graph. To each vertex vi of � , assign an element wi ∈ �+ ∪ ��	,
called the weight of vi, and let w = �w1� w2� � � � �. Define a graph ��w� with vertex
set �vki�i � 1 ≤ ki ≤ wi	 and edge set is �vki�ivkj �j � i �= j and vivj is an edge of �	�
Intuitively, the vertices vki�i of ��w� form a “covering set” of cardinality wi of the
vertex vi of � , and if vi is connected to vj in � , then every vertex of the covering set
of vi is connected to every vertex of the covering set of vj .
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EQUIVALENCE CLASSES OF ZERO DIVISORS 2343

For each vertex �vi� of �E�R�, let wi = ��vi��, and let w = �w1� w2� � � � �. By the
definitions of �E�R� and ��R�, it is clear that �E�R�

�w� is a subgraph of ��R�. In fact,
�E�R�

�w� = ��R� if and only if whenever R contains a nonzero element x such that
x2 = 0, then ��x�� = 1. In particular, if R is reduced, then �E�R�

�w� = ��R�. In general,
��R� is the graph obtained from �E�R�

�w� by adding edges between every pair of
vertices vki�i and vk′i�i if and only if v2i = 0.

Example 1.11. The zero divisor graph ���12� is shown “covering” the graph
�E��12�. Note that if w = �2� 1� 2� 2�, then �E��12�

�w� = ���12�.

2. INFINITE GRAPHS AND STAR GRAPHS

In this section we investigate infinite graphs and star graphs. In particular, one
might ask if there exists a ring R such that �E�R� is an infinite star graph, or perhaps
if the assumption that R is Noetherian forces �E�R� to be finite. We begin with a
discussion of degrees.

Proposition 2.1. Let x and y be elements of R. If 0 �= ann�x� � ann�y�, then
deg�x� ≤ deg�y�.

Proof. If �u� ∈ �E�R� such that ux = 0, then clearly uy = 0. �

Proposition 2.2. The vertex set of �E�R� is infinite if and only if there is some
associated prime �x� maximal in � such that deg�x� = �.

Proof. Clearly, if some vertex has infinite degree, then the vertex set of �E�R� is
infinite. Conversely, suppose the vertex set of �E�R� is infinite. Let �x1�� � � � � �xr� be
the maximal elements in �� If deg�x1� < �, then there are infinitely many vertices
�w� such that wx1 �= 0. Now �w��v� = 0 for some class �v� �= �w�, and since �x1� is
prime, we must have v ∈ ann�x1�. If there are infinitely many distinct vertices �v�,
then deg�x1� = �, a contradiction. Therefore, the set of �v�’s is finite, and hence,
deg�v� = � for some v. Either �v� is an associated prime of R and maximal in �, or
ann�v� � ann�xj� for some j �= 1. In either case, the result holds. �

Definition 2.3. A star graph is a complete bipartite graph Kn�1, n ∈ � ∪ ��	. If
n = �, we say the graph is an infinite star graph.
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2344 SPIROFF AND WICKHAM

Proposition 2.4. Any ring R such that �E�R� is a star graph with at least four vertices
satisfies the following properties:

(1) Ass�R� = ��	;
(2) �3 = 0;
(3) char�R� = 2� 4� or 8.

Proof. Suppose we have a star graph with at least four vertices, as shown below.

Let �y� be the unique vertex with maximal degree. Note that �y� is a maximal
element in �, for if ann�y� � ann�w� for some w, then by Proposition 2.1 �E�R�
would contain two vertices of degree larger than 1. Next, in order for the classes
�x�� �z1�� � � � to be distinct, we must have z2i = 0, for all i. If i �= j, then zizj is nonzero
and annihilated by zi and zj ; hence, the only choice for �zizj� is �y�. Moreover,
�zizj�

2 = 0 implies that every element of �y� is nilpotent of order 2, by [10, (3.5)].
Since �y� is connected to every vertex, it follows that zizjzk = zizjx = 0 for any i� j� k.
As a result, we have �xzi� = �y�. Thus, x2zi = 0 for each i. Consequently, either x2 = 0
or �x2� = �y�. Since the latter case implies x3 = 0, it follows that every zero divisor
is nilpotent of order at most three. This establishes (1) and (2).

For (3), consider zi + zj , which is annihilated by zizj , but not zi or zj .
Therefore, �zi + zj� represents a degree one vertex distinct from �zi� and �zj�. The
same conclusion can be reached for �zi − zj�. Since �zi + zj��zi − zj� = 0, this means
that �zi − zj� = �zi + zj�, and every element in the class is nilpotent of order two.
In particular, �zi + zj�

2 = 0 ⇒ 2zizj = 0. Consequently, either 2 ≡ 0 or 2 is a zero
divisor in R. If char(R� �= 2, then �2� is somewhere on the graph and either 22 = 0
or 23 = 0. �

Corollary 2.5. If R is a finite ring and �E�R� is a star graph with at least four vertices,
then R is a local ring.

Proof. A finite ring is a product of finite local rings, see, e.g., [9, Theorem VI.2].
Hence the number of associated primes corresponds to the number of factors in the
product. �

It is unknown to the authors whether, for each positive integer n, the star
graph Kn�1 can be realized as �E�R� for some ring R, or how one would go about
the general construction or argument. However, the following example shows that
there exist rings R such that �E�R� is a star graph with infinitely many ends.

Example 2.6. Let R = �2�X� Y� Z�/�X
2� Y 2�. Then �E�R� is an infinite star graph. If

x and y denote the images of X and Y , respectively, then Ass�R� = ��x� y�	, and the
corresponding vertex �xy� is the central vertex of the graph. The ends, besides �x�,
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EQUIVALENCE CLASSES OF ZERO DIVISORS 2345

�y�, are vertices of the form �zmx + zny� for each ordered pair �m� n� of nonnegative
integers.

Remark 2.7. Example 2.6 shows that the Noetherian condition is not enough to
force �E�R� to be finite.

3. ASSOCIATED PRIMES

One of the main motivations in studying graphs of equivalence classes of
zero divisors is the fact that the associated primes of R, by their very definition,
correspond to vertices in �E�R�. The focus here is the identification of associated
primes of R, given �E�R�.

It is important to note from Proposition 2.1 in the last section that proper
containment of annihilator ideals does not translate into a strict inequality of
degrees. For instance, the ring �4�X� Y�/�X

2� XY� 2X�, shown in Corollary 1.6,
satisfies ann�y� � ann�2�, but deg�y� = deg�2� = 1, where y denotes the image of Y
(we adopt this convention for the remainder of the article). In order to achieve strict
inequality on degrees, further assumptions on the annihilator ideals are needed. This
issue is addressed in this section; but first we make some key observations. The
contrapositive of Proposition 2.1 is useful and worth stating:

Proposition 3.1. Let x and y be elements of R. If deg�y� > deg�x� for every �x� in
�E�R�, then ann�y� is maximal in � and hence is an associated prime.

Of course, we already saw evidence of this fact in Proposition 2.4. In that
case, the vertex of maximal degree corresponds to the unique element of Ass�R�.
Similarly, if �E�R� has exactly three vertices, then the vertex of degree two always
corresponds to an associated prime maximal in �. However, in this case Ass�R� may
consist of more than one ideal. For the example used in Corollary 1.6, the associated
primes are ann�x� = �2� x� y� and ann�2� = �2� x�. This is just one instance where
graphs with only two or three vertices prove the exception to the rule.

Proposition 3.2. If R is a ring such that ��E�R�� > 3, then no associated prime of R
is an end.

Proof. Suppose �y� is an associated prime of degree one. Then there is one
and only one �x� such that �x� �= �y� and �x��y� = 0. By Lemma 1.2, Ass�R� =
�ann�x�� ann�y�	. Any additional vertices, of which there are at least two, must be
connected to �x�. If �z� is another vertex and deg�z� ≥ 2, then for some �w�, zw =
0 ∈ ann�y�; hence z ∈ ann�y� or w ∈ ann�y�. Since this is not possible, it must be
that deg�z� = deg�w� = 1� But in order for �z� and �w� to be distinct, we must have
z2 = 0 or w2 = 0, which again puts z ∈ ann�y� or w ∈ ann�y�. �

Corollary 3.3. If R is a ring such that ��E�R�� ≥ 3, then any vertex with an end is an
associated prime maximal in �.

Proof. Proposition 3.1 and Corollary 1.6 take care of the case when there are
exactly three vertices. Suppose ��E�R�� > 3. Since every graph is connected, the result
follows from Lemma 1.2 and Proposition 3.2. �
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We are now in a position to show a finer relationship between vertices of high
degree and associated primes.

Proposition 3.4. Let x1� � � � � xr be elements of R, with r ≥ 2, and suppose ann�x1� �
· · · � ann�xr� is a chain in Ass�R�. If 3 ≤ ��E�R�� < �, then deg�x1� < · · · < deg�xr�.

Proof. If ��E�R�� = 3, then �Ass�R�� ≤ 2 by Lemma 1.2 and Proposition 1.5, and
the result follows immediately from Corollaries 1.6 and 3.1. Thus, we may assume
that ��E�R�� > 3. By Proposition 2.4, �E�R� is not a star graph, given the hypotheses.
By the preceding proposition, the degrees of �x1� and �x2� are at least two. Suppose
deg�x1� = n� Then there are n− 1 vertices �ui�, distinct from either �x1� or �x2�,
such that x1ui = 0 for all i. Since ann�x1� � ann�x2�, x2ui = 0 for all i as well.
Furthermore, x2 ∈ ann�x1� by (the proof of) Lemma 1.2, hence x22 = 0. If x21 �= 0,
then each ann�x1 + ui� contains x2 but not x1, making deg�x2� > deg�x1�. If x

2
1 = 0,

then take z ∈ ann�x2�\ann�x1�. Since x1 
 ann�z�, �z� is distinct from �x1� and �x2�
and adjacent to �x2�, but not �x1�. Again, deg�x1� < deg�x2�. Moreover, this last
argument applies to each pair ann�xi�, ann�xi+1�, for i ≥ 1, since xixj = 0 for 1 ≤
i ≤ j ≤ r . �

Example 3.5. Let R = ��X� Y�/�X3� XY�. Then �x� � �x� y� is a chain in Ass�R�,
corresponding to the vertices �y� and �x2�, respectively, with deg�y� = 2 and
deg�x2� = 3.

We now make use of Proposition 1.10 to establish a correspondence between
associated primes and vertices of relatively large degree.

Theorem 3.6. Let R be such that 2 < ��E�R�� < �. Then any vertex of maximal
degree is maximal in � and hence is an associated prime.

Proof. Let d denote the maximal degree of �E�R�. If there is only one vertex of
degree d, then Proposition 3.1 yields the desired result. Therefore, we may assume
that ��E�R�� > 3 and that �E�R� has at least two vertices of degree d. Suppose that
�y1� is a vertex of degree d. Then ann�y1� ⊆ ann�y2� for some y2 such that ann�y2�
is maximal in �, and so �y2� is an associated prime. We aim to show that, in
fact, �y1� = �y2�. By Proposition 2.1, d = deg�y1� ≤ deg�y2� ≤ d, so deg�y2� = deg�y1�.
Since ann�y1� ⊆ ann�y2� yields �N��y1��\��y2�	� ⊆ �N��y2�� \ ��y1�	�, the equality of
degrees implies that �N��y1��\��y2�	� = �N��y2��\��y1�	�; denote this set by � . The
connectivity of �E�R� implies that d ≥ 2 and so � �= �.

To get the desired result, we must show that ann�y1� = ann�y2�, that is,
ann�y2�\ann�y1� = �. Suppose this is not the case and let z ∈ ann�y2�\ann�y1�. If
�z� is distinct from �y2� and �y1�, then �z� ∈ �N��y2��\��y1�	� but �z� 
 �N��y1��\��y2�	�,
a contradiction. Suppose �z� = �y2�, in which case y2y1 �= 0, y22 = 0, and y21 �= 0. Let
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�w� ∈ � and consider w + y2, which is annihilated by y2, but not y1. Then �w + y2� 

� and thus �w + y2� = �y2�. So if �v� ∈ � , then 0 = �w + y2�v = wv. Since �w� was
chosen arbitrarily, it follows that the vertices in � form a complete subgraph. Hence
��\��w�	� ∪ ��y2�� �y1�	 ⊆ N��w�� for any �w� ∈ � , implying that deg�w� ≥ deg�y2�+
1, contradicting the maximality of deg�y2�.

Suppose �z� = �y1� and let �x� ∈ � . If deg�x� < d, then there exists some
u ∈ ann�y1�\ann�x� such that �u�, �y1�, and �x� are distinct. Note that x�u+
y1� = xu �= 0, so �u+ y1� �= �yi� for i = 1� 2. However, y2�u+ y1� = 0 which implies
�u+ y1� ∈ � , but y1�u+ y1� = y21 �= 0, contradicting that �u+ y1� ∈ � . Therefore,
deg�x� = d. Furthermore, since y2�x + y1� = 0 but y1�x + y1� = y21 �= 0, then �x +
y1� ∈ N��y2��\� , hence �x + y1� = �y1�. Since �x� was chosen arbitrarily in � , it
follows that x1x2 = 0 for distinct �x1�� �x2� ∈ � . Therefore, the subgraph induced by
� ∪ ��y2�� �y1�	 is a complete graph. By Proposition 1.10 there exists a vertex �w� ∈
�E�R� such that deg�w� < deg�y1�, so �w� 
 � ∪ ��y2�� �y1�	. However, since �y2� is an
associated prime, then by Lemma 1.2, Ass�R� ⊆ � ∪ ��y2�� �y1�	 and �w� is adjacent
to some vertex �v� ∈ � ∪ ��y2�� �y1�	. This implies that deg�v� > d, a contradiction.

�

Example 3.7. Recall that �E��4 × �4� in Example 1.3 had two vertices, namely,
��2� 0�� and ��0� 2��, of maximal degree. Their annihilators are the associated primes
of the ring.

Remark 3.8. We collect some comments regarding Theorem 3.6:

(1) The converse is false: For example, if p and q are distinct primes, then in �p2q3 ,
�pq3� and �p2q2� correspond to associated primes �p� and �q�, respectively, each
maximal in �, but deg�pq3� = 6 and deg�p2q2� = 7.

(2) The assumption of finiteness is necessary. The graph of the ring R =
��X� Y�/�X2� Y 2� Z2� has four vertices with infinite degree, namely, �xy�� �xz��
�yz�, and �xyz�, but only ann�xyz� is an associated prime of R.

Finally, since each of our examples possesses an end, one might ask if
Corollary 3.3 supersedes Theorem 3.6; that is, if every graph must contain an end.
Based on the results in section one, the first case where such an example can occur
is when the graph has exactly five vertices.

Example 3.9. Let R = �3��X� Y��/�XY�X
3� Y 3� X2 − Y 2�.
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