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Abstract: Standard Gini covariance and Gini correlation play important roles in measuring the dependence
of random variables with heavy tails. However, the asymmetry brings a substantial difficulty in interpre-
tation. In this paper, we propose a symmetric Gini-type covariance and a symmetric Gini correlation (ρg)
based on the joint rank function. The proposed correlation ρg is more robust than the Pearson correlation
but less robust than the Kendall’s τ correlation. We establish the relationship between ρg and the linear
correlation ρ for a class of random vectors in the family of elliptical distributions, which allows us to es-
timate ρ based on estimation of ρg . The asymptotic normality of the resulting estimators of ρ are studied
through two approaches: one from influence function and the other from U-statistics and the delta method.
We compare asymptotic efficiencies of linear correlation estimators based on the symmetric Gini, regular
Gini, Pearson and Kendall’s τ under various distributions. In addition to reasonably balancing between ro-
bustness and efficiency, the proposed measure ρg demonstrates superior finite sample performance, which
makes it attractive in applications. The Canadian Journal of Statistics xx: 1–19; 2016 c© 2016 Statistical
Society of Canada

Résumé: Insérer votre résumé ici. We will supply a French abstract for those authors who can’t prepare it
themselves. La revue canadienne de statistique xx: 1–19; 2016 c© 2016 Société statistique du Canada

1. INTRODUCTION

Let X and Y be two non-degenerate random variables with marginal distribution functions F
and G, respectively, and a joint distribution function H . To describe dependence correlation be-
tween X and Y , the Pearson correlation (denoted as ρp) is probably the most frequently used
measure. This measure is based on the covariance between two variables, which is optimal for
the linear association between bivariate normal variables. However, the Pearson correlation per-
forms poorly for variables with heavily-tailed or asymmetric distributions, and may be seriously
impacted even by a single outlier (e.g., Shevlyakov and Smirnov, 2011). Under the assumption
that F andG are continuous, the Spearman correlation, a robust alternative, is a multiple (twelve)
of the covariance between the cumulative functions (or ranks) of two variables; the Gini correla-
tion is based on the covariance between one variable and the cumulative distribution of the other
(Blitz and Brittain, 1964). Two Gini correlations can be defined as

γ(X,Y ) :=
cov(X,G(Y ))

cov(X,F (X))
and γ(Y,X) :=

cov(Y, F (X))

cov(Y,G(Y ))

to reflect different roles of X and Y. The representation of Gini correlation γ(X,Y ) indicates
that it has mixed properties of those of the Pearson and Spearman correlations. It is similar
to Pearson in X (the variable taken in its variate values) and similar to Spearman in Y (the
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variable taken in its ranks). Hence Gini correlations complement the Pearson and Spearman
correlations (Schechtman and Yitzhaki, 1987; 1999; 2003). Two Gini correlations are equal if
X and Y are exchangeable up to a linear transformation. However, Gini covariances are not
symmetric in X and Y in general. On one hand, this asymmetrical nature is useful and can
be used for testing bivariate exchangeability (Schechtman, Yitzhaki and Artsev, 2007). On the
other hand, such asymmetry violates the axioms of correlation measurement (Mari and Kotz,
2001). Although some authors (e.g., Xu et al., 2010) dealt with asymmetry by a simple average
(γ(X,Y ) + γ(Y,X))/2, it is difficult to interpret this measure, especially when γ(X,Y ) and
γ(Y,X) have different signs.

The asymmetry of γ(X,Y ) and γ(Y,X) stems from the usage of marginal rank function
F (x) orG(y). A remedy is to utilize a joint rank function. To do so, let us look at a representation
of the Gini mean difference (GMD) under continuity assumption: ∆(F ) = 4cov(X,F (X)) =
2cov(X, 2F (X)− 1) (Stuart, 1954; Lerman and Yitzhaki, 1984). The second equality rewrites
GMD as twice of the covariance of X and the centered rank function r(X) := 2F (X)− 1. If F
is continuous, Er(X) = 0. Hence

∆(F ) = 2cov(X, r(X)) = 2E(Xr(X)). (1)

The rank function r(X) provides a center-orientated ordering with respect to the distribution
F . Such a rank concept is of vital importance for high dimensions where the natural linear or-
dering on the real line no longer exists. A generalization of the centered rank in high dimension
is called the spatial rank. Based on this joint rank function, we are able to propose a symmetric
Gini covariance (denoted as covg) and a corresponding symmetric correlation (denoted as ρg).
That is, covg(X,Y ) = covg(Y,X) and ρg(X,Y ) = ρg(Y,X).

We study properties of the proposed Gini correlation ρg . In terms of the influence function,
ρg is more robust than the Pearson correlation ρp. However, ρg is not as robust as the Spearman
correlation and Kendall’s τ correlation. Kendall’s τ is another commonly used nonparametric
measure of association. The Kendall correlation measure is more robust and more efficient than
the Spearman correlation (Croux and Dehon, 2010). For this reason, in this paper we do not
consider Spearman correlation for comparison.

As Kendall’s τ has a relationship with the linear correlation ρ under elliptical distributions
(Kendall and Gibbons, 1990; Lindskog, Mcneil and Schmock, 2003), we also set up a function
between ρg and ρ under elliptical distributions. This provides us an alternative method to estimate
ρ based on estimation of ρg . The asymptotic normality of the estimator based on the symmet-
ric Gini correlation is established. Its asymptotic efficiency and finite sample performance are
compared with those of Pearson, Kendall’s τ and the regular Gini correlation coefficients under
various elliptical distributions.

As any quantity based on spatial ranks, ρg is only invariant under translation and homoge-
neous change. In order to gain the invariance property under heterogeneous changes, we provide
an affine invariant version.

The paper is organized as follows. In Section 2, we introduce a symmetric Gini covariance
and the corresponding correlation. Section 3 presents the influence function. Section 4 gives an
estimator of the symmetric Gini correlation and establishes its asymptotic properties. In Section
5, we present the affine invariant version of the symmetric Gini correlation and explore finite
sample efficiency of the corresponding estimator. We present a real data application of the pro-
posed correlation in Section 6. Section 7 concludes the paper with a brief summary. All proofs
are reserved to the Appendix.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:



2016 3

2. SYMMETRIC GINI COVARIANCE AND CORRELATION

The main focus of this section is to present the proposed symmetric Gini covariance and corre-
lation, and to study the corresponding properties.

2.1. Spatial rank
Given a random vector Z in Rd with distribution H , the spatial rank of z with respect to the
distribution H is defined as

r(z, H) := Es(z− Z) = E
z− Z

||z− Z||
,

where s(·) is the spatial sign function defined as s(z) = z/‖z‖ with s(0) = 0. The solution
of r(z, H) = 0 is called the spatial median of H , which minimizes EH‖z− Z‖. Obviously,
Er(Z, H) = 0 if H is continuous. For more comprehensive account on the spatial rank, see Oja
(2010).

In particular, for d = 2 with Z = (X,Y )T , the bivariate spatial rank function of z = (x, y)T

is

r(z, H) = E
(x−X, y − Y )T

‖z− Z‖
:= (R1(z), R2(z))T ,

where R1(z) = E(x−X)/‖z− Z‖ and R2(z) = E(y − Y )/‖z− Z‖ are two components of
the joint rank function r(z, H).

2.2. Symmetric Gini covariance
Our new symmetric covariance and correlation are defined based on the bivariate spatial rank
function. Replacing the univariate centered rank in (1) with R2(z), we define the symmetric Gini
covariance as

covg(X,Y ) := 2EXR2(Z). (2)

Note that covg(X,Y ) = 2cov(X,R2(Z)) if H is continuous. Dually, covg(Y,X) =
2EY R1(Z) can also be taken as the definition of the symmetric Gini covariance between X
and Y . Indeed,

covg(X,Y ) = 2EXR2(Z) = 2E(X1E
[ Y1 − Y2

||Z1 − Z2||
∣∣Z1]) = 2EX1

Y1 − Y2

||Z1 − Z2||

= −2EX2
Y1 − Y2

||Z1 − Z2||
= E[

(X1 −X2)(Y1 − Y2)

||Z1 − Z2||
] = covg(Y,X), (3)

where Z1 = (X1, Y1)T and Z2 = (X2, Y2)T are independent copies of Z = (X,Y )T from H .
In addition, we define

covg(X,X) := 2EXR1(Z) = E
(X1 −X2)2

‖Z1 − Z2‖
; (4)

covg(Y, Y ) := 2EY R2(Z) = E
(Y1 − Y2)2

‖Z1 − Z2‖
. (5)

We see that not only the Gini covariance between X and Y but also Gini variances of X and
of Y are defined jointly through the spatial rank. Dang, Sang and Weatherall (2015) considered
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the Gini covariance matrix Σg = 2EZrT (Z). The covariances defined above in (2), (4) and (5)
are elements of Σg for two dimensional random vectors. Rather than the assumption on a finite
second moment in the usual covariance and variance, the Gini counterparts assume only the first
moment, hence being more suitable for heavy-tailed distributions. A related covariance matrix is
spatial sign covariance matrix (SSCM), which requires a location parameter to be known but no
assumption on moments (Visuri, Koivunen and Oja, 2000).

Particularly, if Z is a one dimensional random variable, we have covg(Z,Z) = E|Z1 − Z2|,
which reduces to GMD. In this sense, we may view the symmetric Gini covariance as a direct
generalization of GMD to two variables.

2.3. Symmetric Gini correlation
Using the symmetric Gini covariance defined by (2), we propose a symmetric Gini correlation
coefficient as follows.

Definition 2. Z = (X,Y )T is a bivariate random vector from the distribution H with finite
first moment and non-degenerate marginal distributions, then the symmetric Gini correlation
between X and Y is

ρg(X,Y ) :=
covg(X,Y )√

covg(X,X)
√

covg(Y, Y )
=

EXR2(Z)√
EXR1(Z)

√
EY R2(Z)

. (6)

Theorem 1. For a bivariate random vector (X,Y )T from H with finite first moment, ρg has
the following properties:

1. ρg(X,Y ) = ρg(Y,X).
2. −1 ≤ ρg(X,Y ) ≤ 1.
3. If X , Y are independent, then ρg(X,Y ) = 0.
4. If Y = aX + b and a 6= 0, then ρg = sgn(a).
5. ρg(aX + b, aY + d) = ρg(X,Y ) for any constants b, d and a 6= 0. Measure ρg is sen-

sitive to a heterogeneous change, i.e., ρg(aX, cY ) 6= ρg(X,Y ) for a 6= c. In particular,
ρg(X,Y ) = −ρg(aX,−aY ) = −ρg(−aX, aY ).

The proof is placed in the Appendix. Theorem 1 shows that the symmetric Gini correlation
has all properties of Pearson correlation coefficient except for Property 5. It loses the invariance
property under heterogeneous changes because of the Euclidean norm in the spatial rank func-
tion. To overcome this drawback, we give the affine invariant version of the ρg in Section 5.
Comparing with Pearson correlation, as we will see in Section 3, the Gini correlation is more
robust in terms of the influence function.

2.4. Symmetric Gini correlation for elliptical distributions
The relationship between Kendall’s τ and the linear correlation coefficient ρ, τ = 2/π arcsin(ρ),
holds for all elliptical distributions. So ρ = sin(πτ/2) provides a robust estimation method for
ρ by estimating τ (Lindskog et al., 2003). This motivates us to explore the relationship between
the symmetric Gini correlation ρg and the linear correlation coefficient ρ under elliptical distri-
butions.

A d-dimensional continuous random vector Z has an elliptical distribution if its density func-
tion is of the form

f(z|µ,Σ) = |Σ|−1/2g{(z− µ)TΣ−1(z− µ)}, (7)
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where Σ is the scatter matrix, µ is the location parameter and the nonnegative function g is the
density generating function. An important property for the elliptical distribution is that the non-
negative random variable R = ||Σ−1/2(Z− µ)|| is independent of U = {Σ−1/2(Z− µ)}/R,
which is uniformly distributed on the unit sphere. When d = 1, the class of elliptical distribu-
tions coincides with the location-scale class. For d = 2, let Z = (X,Y )T and Σij be the (i, j)
element of Σ, then the linear correlation coefficient of X and Y is ρ = ρ(X,Y ) := Σ12√

Σ11Σ22
. If

the second moment of Z exists, then the scatter parameter Σ is proportional to the covariance
matrix. Thus the Pearson correlation ρp is well defined and is equal to the parameter ρ in the
elliptical distributions. If Σ11 = Σ22 = σ2, we say X and Y are homogeneous, and Σ can then

be written as Σ = σ2

(
1 ρ

ρ 1

)
. In this case, if ρ = ±1, Σ is singular and the distribution reduces

to an one-dimensional distribution.
The following theorem states the relationship between ρg and ρ under elliptical distributions.

Theorem 2. If Z = (X,Y )T has an elliptical distribution H with finite first moment and the

scatter matrix Σ = σ2

(
1 ρ

ρ 1

)
, then we have

ρg = k(ρ) =


ρ ρ = 0,±1,

1

ρ
+
ρ− 1

ρ

EK( 2ρ
ρ+1 )

EE( 2ρ
ρ+1 )

, otherwise,
(8)

where

EK(x) =

∫ π/2

0

1√
1− x2 sin2 θ

dθ and EE(x) =

∫ π/2

0

√
1− x2 sin2 θ dθ

are the complete elliptic integral of the first kind and the second kind, respectively.

The relationship (8) holds only for Σ with Σ11 = Σ22 because of the loss of invariance
property of ρg under the heterogeneous changes (Theorem 1). Note that for any elliptical distri-
bution, the regular Gini correlations are equal to ρ. Schechtman and Yitzhaki (1987) proved that
γ(X,Y ) = γ(Y,X) = ρ for bivariate normal distributions, but their proof can be modified for
all elliptical distributions. Based on the spatial sign covariance matrix, Dürre, Vogel and Fried
(2015) considered a spatial sign correlation coefficient, which equals to ρ for elliptical distribu-
tions.

Figure 1 plots the proposed symmetric Gini correlation ρg as function of ρ under homoge-
neous elliptical distributions with finite second moment. In comparison, we also plot Pearson ρp
and Kendall’s τ against ρ. All correlations are increasing in ρ. It is clear that |τ | < |ρg| < |ρp| =
|ρ|.

With (8), the estimate ρ̂g of ρg can be corrected to ensure Fisher consistency by using the
inversion transformation k−1(ρ̂g), denoted as ρ̂g . In the next section, we study the influence
function of ρg , which can be used to evaluate robustness and efficiency of the estimators ρ̂g in
any distribution and that of ρ̂g under elliptical distributions.

3. INFLUENCE FUNCTION

The influence function (IF) introduced by Hampel (1974) is now a standard tool in robust statis-
tics for measuring effects on estimators due to infinitesimal perturbations of sample distribution
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FIGURE 1: Pearson ρp, Kendall’s τ and symmetric Gini ρg correlation coefficients versus ρ, the correlation
parameter of homogeneous elliptical distributions with finite second moment.

functions (Hampel et al., 1986). For a cdf H on Rd and a functional T : H 7→ T (H) ∈ Rm with

m ≥ 1, the IF of T at H is defined as IF(z;T,H) = lim
ε↓0

T ((1− ε)H + εδz)− T (H)

ε
, z ∈

Rd, where δz denotes the point mass distribution at z. Under regularity conditions on T (Hampel
et al., 1986; Serfling, 1980), we have EH{IF(Z;T,H)} = 0 and the von Mises expansion

T (Hn)− T (H) =
1

n

n∑
i=1

IF(zi;T,H) + op(n
−1/2), (9)

whereHn denotes the empirical distribution based on sample z1,...,zn. This representation shows
the connection of the IF with robustness of T , observation by observation. Furthermore, (9) yields
asymptotic m-variate normality of T (Hn),

√
n(T (Hn)− T (H))

d→ N(0,EH(IF(Z;T,H)IF(Z;T,H)T ) as n→∞. (10)

To find the influence function of the symmetric Gini correlation defined in (6),
let T1(H) = 2EXR1(Z), T2(H) = 2EXR2(Z), T3(H) = 2EY R2(Z) and h(t1, t2, t3) =
t2/
√
t1t3. Then ρg = T (H) = h(T1, T2, T3). Denote the influence function of Ti as Li(x, y) =

IF((x, y)T ;Ti, H) for i = 1, 2, 3.
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Theorem 3. For any distribution H with finite first moment, the influence function of ρg =
T (H) is given by

IF((x, y)T ; ρg, H) =− ρg
2

(
L1(x, y)

T1
− 2L2(x, y)

T2
+
L3(x, y)

T3

)
=− ρg

2

(
1

T1

∫
2(x− x1)2√

(x− x1)2 + (y − y1)2
dH(x1, y1)

− 1

T2

∫
4(x− x1)(y − y1)√

(x− x1)2 + (y − y1)2
dH(x1, y1)

+
1

T3

∫
2(y − y1)2√

(x− x1)2 + (y − y1)2
dH(x1, y1)

)
.

Note that each of Li(x, y) is approximately linear in x or y. Comparing with the quadratic effects
in the Pearson’s correlation coefficient (Devlin, Gnanadesikan and Kettering, 1975),

IF((x, y)T ; ρp, H) =
(x− µX)(y − µY )

σXσY
− 1

2
ρ

[
(x− µX)2

σ2
X

+
(y − µY )2

σ2
Y

]
,

ρg is more robust than the Pearson correlation. However, ρg is not as robust as Kendall’s τ
correlation since the influence function of ρg is unbounded. Kendall’s τ correlation has a bounded
influence function (Croux and Dehon, 2010), which is IF((x, y)T ; τ,H) = 2{2PH [(x−X)(y −
Y ) > 0]− 1− τ}. In this sense, ρg is more robust than ρp but less robust than τ .

IF of ρp IF of ρg IF of τ

FIGURE 2: Influence functions of correlation correlations ρp, ρg and τ for the bivariate normal distribution
with µx = µy = 0, σx = σy = 1 and ρ = 0.5.

Figure 2 displays the influence function of each correlation coefficient for the bivariate nor-
mal distribution with µX = µY = 0, σX = σY = 1 and ρ = 0.5. Note that scales of the value of
the influence functions in the three plots are quite different.

4. ESTIMATION

Let zi = (xi, yi)
T , and Z = (z1, z2, ..., zn) be a random sample from a continuous distribution

H with an empirical distribution Hn. Replacing H in (6) with Hn, we have the sample counter-
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part of the symmetric Gini correlation coefficient ρg(Hn) = ρ̂g:

ρ̂g =

∑
1≤i<j≤n

(xi−xj)(yi−yj)√
(xi−xj)2+(yi−yj)2√∑

1≤i<j≤n
(xi−xj)2√

(xi−xj)2+(yi−yj)2

√∑
1≤i<j≤n

(yi−yj)2√
(xi−xj)2+(yi−yj)2

.

Using the same notations in Section 3, we have the following central limit theorem of the
sample symmetric Gini correlation ρ̂g .

Theorem 4. Let z1, z2, ..., zn be a random sample from 2-dimensional distribution H with
finite second moment. Then ρ̂g is an unbiased,

√
n-consistent estimator of ρg. Furthermore,

√
n(ρ̂g − ρg)

d→ N(0, vg) as n→∞, where

vg = E[IF((X,Y )T , ρg, H)]2 =
ρ2
g

4

(
1

T 2
1

E[L2
1(X,Y )] +

4

T 2
2

E[L2
2(X,Y )]

+
1

T 2
3

E[L2
3(X,Y )]− 4

T1T2
EL1(X,Y )L2(X,Y ) +

2

T1T3
EL1(X,Y )L3(X,Y )

− 4

T2T3
EL2(X,Y )L3(X,Y )

)
.

Although (10) implies Theorem 4, it is hard to check regularity conditions for the von Mises
expansion (9). Instead, we prove it in the Appendix using the multivariate delta method and the
asymptotic normality of the sample Gini covariance matrix, which is based on the U -statistics
theory (Dang et al., 2015).

For an elliptical distribution H , Theorem 2 shows that ρ̂g is not a Fisher consistent estimator
of ρ. We need to consider the inverse transformation ρ̂g = k−1(ρ̂g), where the function k is given
in (8). Applying the delta method, we obtain the

√
n-consistency of estimator ρ̂g for ρ.

Theorem 5. Let z1, z2, ..., zn be a sample from elliptical distribution H with finite second

moment and Σ = σ2

(
1 ρ

ρ 1

)
. Then ρ̂g = k−1(ρ̂g) is unbiased and a

√
n-consistent estimator

of ρ. Moreover,
√
n(ρ̂g − ρ)

d→ N(0, [1/k′(ρ)]2vg) as n→∞, where the function k is given in
(8), vg is given in Theorem 4, and k′(ρ) is

k′(ρ) =
−3(ρ+ 1)EE2( 2ρ

ρ+1 ) + 4EE( 2ρ
ρ+1 )EK( 2ρ

ρ+1 ) + (ρ− 1)EK2( 2ρ
ρ+1 ))

2(ρ+ 1)ρ2EE2( 2ρ
ρ+1 )

.

Theorem 5 provides an estimator based on ρ̂g for the correlation parameter for elliptical
distributions. The asymptotic variance [k′(ρ)]−2vg can be used to evaluate asymptotic efficiency
of ρ̂g .

4.1. Asymptotic efficiency
To compare relative efficiency, we present the asymptotic variances (ASV) of four estimators of
ρ including Pearson’s estimator ρ̂p, ρ̂g , the regular Gini correlation estimator, and the estimator
through Kendall’s τ estimator.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:
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Witting and Müller-Funk (1995) established asymptotic normality for the regular sample
Pearson correlation coefficient ρ̂p:

√
n(ρ̂p − ρ)

d→ N(0, vp) as n→∞,

where

vp = (1 +
ρ2

2
)
σ22

σ20σ02
+
ρ2

4
(
σ40

σ2
20

+
σ04

σ2
02

− 4σ31

σ11σ20
− 4σ13

σ11σ02
),

and σkl = E[(X − EX)k(Y − EY )l]. The Pearson correlation estimator requires a finite fourth
moment on the distribution to evaluate its asymptotic variance. For bivariate normal distributions,
the asymptotic variance vp simplifies to (1− ρ2)2.

An estimator ρ̂γ of the regular Gini correlation γ(X,Y ) is

ρ̂γ =

(
n
2

)−1∑
1≤i<j≤n h1(zi, zj)(

n
2

)−1∑
1≤i<j≤n h2(zi, zj)

,

where

h1(z1, z2) = [(x1 − x2)I(y1 > y2) + (x2 − x1)I(y2 > y1)]/4

and h2(z1, z2) = |x1 − x2|/4. Using U-statistic theory, Schechtman and Yitzhak (1987) pro-
vided the asymptotic normality:

√
n(ρ̂γ − ργ)

d→ N(0, vγ) as n→∞,

with

vγ = (4/θ2
2)ζ1(θ1) + (4θ2

1/θ
4
2)ζ2(θ2)− (8θ1/θ

3
2)ζ3(θ1, θ2),

where

θ1 = cov(X,G(Y )), θ2 = cov(X,F (X)),

ζ1(θ1) = Ez1 {Ez2 [h1(Z1,Z2)]}2 − θ2
1,

ζ2(θ2) = Ez1
{Ez2

[h2(Z1,Z2)]}2 − θ2
2

and

ζ3(θ1, θ2) = Ez1
{Ez2

[h1(Z1,Z2)]Ez2
[h2(Z1,Z2)]} − θ1θ2.

Under elliptical distributions, γ(X,Y ) = γ(Y,X) = ρ, hence the asymptotic variance of ρ̂γ is
vγ . For a normal distribution, Xu et al. (2010) provided an explicit formula of vγ , given by
vγ = π/3 + (π/3 + 4

√
3)ρ2 − 4ρ arcsin(ρ/2)− 4ρ2

√
4− ρ2.

Borovskikh (1996) presented the asymptotic normality of the estimator τ̂ :

√
n(τ̂ − τ)

d→ N(0, vτ ) as n→∞,
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with

vτ = 4E{E2
z1

(sgn[(X2 −X1)(Y2 − Y1)])} − 4E2{sgn[(X2 −X1)(Y2 − Y1)]}.

Applying the delta method to ρ̂τ = sin(πτ̂/2), we obtain the asymptotic variance of ρ̂τ to be
π2

4 (1− ρ2)vτ . Under a normal distribution, the asymptotic variance of ρ̂τ is π2(1− ρ2)( 1
9 −

4
π2 arcsin2(ρ2 )) (Croux and Dehon, 2010).

We compare asymptotic efficiency of the four estimators ρ̂g , ρ̂γ , ρ̂τ and ρ̂p under three bivari-
ate elliptical distributions (7) with different fatness on the tail regions: the normal distributions
with g(t) = 1

2π e
−t/2; the t-distributions with g(t) = 1

2π (1 + t/ν)−ν/2−1, where ν is the degree
of freedom; and the Kotz type distribution with g(t) = 1

2π e
−
√
t. The normal distribution is the

limiting distribution of the t-distributions as ν →∞. The Kotz type distribution is a bivariate
generalization of the Laplace distribution with the tail region fatness between that of the normal
and t distributions (Fang, Kotz and Hg, 1987). We consider only elliptical distributions because
all four estimators ρ̂g , ρ̂γ , ρ̂τ and ρ̂p are Fisher consistent for parameter ρ. The estimators for
non-elliptical distributions may estimate different quantities, resulting in their asymptotical vari-
ances incomparable.

TABLE 1: Asymptotic relative efficiencies (ARE) of estimators ρ̂g , ρ̂γ and ρ̂τ relative to ρ̂p for different
distributions, with asymptotic variance (ASV(ρ̂p)) of Pearson estimator ρ̂p.

Distribution ARE(ρ̂g, ρ̂p) ARE(ρ̂γ , ρ̂p) ARE(ρ̂τ , ρ̂p) ASV(ρ̂p)

ρ = 0.1 0.9321 0.9558 0.9125 0.9816

Normal ρ = 0.5 0.9769 0.9398 0.8925 0.5631

ρ = 0.9 0.9601 0.9004 0.8439 0.0361

ρ = 0.1 1.0182 1.0304 1.0146 1.1558

t(15) ρ = 0.5 1.0560 0.9852 0.9896 0.6643

ρ = 0.9 1.0289 0.9468 0.8804 0.0427

ρ = 0.1 2.0095 1.9502 2.2586 2.8800

t(5) ρ = 0.5 1.9795 1.7666 2.1060 1.5961

ρ = 0.9 1.8629 1.5346 1.7940 0.1019

ρ = 0.1 1.2081 1.1385 1.2171 1.6382

Kotz ρ = 0.5 1.1850 1.0854 1.1510 0.9378

ρ = 0.9 1.1599 0.9789 1.0256 0.0602

Without loss of generality, we consider only cases with ρ > 0. Listed in Table 1 are asymp-
totic variances (ASV) of Pearson estimator ρ̂p, and asymptotic relative efficiencies (ARE) of es-
timators ρ̂g , ρ̂γ and ρ̂τ relative to ρ̂p for different elliptical distributions under the homogeneous
assumption, where the asymptotic relative efficiency of an estimator with respect to another is
defined as ARE(ρ̂1, ρ̂2) = ASV(ρ̂2)/ASV(ρ̂1). The asymptotic variance of each estimator is ob-
tained based on a combination of numeric integration and the Monte Carlo simulation.

Table 1 shows that the asymptotic variances of ρ̂p, ρ̂g , ρ̂γ and ρ̂τ all decrease as ρ increases.
When ρ = 1, every estimator is equal to 1 without any estimation error. Asymptotic variances
increase for t distributions as the degrees of freedom ν decreases. Under normal distributions,
the Pearson correlation estimator is the maximum likelihood estimator of ρ, thus is most efficient
asymptotically. The symmetric Gini estimator ρ̂g is high in efficiency with ARE’s greater than
93%; it is more efficient than Kendall’s estimator ρ̂τ . For heavy-tailed distributions, the sym-
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metric Gini estimator is more efficient than Pearson’s estimator ρ̂p. The AREs of the symmetric
Gini estimator are close to those of Kendall’s estimator ρ̂τ for Kotz samples. Comparing with
the regular Gini correlation estimator, the proposed measure has higher efficiency for all cases
except for ρ = 0.1 under normal and t(15) distributions, in which the efficiency is about 2.4%
and 1.2% lower. These results may be explained by that the joint spatial rank used in ρ̂g takes
more dependence information than the marginal rank used in ρ̂γ .

In summary, the proposed symmetric Gini estimator has nice asymptotic behavior that well
balances between efficiency and robustness. It is more efficient than the regular Gini, which is
also symmetric under elliptical distributions.

4.2. Finite sample efficiency
We conduct a small simulation to study the finite sample efficiencies of the correlation estimators
for the symmetric Gini, regular Gini, Kendall’s τ and Pearson correlations. M = 3000 samples
of two different sample sizes, n = 30, 300, are drawn from t-distributions with 1, 3, 5, 15 and
∞ degrees of freedoms and from the Kotz distribution. We use R Package “mnormt” to gen-
erate samples from multivariate t and normal distributions (referred as t(∞) in Table 2). For
the Kotz sample, we first generate uniformly distributed random vectors on the unit circle by
u = (cos θ, sin θ)T with θ in [0, 2π], then generate r from a Gamma distribution with α = 2
(the shape parameter) and β = 1 (the scale parameter) and hence Σ1/2ru + µ is a sample from
bivariate Kotz(µ,Σ). For more details, see Dang et al. (2015).

For each sample m, each estimator ρ̂(m) is calculated and the root of mean squared error
(RMSE) of the estimator ρ̂ is computed as

RMSE(ρ̂) =

√√√√ 1

M

M∑
m=1

(ρ̂(m) − ρ)2.

The procedure is repeated 100 times. In Table 2, we report the mean and standard deviation (in
parentheses) of

√
nRMSEs of correlation estimators ρ̂g , ρ̂γ , ρ̂τ and ρ̂p when the scatter matrix is

homogeneous with Σ = σ2

(
1 ρ

ρ 1

)
. The case of n =∞ corresponds to the asymptotic standard

deviation of each estimator that can be obtained from Table 1. Since ρ̂g cannot be given explicitly
due to the inverse transformation involved in ρ̂g = k−1(ρ̂g), we use a numerical way to obtain
ρ̂g by creating a correspondence between s and t, where s = k(t) and t is a very fine grid on
[0, 1]. ρ̂g is computed by using R package “ICSNP” for spatial.rank function.

In Table 2, the
√
nRMSEs demonstrate an increasing trend as ρ decreases or as the degree of

freedom ν decreases for t distributions. For n = 300, the behavior of each estimator is similar
to its asymptotic efficiency behavior. For example, for n = 300 and ρ = 0.5 under the normal
distribution, the

√
nRMSE of ρ̂p is 0.7534 close to the asymptotic standard deviation 0.7504. We

include heavy-tailed t(1) and t(3) distributions in the simulation to demonstrate finite sample be-
havior of Pearson and Gini estimators when their asymptotic variances may not exist.

√
nRMSE

of ρ̂p is about twice as that of ρ̂g for n = 300 in both t(1) and t(3) distributions. For t(1) dis-
tribution, ρ̂τ is much better than others in terms of

√
nRMSE. When the sample size is small

(n = 30), ρ̂g performs the best. The
√
nRMSEs of ρ̂g are smaller than that of ρ̂τ even under

heavy-tailed t(3) distribution. ρ̂g has a smaller
√
nRMSE than the Pearson correlation estimator

for the normal distribution with ρ = 0.1 and all other distributions. The symmetric Gini estima-
tor ρ̂g has smaller

√
nRMSE than the regular Gini estimator ρ̂γ for all cases we consider. The

simulation demonstrates superior finite sample behavior of the proposed estimator.
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TABLE 2: The mean and standard deviation (in parentheses) of
√
nRMSE of ρ̂g , ρ̂γ , ρ̂τ and ρ̂p under

different distributions when the scatter matrix is homogeneous.

Dist ρ n
√
nRMSE(ρ̂g)

√
nRMSE(ρ̂γ)

√
nRMSE(ρ̂τ )

√
nRMSE(ρ̂p)

ρ = 0.1 n = 30 0.7767 (.0115) 1.0418 (.0115) 1.0785 (.0120) 1.0095 (.0120)

n = 300 0.9648 (.0104) 1.0184 (.0121) 1.0427 (.0139) 0.9925 (.0121)

t(∞) ρ = 0.5 n = 30 0.7887 (.0110) 0.8150 (.0115) 0.8517 (.0126) 0.7827 (.0115)

n = 300 0.7638 (.0087) 0.7777 (.0104) 0.8002 (.0104) 0.7534 (.0104)

ρ = 0.9 n = 30 0.2147 (.0044) 0.2306 (.0044) 0.2541 (.0049) 0.2103 (.0044)

n = 300 0.1957 (.0017) 0.2026 (.0035) 0.2113 (.0035) 0.1923 (.0017)

ρ = 0.1 n = 30 0.8013 (.0120) 1.0828 (.0120) 1.1026 (.0115) 1.0735 (.0115)

n = 300 1.0011 (.0104) 1.0669 (.0121) 1.0721 (.0139) 1.0756 (.0121)

t(15) ρ = 0.5 n = 30 0.8177 (.0115) 0.8506 (.0126) 0.8731 (.0131) 0.8347 (.0126)

n = 300 0.7985 (.0104) 0.8227 (.0104) 0.8279 (.0104) 0.8193 (.0104)

ρ = 0.9 n = 30 0.2251 (.0044) 0.2432 (.0044 ) 0.2635 (.0164) 0.2262 (.0044)

n = 300 0.2044 (.0035) 0.2165 (.0035) 0.2200 (.0035) 0.2078 (.0035)

ρ = 0.1 n = 30 0.8698 (.0137) 1.2083 (.0126) 1.1562 (.0131) 1.2987 (.0137)

n = 300 1.1085 (.0121) 1.2246 (.0156) 1.1310 (.0139) 1.5155 (.0242)

t(5) ρ = 0.5 n = 30 0.9032 (.0110) 0.9580 (.0126) 0.9202 (.0126) 1.0221 (.0159)

n = 300 0.9007 (.0121) 0.9492 (.0121) 0.8764 (.0121) 1.1535 (.0208)

ρ = 0.9 n = 30 0.2569 (.0164) 0.2859 (.0066) 0.2832 (.0164) 0.2908 (.0088)

n = 300 0.2338 (.0069) 0.2615 (.0035) 0.2408 (.0069) 0.2996 (.0087)

ρ = 0.1 n = 30 0.9706 (.0137) 1.3923 (.0170) 1.2050 (.0142) 1.6459 (.0214)

n = 300 1.2921 (.0156) 1.5329 (.0191) 1.1865 (.0156) 2.7782 (.0554)

t(3) ρ = 0.5 n = 30 1.0231 (.0131) 1.1201 (.0170) 0.9651 (.0148) 1.3343 (.0246)

n = 300 1.1068 (.0173) 1.2142 (.0208) 0.9284 (.0121) 2.1876 (.0675)

ρ = 0.9 n = 30 0.3127 (.0104) 0.3642 (.0131) 0.3051 (.0066) 0.4289 (.0236)

n = 300 0.2944 (.0104) 0.3672 (.0173) 0.2615 (.0035) 0.6564 (.0658)

ρ = 0.1 n = 30 1.7418 (.0301) 2.7222 (.0285 ) 1.3704 (.0170) 3.3104 (.0279)

n = 300 4.3423 (.0814) 6.7879 (.0918) 1.3735 (.0173) 10.256 (.0918)

t(1) ρ = 0.5 n = 30 1.6706 (.0153) 2.3892 (.0361) 1.1184 (.0164) 2.9687 (.0466)

n = 300 4.2574 (.0485) 5.9357 (.1057) 1.0999 (.0156) 9.1781 (.1472)

ρ = 0.9 n = 30 0.9065 (.0361) 1.2083 (.0586) 0.4004 (.0088) 1.5917 (.0728)

n = 300 2.1616 (.1074) 2.9947 (.1784) 0.3464 (.0052) 4.9589 (.2182)

ρ = 0.1 n = 30 0.8692 (.0126) 1.2083 (.0148) 1.1842 (.0148) 1.2389 (.0148)

n = 300 1.0947 (.0139) 1.2055 (.0173) 1.1639 (.0156) 1.2713 (.0173)

Kotz ρ = 0.5 n = 30 0.9037 (.0137) 0.9569 (.0148) 0.9465 (.0142) 0.9711 (.0170)

n = 300 0.8903 (.0121) 0.9318 (.0121) 0.9059 (.0121) 0.9665 (.0121)

ρ = 0.9 n = 30 0.2563 (.0164) 0.2832 (.0164) 0.2952 (.0060) 0.2706 (.0060)

n = 300 0.2304 (.0035) 0.2529 (.0035) 0.2494 (.0035) 0.2477 (.0035)
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5. THE AFFINE INVARIANT VERSION OF SYMMETRIC GINI CORRELATION

The proposed ρg in Section 2.3 is only invariant under translation and homogeneous change. We
now provide an affine invariant version of ρg , denoted as ρG, in order to gain the invariance prop-
erty under heterogeneous changes. This is based on the affine equivariant (AE) Gini covariance
matrix ΣG proposed by Dang et al. (2015).

The basic idea of ΣG is that the Gini covariance matrix on standardized data should be
proportional to the identity matrix I. That is, E(Σ

−1/2
G Z)rT (Σ

−1/2
G Z) = cI,where c is a positive

constant. In other words, the AE version of the Gini covariance matrix is the solution of

E
Σ
−1/2
G (Z1 − Z2)(Z1 − Z2)TΣ

−1/2
G√

(Z1 − Z2)TΣ−1
G (Z1 − Z2)

= c(H)I, (11)

where c(H) is a constant depending on H . In this way, the matrix valued functional ΣG(·) is
a scatter matrix in the sense that for any nonsingular matrix A and vector b, ΣG(AZ + b) =
AΣG(Z)AT .

Let Z = (X,Y )T be a bivariate random vector with distribution function H and ΣG :=(
G11 G12

G21 G22

)
be the solution of (11). Then the affine invariant version of ρg is defined as

ρG(X,Y ) = G21√
G11

√
G22

. Since the value of c(H) in (11) does not change the value of ρG(X,Y ),
without loss of generality, assume c(H) = 1.

Theorem 6. For any bivariate random vector Z = (X,Y )T having an elliptical distribution
H with finite first moment, ρG(aX, bY ) = sgn(ab)ρG(X,Y ) for any ab 6= 0.

Remark 1. Under elliptical distributions, ρG = ρ. This is true since ΣG = Σ for elliptical
distributions.

When a random sample z1, z2, ..., zn is available, replacing H with its empirical distribution
Hn in (11) yields the sample counterpart Σ̂G, and hence the sample ρ̂G is obtained accordingly.
We obtain Σ̂G by a common re-weighted iterative algorithm:

Σ̂
(t+1)
G ←− 2

n(n− 1)

∑
1≤i<j≤n

(zi − zj)(zi − zj)
T√

(zi − zj)T (Σ̂
(t)
G )−1(zi − zj)

.

The initial value can take Σ̂
(0)
G = Id. The iteration stops when ‖Σ̂(t+1)

G − Σ̂
(t)
G ‖ < ε for a pre-

specified number ε > 0, where ‖ · ‖ can take any matrix norm.
Next, we study finite sample efficiency of ρ̂G under the same simulation setting as in Section

4.2 except that the scatter matrix is heterogeneous. The scatter matrix of each elliptical distribu-

tion is Σ =

(
1 2ρ

2ρ 4

)
. Table 3 reports

√
nRMSE of correlation estimators ρ̂G, ρ̂γ , ρ̂τ and ρ̂p.

The numbers in the last three columns are very close to those in Table 2 because ρ̂γ , ρ̂τ and
ρ̂p are affine invariant.

√
nRMSEs of ρ̂G are also close to

√
nRMSE of ρ̂g for n = 300, but are

larger than those for n = 30 and ρ = 0.1. The loss of finite sample efficiency of ρ̂G for a small
size under low dependence ρ is probably caused by the iterative algorithm in the computation
of ρ̂G. The problem is even worse in t(1) distribution where the first moment does not exist.
As the value of ρ increases,

√
nRMSE of each estimator decreases for all distributions. Under

Kotz and t(15) distributions, the affine invariant Gini estimator ρ̂G is the most efficient; under
t(5) distribution, the

√
nRMSE of ρ̂G is smaller than that of Kendall’s ρ̂τ when ρ = 0.9. For
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TABLE 3: The mean and standard deviation (in parentheses) of
√
nRMSE of ρ̂G, ρ̂γ , ρ̂τ and ρ̂p under

different distributions with a heterogeneous scatter matrix.

Dist ρ n
√
nRMSE(ρ̂G)

√
nRMSE(ρ̂γ)

√
nRMSE(ρ̂τ )

√
nRMSE(ρ̂p)

ρ = 0.1 n = 30 1.0171 (.0126) 1.0401 (.0126) 1.0768 (.0131) 1.0073 (.0120)

n = 300 1.0011 (.0139) 1.0133 (.0139) 1.0392 (.0156) 0.9890 (.0139)

t(∞) ρ = 0.5 n = 30 0.7887 (.0120) 0.8123 (.0126) 0.8501 (.0137) 0.7800 (.0120)

n = 300 0.7621 (.0104) 0.7794 (.0104) 0.8002 (.0104) 0.7534 (.0104)

ρ = 0.9 n = 30 0.2125 (.0022) 0.2306 (.0044) 0.2541 (.0049) 0.2098 (.0044)

n = 300 0.1940 (.0035) 0.2026 (.0035) 0.2113 (.0035) 0.1923 (.0017)

ρ = 0.1 n = 30 1.0582 (.0126) 1.0839 (.0131) 1.1042 (.0126) 1.0741 (.0126)

n = 300 1.0496 (.0121) 1.0687 (.0121) 1.0739 (.0121) 1.0756 (.0121)

t(15) ρ = 0.5 n = 30 0.8221 (.0099) 0.8506 (.0099) 0.8731 (.0110) 0.8353 (.0099)

n = 300 0.7967 (.0104) 0.8210 (.0121) 0.8279 (.0104) 0.8175 (.0121)

ρ = 0.9 n = 30 0.2224 (.0049) 0.2437 (.0049) 0.2635 (.0060) 0.2262 (.0049)

n = 300 0.2026 (.0035) 0.2165 (.0035) 0.2200 (.0035) 0.2078 (.0035)

ρ = 0.1 n = 30 1.1727 (.0164) 1.2072 (.0148) 1.1557 (.0153) 1.2981 (.0192)

n = 300 1.1847 (.0156) 1.2246 (.0156) 1.1310 (.0139) 1.5155 (.0242)

t(5) ρ = 0.5 n = 30 0.9169 (.0120) 0.9585 (.0115) 0.9213 (.0120) 1.0226 (.0137)

n = 300 0.8989 (.0139) 0.9492 (.0139) 0.8764 (.0121) 1.1553 (.0242)

ρ = 0.9 n = 30 0.2520 (.0060) 0.2865 (.0071) 0.2832 (.0060) 0.2919 (.0110)

n = 300 0.2304 (.0035) 0.2615 (.0035) 0.2408 (.0035) 0.2979 (.0087)

ρ = 0.1 n = 30 1.3540 (.0519) 1.3918 (.0159) 1.2039 (.0142) 1.6475 (.0203)

n = 300 1.4497 (.0225) 1.5346 (.0225) 1.1847 (.0156) 2.7782 (.0606)

t(3) ρ = 0.5 n = 30 1.0670 (.0159) 1.1190 (.0170) 0.9629 (.0148) 1.3321 (.0219)

n = 300 1.1033 (.0139) 1.2090 (.0173) 0.9249 (.0121) 2.1910 (.0606)

ρ = 0.9 n = 30 0.3095 (.0099) 0.3681 (.0137) 0.3062 (.0066) 0.4376 (.0230)

n = 300 0.2841(.0069) 0.3655 (.0156) 0.2615 (.0035) 0.6461 (.0675)

ρ = 0.1 n = 30 2.7622 (.0274) 2.7244 (.0268) 1.3693 (.0192) 3.3148 (.0268)

n = 300 6.8381 (.0970) 6.7879 (.0797) 1.3770 (.0173) 10.259 (.0901)

t(1) ρ = 0.5 n = 30 2.4133 (.0433) 2.3831 (.0372) 1.1206 (.0164) 2.9643 (.0466)

n = 300 5.8768 (.1386) 5.9132 (.1178) 1.0947 (.0139) 9.1522 (.1455)

ρ = 0.9 n = 30 1.1875 (.0608) 1.2148 (.0537) 0.4009 (.0088) 1.6015 (.0635)

n = 300 2.7747 (.2148) 2.9930 (.1853) 0.3481 (.0052) 4.9727 (.2113)

ρ = 0.1 n = 30 1.1672 (.0131) 1.2066 (.0131) 1.1831 (.0142) 1.2368 (.0142)

n = 300 1.1674 (.0139) 1.2038 (.0139) 1.1605 (.0139) 1.2731 (.0156)

Kotz ρ = 0.5 n = 30 0.9136 (.0148) 0.9574 (.0148) 0.9454 (.0153) 0.9706 (.0148)

n = 300 0.8885 (.0121) 0.9336 (.0121) 0.9059 (.0121) 0.9665 (.0121)

ρ = 0.9 n = 30 0.2503 (.0049) 0.2815 (.0060) 0.2941 (.0060) 0.2684 (.0055)

n = 300 0.2269 (.0035) 0.2546 (.0035) 0.2511 (.0035) 0.2477 (.0035)
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the normal distributions, ρ̂G is almost as efficient as ρ̂p when ρ = 0.9. The affine invariant Gini
correlation estimator shows a good finite sample efficiency. Again, the proposed Gini has smaller√
nRMSEs than the regular Gini in all cases.

6. APPLICATION

For the purpose of illustration, we apply the symmetric Gini correlations to the famous Fisher’s
Iris data which is available in R. The data set consists of 50 samples from each of three species
of Iris (Setosa, Versicolor and Virginica). Four features are measured in centimeters from each
sample: sepal length (Sepal L.), sepal width (Sepal W.), petal length (Petal L.), and petal width
(Petal W.). The mean and standard deviation of each of the variables for all data and each species
data are listed in Table 4. All the three species have similar sizes in sepals. But Setosa has a
much smaller petal size than the other two species. Hence we shall study the correlation of the
variables for each Iris species.

TABLE 4: Summary Statistics of Variables in Iris Data

Mean Standard Deviation

All Setosa Vesicolor Virginica All Setosa Vesicolor Virginica

Sepal L. 5.843 5.006 5.936 6.588 0.828 0.352 0.516 0.636

Sepal W. 3.057 3.428 2.770 2.974 0.436 0.379 0.314 0.322

Petal L. 3.758 1.462 4.260 5.552 1.765 0.174 0.470 0.552

Petal W. 1.199 0.246 1.326 2.026 0.762 0.105 0.198 0.275

For each Iris species, we compute different correlation measures for all pairs of variables.
Since variations of variables are quite different, the affine equivariant version of symmetric gini
correlation estimator ρ̂G is used. For each pair of variables X and Y , we also calculate Pearson
correlation, Kendall’s τ and two regular gini correlation estimators, denoted as γ̂1,2 (γ̂(X,Y ))
and γ̂2,1 (γ̂(Y,X)). All correlation estimators are listed in Table 5.

From Table 5, we observe that comparing with other two species, Iris Setosa has high cor-
relation between sepal length and sepal width, but has low correlation between sepal length and
petal length. Versicolor has much larger correlation between petal length and petal width than the
other two species do. Virginica has the highest correlation between sepal length and petal length
among the three species.

Kendall’s τ correlation value is the smallest among all correlation estimators across all pairs
and across all species. Two regular Gini correlation estimators are quite different especially be-
tween sepal width and petal length in Iris Virginica species. The difference is as high as 0.159.
One might perform a hypothesis test on exchangeability of two variables by testing γ1,2 = γ2,1

(Schechtman, Yitzhaki and Artsev, 2007). The p-value of the test is 0.0113, which serves as a
strong evidence to reject exchangeability of two variables sepal width and petal length in Iris
Virginica. We also observe that ρ̂G and ρ̂p tend to have a same pattern across variable pairs and
across species. For example, for all six pairs of variables in Iris Setosa, ρ̂G is large or small when-
ever ρ̂p is large or small. In other words, the correlation ranking across variable pairs provided by
the Pearson correlation is the same as the ranking by the proposed symmetric Gini correlation.
However, such a pattern is not shared by any two correlations from ρ̂G, τ̂ , γ̂1,2 and γ̂2,1. Also,
values of ρ̂G are larger than values of ρ̂p in most cases.
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TABLE 5: Pearson correlation, Kendal’s τ , Affine equivariant symmetric Gini correlation and Regular Gini
correlations of variables for Iris data set.

Sepal L. Sepal L. Sepal L. Sepal W. Sepal W. Petal L.

Species Correlations & & & & & &

Sepal W. Petal L. Petal W. Petal L. Petal W. Petal W.

ρ̂p 0.743 0.267 0.278 0.178 0.233 0.332

τ̂ 0.597 0.217 0.231 0.143 0.234 0.222

Setosa ρ̂G 0.742 0.274 0.285 0.182 0.256 0.312

γ̂1,2 0.759 0.283 0.261 0.211 0.214 0.280

γ̂2,1 0.781 0.295 0.358 0.174 0.350 0.384

ρ̂p 0.526 0.754 0.546 0.561 0.664 0.787

τ̂ 0.398 0.567 0.403 0.430 0.551 0.646

Versicolor ρ̂G 0.546 0.756 0.551 0.584 0.687 0.790

γ̂1,2 0.533 0.744 0.542 0.580 0.658 0.787

γ̂2,1 0.523 0.766 0.559 0.572 0.682 0.809

ρ̂p 0.457 0.864 0.281 0.401 0.538 0.322

τ̂ 0.307 0.670 0.219 0.291 0.419 0.271

Virginica ρ̂G 0.687 0.820 0.455 0.621 0.623 0.519

γ̂1,2 0.406 0.867 0.278 0.467 0.567 0.304

γ̂2,1 0.476 0.832 0.315 0.308 0.548 0.355

7. CONCLUSION

In this paper we propose symmetrized Gini correlation ρg and study its properties. The relation-
ship between ρg and ρ is established when the scatter matrix, Σ, is homogeneous. The affine
invariant version ρG is also proposed to deal with the case when Σ is heterogeneous. Asymp-
totic normality of the proposed estimators are established. The influence function reveals that
ρg is more robust than the Pearson correlation while it is less robust than the Kendall’s τ corre-
lation. Comparing with the Pearson correlation estimator, the regular Gini correlation estimator
and the Kendall’s τ estimator of ρ, the proposed estimators balance well between efficiency and
robustness and provide an attractive option for measuring correlation. Numerical studies demon-
strate that the proposed estimators have satisfactory performance under a variety of situations.
In particular, the symmetric Gini estimators are more efficient than the regular Gini estimators.
This can be explained by the fact that the multivariate spatial rank used in the symmetrized Gini
correlations takes more dependence information than the marginal ranks in the traditional ones.

We comment that the symmetric Gini correlation ρg is not limited to elliptical distributions.
Theorems 1, 3 and 4 hold for any bivariate distribution with a finite first moment. Under ellip-
tical distributions, the linear correlation parameter ρ is well defined and all the four estimators
are Fisher consistent. Hence their asymptotical variances are comparable and can be used for
evaluating relative asymptotic efficiency among the estimators.

The proposed symmetric Gini correlation has some disadvantages. Although its formulation
is natural, the symmetric Gini loses an intuitive interpretation. It is more difficult to compute than
the Pearson correlation, especially when X and Y are heterogeneous. In that case, an iterative
scheme is required to obtain the affine invariant version of symmetric Gini correlation. When
applying the proposed measure, one may consider the trade-off among efficiency, robustness,
computation and interpretability.
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APPENDIX
Proof of Theorem 1. The first property is obvious. Hölder’s inequality implies∣∣E (X1−X2)(Y1−Y2)

‖Z1−Z2‖
∣∣ ≤√E (X1−X2)2

‖Z1−Z2‖ E
(Y1−Y2)2

‖Z1−Z2‖ and hence |ρg(X,Y )| ≤ 1.
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Let (Xi, Yi), i = 1, 2, be independent copies of (X,Y ), then covg(X,Y ) = 2EX1(Y1−Y2)
‖Z1−Z2‖ =

2E X1Y1

‖Z1−Z2‖ − 2E X1Y2

‖Z1−Z2‖ = 0 by symmetry. Hence ρg(X,Y ) = 0. If Y = aX + b, then

ρg(X,Y ) =
E (X1−X2)(Y1−Y2)

‖Z1−Z2‖√
E (X1−X2)2

‖Z1−Z2‖ E
(Y1−Y2)2

‖Z1−Z2‖

=

a√
a2+1

E|X1 −X2|
|a|√
a2+1

E|X1 −X2|
= sgn(a).

ρg(aX + b, aY + d) = ρg(X,Y ) can be obtained from

covg(aX + b, aY + d) = E
a2(X1 −X2)(Y1 − Y2)

|a|‖Z1 − Z2‖
= |a|covg(X,Y ),

covg(aX + b, aX + b) = |a|covg(X,X)

and

covg(aY + d, aY + d) = |a|covg(Y, Y ).

By (3), (4) and (5), it is easy to see the rest part of property 5. �

Proof of Theorem 2. To prove the theorem, we need a result from Dang et al. (2015). They
consider the Gini covariance matrix Σg = 2EZrT (Z). Their Theorem 2.1 states that if the scatter
matrix Σ has the spectral decomposition V ΛV T with Λ = diag(λ1, λ2), then Σg = V ΛgV

T

with Λg = diag(λg,1, λg,2) and

λg,i = c(H)E
[

λiu
2
i√

λ1u2
1 + λ2u2

2

]
, i = 1, 2 (A1)

where u = (u1, u2)T is uniformly distributed on the unit circle, λi’s are eigenvalues of Σ
and c(H) is a constant depending on the distribution H . Here the eigenvalues of Σ are λ1 =
σ2(1− ρ) and λ2 = σ2(1 + ρ), and the corresponding eigenvectors are (1,−1)T and (1, 1)T .
Consequently, ρg =

λg,2−λg,1

λg,2+λg,1
. Obviously, if ρ = ±1, either λ1 or λ2 is zero. With (A1), we have

ρg = ±1 = ρ. If ρ = 0, then λ1 = λ2, and hence we have λg,1 = λg,2 and ρg = 0 = ρ. When
|ρ| < 1 and ρ 6= 0, let u1 = cosθ and u2 = sinθ, then θ is uniformly distributed in [0, 2π]. With
(A1), we have

ρg =

∫ 2π

0
1

2π
(1−ρ) cos2 θ−(1+ρ) sin2 θ√
(1−ρ) cos2 θ+(1+ρ) sin2 θ

dθ∫ 2π

0
1

2π

√
(1− ρ) cos2 θ + (1 + ρ) sin2 θdθ

=

∫ π/2
0

ρ−cos 2θ√
1−ρ cos 2θ

dθ∫ π/2
0

√
1− ρ cos 2θdθ

=
1

ρ
+
ρ− 1

ρ

EK(2ρ/(ρ+ 1))

EE(2ρ/(ρ+ 1))
.

�
Proof of Theorem 3. Let H̃ = (1− ε)H + εδ(x,y), then

T1(H̃) = 2

∫∫
x1(x1 − x2)√

(x1 − x2)2 + (y1 − y2)2
dH̃(x2, y2)dH̃(x1, y1)

= 2(1− ε)2T1(H) + 2ε(1− ε)
∫

(x− x2)2√
(x− x2)2 + (y − y2)2

dH(x2, y2).
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We have
L1(x, y) = 2

∫
(x− x2)2√

(x− x2)2 + (y − y2)2
dH(x2, y2)− 4T1(H),

L2(x, y) = 2

∫
(x− x2)(y − y2)√

(x− x2)2 + (y − y2)2
dH(x2, y2)− 4T2(H),

L3(x, y) = 2

∫
(y − y2)2√

(x− x2)2 + (y − y2)2
dH(x2, y2)− 4T3(H).

Hence,

IF((x, y)T ; ρg, H) =

3∑
i=1

∂h

∂ti

∣∣
T
Li(x, y)

= − T2

2
√
T 3

1 T3

L1(x, y)− T2

2
√
T1T 3

3

L3(x, y) +
1√
T1T3

L2(x, y).

Replacing T2/
√
T1T3 with ρg completes the proof. �

Proof of Theorem 4. Let Σg be the Gini covariance matrix of Z = (X,Y )T and Σ̂g =(
G2
x Gxy

Gxy G2
y

)
be the sample Gini covariance matrix from sample {Zi}ni=1. Let vec(M) be the

operator that stacks columns of M to form a vector. According to the Theorem 4.1 in Dang et al.
(2015), we get

√
n(vec(Σ̂g)− vec(Σg))

d→ N4(0,V),

where V = 4E[ψ(Z)ψT (Z)], ψ(z) = vec
(
E[ (z−Z)(z−Z)T

‖z−Z‖ ]−Σg

)
. Then

√
n
{

(G2
x, Gxy, G

2
y)T − (covg(X,X), covg(X,Y ), covg(Y, Y ))T

} d→ N3(0,V∗)
with V∗ being the matrix of V deleting the third row and third column. Now, since ρ̂g =

h(G2
x, Gxy, G

2
y) = Gxy/

√
G2
xG

2
y , and the derivative of h is

ḣ(a, b, c) = −b/(2
√
ac)(1/a,−2/b, 1/c),

we have

ḣ (covg(X,X), covg(X,Y ), covg(Y, Y )) =
−ρg

2

(
1

covg(X,X)
,

−2

covg(X,Y )
,

1

covg(Y, Y )

)
denoted as B. Applying the delta method yields the asymptotic normality of ρ̂g with the asymp-
totic variance vg = BV∗BT . Working out the explicit form of vg completes the proof. �

Proof of Theorem 6. The proof is straightforward. Let A be the diagonal matrix with the diagonal
elements being a and b. Since ΣG is affine equivariant, ΣG(AZ) = AΣG(Z)AT . As a result,
ρG(aX, bY ) = abG21√

a2G11

√
b2G22

= sgn(ab)ρG(X,Y ). �
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