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Abstract
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1 Introduction

For a sequence of random variables {ξi}i∈Zd indexed by vectors in Zd, many statistical procedures produce
estimators of the type

Sn =
∑
i∈Zd

bniξi, (1)
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where {bni}i∈Zd are real numbers. To give an example, let us consider the nonlinear regression model

Y (x) = g(x) + η(x),

where g(x) is an unknown function and η(x) is the random noise. If we fix the design points {xi}i∈Γdn
, where

Γdn is a sequence of finite regions of Zd, we get

Yi = Y (xi) = g(xi) + η(xi) = g(xi) + ηi.

A nonparametric kernel estimator of g(x) is defined as

ĝn(x) =
∑
i∈Γdn

ωn,i(x)Yi (2)

with

ωn,i(x) =
K((xi − x)/hn)∑

j∈Γdn
K((xj − x)/hn)

,

where K is a kernel function and hn is a sequence of bandwidths which goes to zero as n → ∞. Define
gn(x) =

∑
i∈Γdn

ωn,i(x)g(xi); then it is clear that, ĝn(x) − gn(x) is of the type (1). Moreover, if the noise

{ηi}i∈Zd is given by a linear random field ηi =
∑
j∈Zd ajξi−j , under the conditions that the innovations

are independent and identically distributed (i.i.d.) random variables with a bounded second moment, the
estimator (2) has been well-studied in the literature, see, e.g., Tran (1990), Hallin, Lu and Tran (2004), El
Machkoui (2007), El Machkouri and Stoica (2010), and Beknazaryan, Sang and Xiao (2019).

As we shall see later, another important example of statistics of type (1) appears in the study of the
partial sums

Sn =
∑
i∈Γdn

Xi

of the versatile linear random field {Xi}i∈Zd , expressed as a linear combination

Xj =
∑
i∈Zd

aiξj−i (3)

with real coefficients {ai}i∈Zd , where Γdn is a sequence of finite regions of Zd.

Under the condition E ξ2
0 <∞, the linear random fields in the form of (3) have been intensively studied

in the literature. Among the last decade contributions, we would like to mention first that Mallik and
Woodroofe (2011) studied the CLT for the partial sums of linear random fields over rectangular regions.
Lahiri and Robinson (2016) established a CLT for the sums over dilated regions. Sang and Xiao (2018)
extended the exact moderate and large deviation limit theorems studied in Peligrad et al. (2014) from
linear processes to linear random fields. Beknazaryan, Sang and Xiao (2019) established the Cramér type
moderate deviation for the partial sums of linear random fields. Recently, Fortune, Peligrad and Sang
(2021) proved a local limit theorem under some regularity conditions for the innovations and the sampling
regions. The authors of the above research considered both short range and long range dependence cases for
linear random fields with E ξ2

0 <∞. Koul, Mimoto and Surgailis (2016) studied the goodness-of-fit test for
marginal distribution of linear random fields with long range dependance. For additional work in studying
the limit theorems of linear random fields under the condition that the innovation has finite second moment,
see, for example, the review in Lahiri and Robinson (2016) and Sang and Xiao (2019) and the references
therein.

On the other hand, a rather small number of papers treat the asymptotics of linear random fields when
the innovations do not have finite second moment, in particular, when the innovations belong to the domain
of attraction of a stable law with index 0 < α ≤ 2. In the one-dimensional case, regarding the model (1),
Shukri (1976) studied the stable limit theorem under some specified conditions on the weights {bni}i∈Z.
Astrauskas (1983) studied the limit theorem and the functional limit theorem for linear processes in (3)
in the case where the coefficients have some specific form. Davis and Resnick (1985) established a limit
theorem for the partial sums of linear processes with 0 < α < 2 when the coefficients are at least absolutely
summable. Balan, Jakubowski and Louhichi (2016) studied the functional limit theorem for linear processes
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when the coefficients are absolutely summable. McElroy and Politis (2003) studied the limit theorem for
the partial sums of linear random fields over one rectangle under the condition 1 < α < 2, the coefficients
are summable and the width of each side of the rectangle goes to infinity.

Our paper will deal with two types of results: convergence in distribution and local limit theorems for
the models (1) and (3) with innovation in the domain of attraction of a stable law with index 0 < α ≤ 2. A
local limit theorem is a more delicate limit result than the corresponding convergence in distribution result.
More specifically, based on a convergence in distribution theorem in Shukri (1976), for the model (1) we
obtain a general local limit theorem that is applicable to the situation when the innovation’s characteristic
function might not be integrable.

The model (3) is very difficult to study and, as far as we know, concerning the local limit theorem, there
is no completed work in the literature even for linear processes (i.e. d = 1 in our setting). As a matter of
fact, as mentioned above, the convergence in distribution has not been studied in its full generality and only
partial results have been developed for the convergence in distribution. For the model (3) we provide both
convergence in distribution and local limit theorem for random fields. In the case that the coefficients are
not absolutely summable, the domain of summation is a union of rectangles and our condition involves the
rate of convergence to infinite of the number of rectangles. Otherwise we only require that the normalizer
goes to infinity.

We refer to Petrov (1975), Dolgopyat (2016) and the references therein for a review on local limit
theorem of partial sums of independent random variables. It is remarkable that, in a recent paper, Fortune,
Peligrad and Sang (2021) studied the local limit theorem for linear random fields in the form of (3) under
the conditions that the innovations have mean zero and finite second moment.

The paper is organized as follows. We first introduce some preliminaries and notations in Section 2.
To prepare for the local limit theorems we present convergence in distribution results for random fields
in Section 3. Next, Section 4 contains our local limit theorems. We discuss some examples in Section 5.
Section 6 is dedicated to the proofs.

2 Notations and preliminaries

Throughout the paper we shall use the following notations. We use ι to denote
√
−1, the imaginary unit.

By ϕX(v), we denote the characteristic function of the random variable X, i.e.,

ϕX(v) = E (exp(ιvX)).

The notation⇒ is used for convergence in distribution and also for convergence in probability to a constant.
For sequences of positive constants an and bn, the notation an � bn means that an/bn is bounded; by
an � bn we mean that the ratios an/bn are bounded from below and above by positive and finite constants.
f(r) ∼ g(r) means that lim f(r)/g(r) = 1 as r → ∞ or r → 0 depending on the context. We denote the
cardinality of a set Γ by |Γ|. cα, C and Ci, 1 ≤ i ≤ 4 denote positive constants, which are independent of x,
t or n and may change values from line to line. The constant cα may depend on α.

Let {ξi}i∈Zd be i.i.d. random variables in the domain of attraction of a stable law with index 0 < α ≤ 2
and E ξ2

0 =∞. They satisfy the following condition

lim
x→∞

P(|ξ0| > x)

x−αL1(x)
= 1, (4)

where L1(x) is a slowly varying function at infinity. When 0 < α < 2,

P(ξ0 > x)

P(|ξ0| > x)
→ c+ and

P(ξ0 < −x)

P(|ξ0| > x)
→ c− as x→∞. (5)

Here 0 ≤ c+ ≤ 1 and c+ + c− = 1.

By (8.5) of Feller (1971), page 313, for 0 < α ≤ 2,

lim
x→∞

x2P(|ξ0| > x)

E (ξ2
0I(|ξ0| ≤ x))

=
2− α
α

. (6)
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Combining the two relations (4) and (6) we obtain

lim
x→∞

x2−αL1(x)

E (ξ2
0I(|ξ0| ≤ x))

=
2− α
α

.

Let
b = inf

{
x ≥ 1 : E (ξ2

0I(|ξ0| ≤ x)) > 1
}
.

For 0 < α < 2, we define

L(x) =
2− α
α

xα−2E (ξ2
0I(|ξ0| ≤ x)) for x ≥ b,

and L(x) =
2− α
α

bα−2E (ξ2
0I(|ξ0| ≤ b)) for 0 < x < b.

(7)

Also for α = 2, we define

L(x) = E (ξ2
0I(|ξ0| ≤ x)) for x ≥ b,

and L(x) = E (ξ2
0I(|ξ0| ≤ b)) for 0 < x < b.

(8)

Remark 2.1 By this definition, for all 0 < α ≤ 2, the function L(x) is slowly varying at infinity, the func-
tion x2−αL(x) is non-decreasing, continuous from the right and has left-hand limits, and limx→∞ x2−αL(x) =
∞. In addition, limx→∞ L1(x)/L(x) = 1, L(x) ≥ (max{b, x})α−2(2 − α)/α for 0 < α < 2 and in the case
α = 2, L(x) ≥ 1, limx→∞ L1(x)/L(x) = 0 and L(x) = (1 + o(1))

∫ x
0
t−1L1(t)dt as x→∞. See page 313 of

Feller (1971) and page 83 of Ibragimov and Linnik (1971).

For the main results of this paper, we assume the following condition:

Condition A : E ξ0 = 0 if 1 < α ≤ 2 and the innovation ξ0 has symmetric distribution if α = 1.

We apply the following convention throughout the paper.

Convention: For x = 0, p > 0, |x|pL(1/|x|) = 0, because L(y) is slowly varying at infinity.

Under Condition A, the characteristic function ϕξ(t) of the innovations has the form

ϕξ(t) = exp
{
− cα|t|αL(1/|t|)

(
1− ιβτ(α, t)

)}
(9)

for t in the neighborhood of zero, where cα > 0,

τ(α, t) =

{
sgnt tan

(
πα/2

)
, if α 6= 1,

0, if α = 1,

and β = c+ − c− if 0 < α < 2. Notice that τ(α, t) = 0 if α = 2. See, for example, Ibragimov and Linnik
(1971, Theorem 2.6.5) for the case α 6= 1, Aaronson and Denker (1998, Theorem 2) for α = 1.

We shall introduce some conditions on the innovations for the local limit theorem. Recall that a random
variable X does not have a lattice distribution if and only if |ϕX(t)| < 1 for all t 6= 0. On the other hand,
the Cramér condition means that lim sup|t|→∞ |ϕX(t)| < 1. It should be mentioned that X has a non-lattice
distribution whenever it satisfies the Cramér condition. The Cramér condition was also called strongly
non-lattice in Stone (1965).

For comparison purpose, let us recall some known results for linear processes. For i.i.d. random variables
{ξi}∞i=1, which satisfy conditions (4), (5) and Condition A, let σn be a sequence of positive numbers such
that

nP(|ξ1| > σnx)→ x−α as n→∞ for all x > 0 and 0 < α < 2.

The normalizing constant σn can also be defined as inf{x : P(|ξ1| > x) ≤ n−1}. In general, up to a constant
factor ((2− α)/α if 0 < α < 2, see Feller, 1971), σ2

n can be chosen to satisfy

n

σ2
n

E ξ2
1I(|ξ1| ≤ σn)→ 1, as n→∞, 0 < α ≤ 2.
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Then, by Feller (1971, p. 580), we have the following limit theorem

σ−1
n

n∑
i=1

ξi ⇒ S (10)

as n→∞, where S is an α-stable random variable with characteristic function

E (exp(ιtS)) = exp
{
− cα|t|α

(
1− ιβτ(α, t)

)}
(11)

with the same cα, β and τ(α, t) as in (9). In the sequel, we will denote the distribution function of S by
G(·).

Under the conditions (4) and (5), for one-sided linear processes Xj =
∑∞
i=0 aiξj−i, Sn =

∑n
j=1Xj , Davis

and Resnick (1985) assumed that the real coefficients satisfy∑∞

i=0
|ai|δ <∞ for some δ < α, δ ≤ 1,

and proved that

σ−1
n

(
Sn − nCn

∞∑
i=0

ai

)
⇒

( ∞∑
i=0

ai

)
S̃

as n → ∞, where Cn = 0 if 0 < α ≤ 1 and Cn = E
[
ξ1I(|ξ1| ≤ σn)

]
if 1 < α < 2, and where S̃ is a stable

random variable with index α. If
∑∞
i=0 ai = 0, then σ−1

n Sn ⇒ 0. We remark that if, in addition, Condition

A holds, then S̃ is the random variable S in (10).

3 Convergence in distribution for random fields

We mention that we can easily extend the results in Shukri (1976) to triangular arrays of random fields.

Let {cni}i∈Zd be real numbers. We shall introduce two conditions:

Condition (A1):
∑
i∈Zd
|cni|αL(1/|cni|)→ 1 as n→∞, where L(·) is defined in (7) or (8)

and

Condition (A2): ρn = supi |cni| → 0 as n→∞.

We consider a sequence {Sn} of random variables with the form Sn =
∑
i∈Zd cniξi. This model is a

specialized case of model (1) if we impose additional conditions on the coefficients {cni} such as Condition
(A1) or (A2). With a similar proof as in Theorem 1, Corollary 1 and Corollary 2 in Shukri (1976), we
formulate the following general result and mention one corollary.

Theorem 3.1 For 0 < α ≤ 2, assume that innovations {ξi}i∈Zd are i.i.d. random variables in the domain
of attraction of an α-stable law. The innovations satisfy Condition A and have characteristic function (9).
The coefficients {cni} satisfy Condition (A2) and

lim
n→∞

∑
i∈Zd,cni>0

|cni|αL(1/|cni|) = c (12)

lim
n→∞

∑
i∈Zd,cni<0

|cni|αL(1/|cni|) = 1− c, (13)

for some 0 ≤ c ≤ 1. Then the sequence Sn =
∑
i∈Zd cniξi converges weakly to an α-stable random variable

with the form c1/αS′ − (1− c)1/αS′′, where S′ and S′′ are independent α-stable random variables that have
distribution function G(·) and characteristic function (11).
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Notice that the probability distribution function of the limiting random variable in Theorem 3.1 can be
represented as G

(
c−1/α ·

)
∗
(
1 −G(−(1 − c)−1/α ·)

)
for 0 < c < 1; it is G(x) for c = 1 and 1 −G(−x) for

c = 0. The following is a direct consequence of Theorem 3.1.

Corollary 3.1 For 0 < α ≤ 2, assume that innovations {ξi}i∈Zd are i.i.d. random variables in the domain
of attraction of an α-stable law. The innovations satisfy Condition A and have characteristic function
(9). The coefficients {cni} satisfy Conditions (A1) and (A2). If either the innovations have symmetric
distribution or cni ≥ 0 for all n and i, then Sn converges weakly to a random variable that has distribution
function G(·) and characteristic function (11).

Next, for the sake of applications we shall first study the normalized form of these results and provide
more flexible sufficient conditions on the real coefficients. These results will be especially useful for analyzing
the partial sums of linear random fields {Xj}j∈Zd defined by (3), namely

Xj =
∑
i∈Zd

aiξj−i.

By the three-series theorem, the linear random field in (3) converges almost surely if and only if∑
i∈Zd
|ai|αL(1/|ai|) <∞. (14)

For the one-dimensional case d = 1, this statement can be found in Astrauskas (1983) and in Proposition
5.4 in Balan, Jakubowski and Louhichi (2016) for the case 0 < α < 2 and in the proof of Theorem 2.1 in
Peligrad and Sang (2012) for the case α = 2. The proof for the general d-dimensional linear random fields
is similar. With the same argument, the linear random field of the form (1) converges almost surely if and
only if for any n ∑

i∈Zd
|bni|αL(1/|bni|) <∞. (15)

For all the results in this paper, we assume condition (14) for linear random field in (3) and condition (15)
for linear random field in (1).

Let us normalize the linear random fields in (1). Recall the definition of L(x) in (7) and (8). For
0 < α ≤ 2 define

Bn = inf

x ≥ 1 :
∑
i∈Zd

(|bni|/x)αL(x/|bni|) ≤ 1

 . (16)

By the definition of L(x), it can be shown that Bn is a sequence of positive numbers such that∑
i∈Zd

(|bni|/Bn)αL(Bn/|bni|) = 1. (17)

See the proof in Lemma 6.1. In the case α = 2, and E ξ2
0 = ∞, Peligrad and Sang (2013) used the same

definition for the normalizer Bn for studying a triangular array of martingale differences.

For each 0 < α ≤ 2, with cni = bni/Bn, Condition (A1) always holds because of (17). Under the
assumption Bn → ∞ and {bni} are bounded uniformly on n and i, Condition (A2) holds for cni = bni/Bn
and therefore Theorem 3.1 and Corollary 3.1 hold for linear random fields (1).

If lim supn supi∈Zd |bni| = ∞, in Lemma 6.2, we shall provide sufficient conditions for Condition (A2),
which are easier to verify. We first introduce the following notations, as in Fortune, Peligrad and Sang
(2021); see also Mallik and Woodroofe (2011). For a countable collection of real numbers {bi, i ∈ Zd}, where
i = (i1, ..., id), we denote an increment in the direction k by

∆kbi1,...,ik,...,id = bi1,...,ik,...,id − bi1,...,ik−1,...,id
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and their composition is denoted by ∆ :

∆bi = ∆1 ◦∆2 ◦ ... ◦∆dbi. (18)

For a collection of sequences {bni, i ∈ Zd}, define ∆bni by (18) with bi replaced by bni and denote

∆n = sup
i∈Zd
|∆bni|.

Define
ρn = sup

i∈Zd
|bni|/Bn.

By the first inequality in Lemma 6.2, ρn → 0 as n → ∞ if ∆n = o(Bn). Together with the above results
and analysis, we have the following limit theorem for the linear model (1).

Theorem 3.2 For the linear model (1) with i.i.d. innovations {ξi}i∈Zd in the domain of attraction of an
α-stable law (0 < α ≤ 2), assume that the innovations satisfy Condition A and have characteristic function
(9), the Bn defined in (16) satisfies Bn → ∞ as n → ∞. In the case that lim supn→∞ supi∈Zd |bni| = ∞,
we additionally require that ∆n = o(Bn).

1. If conditions (12) and (13) hold for cni = bni/Bn, then Sn/Bn converges weakly to an α-stable random
variable with the form c1/αS′−(1−c)1/αS′′, where S′ and S′′ are independent α-stable random variables
that have distribution function G(·) and characteristic function (11).

2. If either the innovations have symmetric distribution or the coefficients bni ≥ 0 for all n and i, then
Sn/Bn converges weakly to an α-stable random variable with distribution function G(·).

Now we study the linear random fields (3). Let Γdn be a sequence of finite subsets of Zd, and define the
sum

Sn =
∑
j∈Γdn

Xj , (19)

where Xj is a linear random field given in (3). With the notation

bni =
∑
j∈Γdn

aj−i, (20)

the sum Sn can be expressed as an infinite linear combination of the innovations as in form (1). We still
have the definition of Bn as in (16).

Similarly, by the analysis for linear model (1) with cni = bni/Bn, Condition (A1) always holds because
of (17). In the case that 0 < α < 1, the existence of (3) implies that

∑
i∈Zd |ai| is finite and then {bni}

are bounded uniformly on n and i. Then Condition (A2) holds for cni = bni/Bn if we assume Bn → ∞.
Therefore with the condition Bn → ∞, Theorem 3.1 and Corollary 3.1 hold for the partial sums of linear
random fields (3) in (19) if 0 < α < 1 or 1 ≤ α ≤ 2 and

∑
i∈Zd |ai| <∞. We remark that, in order to have

the convergence theorems in these two cases, except assuming |Γdn| → ∞ as n → ∞ (which is due to the
requirement Bn →∞), we do not impose any other restriction on the shape of the regions Γdn.

If 1 ≤ α ≤ 2 and
∑
i∈Zd |ai| =∞, we require the index sets to be of the form

Γdn =

Jn⋃
k=1

Γdn(k), (21)

where {Γdn(k)}Jnk=1 is a pairwise disjoint family of discrete rectangles in Zd and Γdn(k) has the form

d∏
`=1

[n`(k), n`(k)] ∩ Zd

with n`(k) ≤ n`(k), where 1 ≤ ` ≤ d, 1 ≤ k ≤ Jn.
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By the second inequality in Lemma 6.2, notice that Jn = o(Bqn) implies ρn → 0 as n → ∞. Hence if
1 ≤ α ≤ 2 and

∑
i∈Zd |ai| =∞, under the condition Jn = o(Bqn), the generalization of Theorem 1, Corollary

1 and Corollary 2 in Shukri (1976), i.e., Theorem 3.1 and Corollary 3.1 hold.

In summary, we have the following limit theorem for the partial sums of linear random fields (3).

Theorem 3.3 For the linear random field (3) with i.i.d. innovations {ξi}i∈Zd in the domain of attraction of
an α-stable law (0 < α ≤ 2), let Sn be the partial sum defined in (19) and Bn be defined as in (16). Assume
that the innovations satisfy Condition A and have characteristic function (9), and Bn →∞ as n→∞. In
the case that 1 ≤ α ≤ 2 and

∑
i∈Zd |ai| = ∞, we additionally require that the sets Γdn are constructed as a

disjoint union of Jn discrete rectangles as in (21), where Jn = o(Bqn), 1/p + 1/q = 1, for some p > α if
1 ≤ α < 2, and p = 2 if α = 2. Otherwise no such restriction is required.

1. If conditions (12) and (13) hold for cni = bni/Bn, where {bni} are defined by (20), then Sn/Bn
converges weakly to an α-stable random variable with the form c1/αS′ − (1 − c)1/αS′′, where S′ and
S′′ are independent α-stable random variables that have distribution function G(·) and characteristic
function (11).

2. If either the innovations have symmetric distribution or the coefficients ai ≥ 0, for all i ∈ Zd, then
Sn/Bn converges weakly to an α-stable random variable with distribution function G(·).

Remark 3.1 In Theorem 3.3, for 1 ≤ α < 2, we can take p > α but arbitrarily close to α. Then q > 2 can
be arbitrarily close to α/(α− 1). If α = 1, the value of q can be taken arbitrarily large.

Let us compare our results with some available results in the literature.

In Theorem 2.1 of McElroy and Politis (2003), the authors only obtained the convergence theorem for
the partial sums of linear random field over one rectangle under the conditions: 1 < α < 2, the coefficients
{ai} are summable and mini ni → ∞, where ni is the size of the rectangle in the i-th dimension. In the
present paper, we do not have such a restriction on the regions of the sums provided 0 < α < 1, or 1 ≤ α ≤ 2
and

∑
i∈Zd |ai| <∞. The only condition for the weak convergence is Bn →∞ as n→∞. If 1 ≤ α ≤ 2 and∑

i∈Zd |ai| = ∞, we obtain the limit theorems for the sums over a finite number Jn of non-empty pairwise
mutually exclusive rectangles, as long as Jn = o(Bqn) for some q ≥ 2 that is related to α. For our limit
results, we do not require the coefficients to be summable if the existence of the linear random field itself
does not implies it, as in the case 0 < α < 1.

The result in Theorem 3.3 is new even in one-dimensional case. Davis and Resnick (1985) studied
the limit theorem for the partial sums Sn =

∑n
j=1Xj of one-sided linear process under the condition the

coefficients are summable. In Theorem 3.3, we do not require the coefficients to be summable. The sum is
not necessarily of the form Sn =

∑n
j=1Xj . If 1 ≤ α ≤ 2 and the coefficients are not summable, we require

that Jn = o(Bqn). Otherwise, we only require that Bn →∞ as n→∞.

4 Local limit theorems

4.1 General local limit theorem

First we prove a general local limit theorem based on characteristic functions. Let {Sn} be a sequence of
random variables and {Bn} be a sequence of positive numbers.

Theorem 4.1 Assume that

Sn
Bn
⇒ L, L has an integrable characteristic function and Bn →∞. (22)

In addition, suppose that for each D > 0

lim
T→∞

lim sup
n→∞

∫
T<|t|≤DBn

∣∣∣∣E exp

(
ιt
Sn
Bn

)∣∣∣∣ dt = 0. (23)
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Then for any continuous function m on R with compact support,

lim
n→∞

sup
u∈R

∣∣∣∣BnEm(Sn + u)− fL
(
− u

Bn

)∫
m(t)λ(dt)

∣∣∣∣ = 0, (24)

where λ is the Lebesgue measure and fL is the density of L.

Remark 4.1 Since L has an integrable characteristic function, by Billingsley (1995) page 371 we know that
the limiting distribution has a density.

Remark 4.2 By decomposing the integral in (23) into two parts, on {T ≤ |u| ≤ δBn} and {δBn ≤ |u| ≤
DBn}, and changing the variable in the second integral, we easily argue that in order to prove this theorem,
it is enough to show that for each D fixed there is 0 < δ < D such that

(D1) lim
T→∞

lim
n→∞

sup

∫
T<|t|≤Bnδ

∣∣∣∣E exp

(
ιt
Sn
Bn

)∣∣∣∣ dt = 0

and

(D2) lim
n→∞

Bn

∫
δ<|t|≤D

|E exp(ιtSn)|dt = 0.

By taking u = 0 in (24), as in the proof of the classical Portmanteau weak convergence theorem (Theorem
25.8 in Billingsley, 1995), we obtain:

Corollary 4.1 Under the conditions of Theorem 4.1 we also have for all a < b,

lim
n→∞

BnP(a < Sn ≤ b) = fL(0)(b− a).

4.2 Local limit theorem for linear random fields

We first consider the normalized form of the general linear random field (1). This field has the form
Sn =

∑
i∈Zd bniξi where {bni} is a general sequence of constants and does not necessarily has the form (20).

We define Bn as in (16).

Recall that ρn = supi∈Zd |bni|/Bn. We have the following local limit theorem for model (1).

Theorem 4.2 Assume that the linear random field (1) has i.i.d. innovations {ξi}i∈Zd in the domain of
attraction of a stable law with index 0 < α ≤ 2, Bn → ∞ and ρn → 0 as n → ∞. The innovations satisfy
Condition A and have a non-lattice distribution. If lim supn→∞ supi∈Zd |bni| = ∞, we further assume that
the innovations satisfy the Cramér condition. Otherwise these additional assumptions are not required.
Then, under the conditions for each of the two cases in Theorem 3.2, for any continuous function m on R
with compact support, (24) holds with L being the limiting α-stable random variable in Theorem 3.2.

Notice that if lim sup
n→∞

sup
i∈Zd
|bni| <∞, ρn → 0 automatically sinceBn →∞. In the case that lim sup

n→∞
sup
i∈Zd
|bni|

=∞, by Lemma 6.2, we can replace the condition ρn → 0 by ∆n = o(Bn).

As an application of Theorem 4.2, we derive the following local limit theorems for the linear random
fields in (3) with the short range dependence and long range dependence, respectively.

Theorem 4.3 For the linear random field (3) with i.i.d. innovations {ξi}i∈Zd in the domain of attraction of
an α-stable law (0 < α ≤ 2), let Sn be the partial sum defined in (19) and Bn be defined as in (16). Assume
that the innovations satisfy Condition A and have a non-lattice distribution,

∑
i∈Zd |ai| <∞ and Bn →∞

as n→∞. Then, under the conditions for each of the two cases in Theorem 3.3, for any continuous function
m on R with compact support, (24) holds with L being the limiting α-stable random variable in Theorem
3.3.
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The next theorem deals with the case when the sum of the coefficients are divergent. In the case where
0 < α < 1, the existence of the linear random fields implies

∑
i∈Zd |ai| < ∞, a case which we have already

treated it in the above theorem. Recall that ξ has a non-lattice distribution whenever it satisfies the Cramér
condition.

Theorem 4.4 For the linear random field (3) with i.i.d. innovations {ξi}i∈Zd in the domain of attraction
of an α-stable law (1 ≤ α ≤ 2), let Sn be the partial sum defined in (19) and Bn be defined as in (16).
Assume that the innovations satisfy Condition A and the Cramér condition,

∑
i∈Zd |ai| =∞ and Bn →∞

as n→∞. The sum Sn is over Jn non-empty pairwise mutually exclusive rectangles in Zd with Jn = o(Bqn),
1/p + 1/q = 1, for some p > α if 1 ≤ α < 2, and p = 2 of α = 2. Then, under the conditions for each of
the two cases in Theorem 3.3, for any function m on R, which is continuous and has compact support, (24)
holds with L being the limiting α-stable random variable in Theorem 3.3.

Remark 4.3 The two theorems give us local limit theorems for linear random fields with innovations in the
domain of attraction of a stable law under some regularity conditions for the innovations and the coefficients
as long as the linear random fields are well defined. In particular, if 1 ≤ α ≤ 2 and the coefficients are not
absolutely summable, the local limit theorem holds for the sums over a sequence of regions Γdn which is a
disjoint union of discrete rectangles. In application it allows us to have disjoint discrete rectangles as spatial
sampling regions, and the number of these disjoint rectangles may increase as the sample size increases. In
particular we may have (

∏d
k=1[nk, nk]) ∩ Zd where nk = nk for some k’s. So we may have a single point

region if the equality holds for all k’s. The local limit theorem is new also for d = 1. Furthermore, we
have the freedom to take the sum over Jn blocks of random variables as long as it satisfies the condition
Jn = o(Bqn) for q ≥ 2.

In fact, with the method of proof as in Theorem 4.2 and Theorem 4.3, we can improve the local limit
theorem Theorem 2.2 in Fortune, Peligrad and Sang (2021) for linear random fields when the innovations
have finite variance. Condition (9) there can be improved to Jn = o(B2

n). For completeness, we state the
local limit theorem in this case below.

Theorem 4.5 For the linear random field defined in (3), assume that the innovations ξi are i.i.d. ran-
dom variables with mean zero (E ξi = 0), finite variance (E ξ2

i = σ2
ξ ), and non-lattice distribution and the

collection {ai : i ∈ Zd} of real coefficients satisfies∑
i∈Zd

a2
i <∞.

Let Sn be defined as in (19) or its equivalent form (1) and assume that Bn = Var(Sn) = σ2
ξ

∑
i∈Zd b

2
ni →∞.

In the case
∑
i∈Zd |ai| =∞, the field has long range dependence, we additionally assume that the innovations

satisfy the Cramér condition and that the sets Γdn are constructed as a disjoint union of Jn discrete rectangles
with Jn = o(B2

n). Under these conditions, for any function m on R which is continuous and has compact
support,

lim
n→∞

sup
u∈R

∣∣∣∣√2πBnEm(Sn + u)− [exp(−u2/2B2
n)]

∫
m(x)λ(dx)

∣∣∣∣ = 0,

where λ is the Lebesgue measure.

5 Examples

In this section, we provide some examples to illustrate applications of the main results of this paper.

Example 5.1 (Doubly geometric spatial autoregressive models) Suppose that d = 2 and {ξi1,i2 , (i1, i2) ∈ Z2}
are i.i.d. random variables in the domain of attraction of a stable law with index 0 < α ≤ 2. For any
i = (i1, i2) ∈ Z2, let

Xi = Xi1,i2 = θXi1−1,i2 + ρXi1,i2−1 − θρXi1−1,i2−1 + ξi1,i2 , (25)
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where |θ| < 1 and |ρ| < 1. By using the back-shift operators B1 and B2 respectively in the horizontal and
vertical directions defined by

B1ξi1,i2 = ξi1−1,i2 , B2ξi1,i2 = ξi1,i2−1,

we have

Xi1,i2 = (1− θB1)−1(1− ρB2)−1ξi1,i2

=

∞∑
j1=0

∞∑
j2=0

θj1ρj2ξi1−j1,i2−j2 .

Thus, {Xi, i ∈ Z2} is a linear random field with coefficients aj1,j2 = θj1ρj2 (j1, j2 ≥ 0) which are summable.
When the innovations have finite second moments, this model was introduced by Martin (1979) as an
analogue in the spatial setting to the classical AR(1) time series. For more information on this and more
general stationary spatial MA and ARMA models with second moments and their statistical inference one
can refer to Tjøstheim (1978, 1983), Guyon (1995), Gaetan and Guyon (2010), Beran et al. (2013).

Extension of the spatial model (25) to the setting of heavy-tailed innovations can be justified by the
convergence criterion as in (14).

For any integer n ≥ 1, let Γ2
n = [0, n]2 ∩ Z2. Then for every i = (i1, i2) ∈ Z2,

bni =
∑

(j1,j2)∈Γ2
n

aj1−i1,j2−i2

=

{ ∑n
j1=i1∨0

∑n
j2=i2∨0 θ

j1−i1ρj2−i2 , if i1 ≤ n, i2 ≤ n,
0, otherwise.

=

{
θ(i1∨0)−i1 (1−θn+1)

1−θ
ρ(i2∨0)−i2 (1−ρn+1)

1−ρ , if i1 ≤ n, i2 ≤ n,
0, otherwise.

In the above, i1∨0 = max{i1, 0}. Obviously, the coefficients {bni} are uniformly bounded in n and i = (i1, i2).
To determine the size of Bn, we assume L(·) ≡ 1 for simplicity. Then

Bn =

(∑
i∈Z2

|bni|α
)1/α

=
1

(1− θ)(1− ρ)

(
n∑

i1=−∞

n∑
i2=−∞

[
θ(i1∨0)−i1(1− θn+1)

]α[
ρ(i2∨0)−i2(1− ρn+1)

]α)1/α

.

We break the summation
∑n
i1=−∞ into

∑−1
i1=−∞+

∑n
i1=0. Notice that

−1∑
i1=−∞

[
θ(i1∨0)−i1(1− θn+1)

]α
=

θα

1− θα
(1− θn+1)α

and the second sum is
n∑

i1=0

(1− θn+1)α = (n+ 1)(1− θn+1)α.

Hence, we derive Bn ∼ (1− θ)−1(1− ρ)−1n2/α as n→∞.

Example 5.2 (Spatial fractional ARIMA models) For d = 2 and constants β1, β2 ∈ (0, 1), as a special case
of the following spatial fractional ARIMA model:

Φ(B1,B2)Xi = Ψ(B1,B2)(1−B1)−β1(1−B2)−β2ξi, i = (i1, i2) ∈ Z2, (26)

where Φ and Ψ are polynomials of two variables, we take Φ ≡ 1 and Ψ ≡ 1. Then

Xi = Xi1,i2 =

( ∞∑
j1=0

Γ(j1 + β1)

Γ(β1)j1!

)( ∞∑
j2=0

Γ(j2 + β2)

Γ(β2)j2!

)
ξi1,i2

=
∑

(j1,j2)∈Z2
+

aj1,j2ξi1−j1,i2−j2 ,
(27)
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where Γ(·) is the Gamma function, Z2
+ is the set of pairs of non-negative integers and the coefficients

aj1,j2 =
Γ(j1 + β1)Γ(j1 + β2)

Γ(β1)Γ(β2)j1!j2!
, (j1, j2) ∈ Z2

+.

It follows from Stirling’s formula that aj1,j2 satisfy

aj1,j2 ∼ Cj
β1−1
1 jβ2−1

2 as j1, j2 →∞.

The linear random field {Xi, i ∈ Z2} in (26) is an extension of of the fractional ARIMA time series with
i.i.d. stable innovations considered by Kokoszka and Taqqu (1995) and Kokoszka (1996). A similar time
series with finite second moment was considered by Dedecker, Merlevède and Peligrad (2011), among others.
One of the important properties of fractional ARIMA time series is long-range dependence; see, e.g., Beran,
et al. (2013) for more information. However, studies of fractional ARIMA random fields have not been well
developed.

In order for (27) to be well defined, we assume β1, β2 ∈ (0, 1) satisfy

(1− βk)α > 1, for k = 1, 2,

which also requires α ∈ (1, 2].

For any integer n ≥ 1, we consider the index set Γ2
n = [0, n]2 ∩ Z2. Then, under the conditions stated

above, for every i ∈ Z2,

bni =
∑

(j1,j2)∈Γ2
n

aj1−i1,j2−i2

∼
{
C
∑
i1∨0≤j1≤n,i2∨0≤j2≤n(j1 − i1)β1−1(j2 − i2)β2−1, if i1 ≤ n, i2 ≤ n,

0, otherwise

∼
{

C
β1β2

[
(n− i1)β1 − (−i1)β1

+

][
(n− i2)β2 − (−i2)β2

+

]
, if i1 ≤ n, i2 ≤ n,

0, otherwise

as n→∞. In the above, (−i1)+ = 0 if i1 ≥ 0 and (−i1)+ = |i1| if i1 < 0.

Furthermore, under the additional assumption L(·) ≡ 1, we can verify that

Bn =

(∑
i∈Z2

|bni|α
)1/α

∼ C

β1β2

( ∑
i1≤n

∑
i2≤n

[
(n− i1)β1 − (−i1)β1

+

]α[
(n− i2)β2 − (−i2)β2

+

]α)1/α

∼ C0 n
β1+β2+ 2

α ,

as n→∞, where the constant C0 is given by

C0 =
C

β1β2

(∫ 1

−∞

[
(1− x)β1 − (−x)β1

+

]α
dx ·

∫ 1

−∞

[
(1− x)β2 − (−x)β2

+

]α
dx

)1/α

,

where x+ = max{x, 0} for all x ∈ R.

The models in the first two examples satisfy the conditions for the main results in Section 3 and 4 and
then we have the convergence in distribution and local limit theorem. It is also clear that the two models
can be readily extended to the case of d > 2.

Example 5.3 (Linear random fields with isotropic coefficients) For any i ∈ Zd, let ai = ‖i‖−β where β > 0
is a constant and ‖ · ‖ denotes the Euclidean norm. Obviously, we have that
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(i) β ≤ d⇐⇒
∑
i∈Zd |ai| =∞,

(ii) αβ > d =⇒
∑
i∈Zd |ai|αL(1/|ai|) <∞,

and bni =
∑
j∈Γdn

aj−i =
∑
j∈Γdn

‖j − i‖−β .

In order to determine Bn, we assume L(·) ≡ 1 (for simplicity) and

Γdn =
{
k = (k1, . . . , kd) ∈ Zd : |kl| ≤ cln, l = 1, 2, . . . , d

}
,

where cl > 0 (l = 1, . . . , d) are constants. Denote by I =
∏d
l=1[−cl, cl] the corresponding rectangle. Then

we have

Bn =

(∑
i∈Zd
|bni|α

)1/α

=

(∑
i∈Zd

∣∣∣ ∑
j∈Γdn

‖j − i‖−β
∣∣∣α)1/α

= nd−β ·

(∑
i∈Zd

∣∣∣∣ ∑
j/n∈I

‖j/n− i/n‖−β · n−d
∣∣∣∣α · n−d · nd

)1/α

∼ nd−β+ d
α ·

(∫
Rd

∣∣∣∣ ∫
I

‖x− y‖−βdx
∣∣∣∣αdy

)1/α

.

(28)

By splitting the integral in y over J =
∏d
l=1[−2cl, 2cl] and Rd\J , we can verify that∫

Rd

∣∣∣∣ ∫
I

‖x− y‖−βdx
∣∣∣∣αdy <∞ ⇐⇒ β < d and αβ > d.

Therefore, when β < d < αβ, we have Bn ∼ C1n
(1+α−1)d−β which shows that the effect of “long memory”

index β on the normalizing constants Bn. It follows from the first two lines in (28) that sup
i
|bni| ∼ C2n

d−β .

Example 5.4 (Linear random fields with anisotropic coefficients) For any i ∈ Zd, let ai =
(∑d

l=1 |il|βl
)−γ

,
where β1, . . . , βd and γ are positive constants. An important feature of this model is that, if ‖i‖ → ∞ along
the lth direction of Zd, then the rate of ai → 0 is |il|−βlγ . This class of linear random fields is an extension
of the model in Damarackas and Paulauskas (2017), where linear random fields with symmetric α-stable
innovations were considered.

It is elementary to verify the following statements:

∑
i∈Zd
|ai| =∞⇐⇒

∫
[1,∞)d

( d∑
l=1

|xl|βl
)−γ

dx1 . . . dxd =∞ ⇐⇒ γ ≤
d∑
l=1

β−1
l

and

αγ >

d∑
l=1

β−1
l =⇒

∑
i∈Zd

( d∑
l=1

|il|βl
)−αγ

L

(( d∑
l=1

|il|βl
)γ)

<∞.

In the following, we consider a family of index sets Γdn which are formed by rectangular lattice points
that matches the anisotropy in {ai, i ∈ Zd} and determine the rates of Bn →∞. For simplicity we assume
again that L(·) ≡ 1.

For any integer n ≥ 1, let Γdn ⊂ Zd be the set of rectangular lattice points defined by

Γdn =
{
k ∈ Zd : |kl| ≤ n1/βl for l = 1, . . . , d

}
.

Notice that |Γdn| �
∏d
l=1 n

1/βl = nQ, where Q =
∑d
l=1 β

−1
l . Moreover, the volume of a rectangle of side

lengths n−1/βl (l = 1, . . . , d) is n−Q.
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Now we determine the rate of Bn →∞. Since

bni =
∑
j∈Γdn

aj−i =
∑
j∈Γdn

( d∑
l=1

|jl − il|βl
)−γ

,

we have

Bn =

∑
i∈Zd

∣∣∣∣ ∑
j∈Γdn

( d∑
l=1

|jl − il|βl
)−γ∣∣∣∣α

1/α

=

∑
i∈Zd

∣∣∣∣ ∑
j∈Γdn

( d∑
l=1

∣∣∣∣ jl
n1/βl

− il
n1/βl

∣∣∣∣βl)−γ · n−γ · n−Q · nQ∣∣∣α
1/α

= nQ−γ+Q
α ·

∑
i∈Zd

∣∣∣∣ ∑
j∈Γdn

( d∑
l=1

∣∣∣∣ jl
n1/βl

− il
n1/βl

∣∣∣∣βl)−γ · n−Q∣∣∣∣α · n−Q
1/α

∼ nQ−γ+Q
α

(∫
Rd

∣∣∣∣ ∫
I

( d∑
l=1

|xl − yl|βl
)−γ

dx

∣∣∣∣αdy
)1/α

(29)

as n→∞, in the last line, I = [−1, 1]d. For the last integral in (29), it can be verified that∫
Rd

∣∣∣∣ ∫
I

( d∑
l=1

|xl − yl|βl
)−γ

dx

∣∣∣∣αdy <∞ ⇐⇒ αγ >

d∑
l=1

β−1
l > γ.

Hence, under the condition αγ >
∑d
l=1 β

−1
l > γ, we have Bn ∼ C3n

(1+α−1)Q−γ which also shows that the
effect of “long memory” on the normalizing constants Bn. From the first two lines in (29), we can derive
that sup

i
|bni| ∼ C4n

Q−γ .

6 Proofs

Proof of Theorem 3.1.

The proof is same as the proof of Theorem 1 in Shukri (1976). For readers convenience and completeness,
we provide the proof below. We can select θ with |θ| < πα/2 (0 < α < 1), θ = 0 (α = 1) and |θ| < (2−π)α/2
(1 < α ≤ 2) and adjust the constant cα > 0, then rewrite the characteristic function in (9) as

ϕξ(t) = exp
{
− cα|t|αL(1/|t|) exp((sgnt)ιθ)

}
for t in the neighborhood of zero. This is because |β| ≤ 1 and

exp((sgnt)ιθ) = cos θ(1 + ι tan θsgnt).

Then the characteristic function of Sn can be written as

ϕSn(t) =
∏
i∈Zd

ϕξ(tcni)

= exp

−cα|t|α ∑
i∈Zd
|cni|αL(1/|tcni|) exp((sgnt)(sgncni)ιθ)


= exp

−cα|t|α ∑
i∈Zd
|cni|αL(1/|cni|)

L(1/|tcni|)
L(1/|cni|)

exp((sgnt)(sgncni)ιθ)

 .
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By (12), (13), Condition (A2) and the definition of slowly varying function at infinity, for any 0 < ε <
1, we can find N ∈ N, such that for all n > N , c(1 − ε) <

∑
i∈Zd,cni>0 |cni|αL(1/|cni|) < c(1 + ε),

(1 − c)(1 − ε) <
∑
i∈Zd,cni<0 |cni|αL(1/|cni|) < (1 − c)(1 + ε), and for all n > N and all i, we have

1− ε < L(1/|tcni|)/L(1/|cni|) < 1 + ε. Since 0 < ε < 1 is arbitrary, we have

lim
n→∞

ϕSn(t) = exp {−cαc|t|α exp((sgnt)ιθ)} exp {−cα(1− c)|t|α exp(−(sgnt)ιθ)} ,

and then

Sn ⇒ c1/αS′ − (1− c)1/αS′′,

where S′ and S′′ are independent α-stable random variables that have the same distribution as S in (10)
and the characteristic function as in (11).

Lemma 6.1 The quantity Bn defined in (16) satisfies (17).

Proof. By the definition of Bn, for 0 < ε < 1∑
i∈Zd

(|bni|/(Bn − ε))αL((Bn − ε)/|bni|) > 1,

and because x2−αL(x) is increasing∑
i∈Zd

(|bni|/(Bn − ε))αL((Bn − ε)/|bni|)

=
∑
i∈Zd

(|bni|/(Bn − ε))2
[
((Bn − ε)/|bni|)2−αL((Bn − ε)/|bni|)

]
≤

∑
i∈Zd

(|bni|/(Bn − ε))2(Bn/|bni|)2−αL(Bn/|bni|)

= (Bn − ε)−2
∑
i∈Zd

(|bni|)2(Bn/|bni|)2−αL(Bn/|bni|).

By letting ε→ 0 we obtain ∑
i∈Zd

(|bni|/Bn)αL(Bn/|bni|) ≥ 1.

On the other hand, by the definition of Bn there is a sequence xm = xm(n), which is decreasing to Bn such
that ∑

i∈Zd
(|bni|/xm)αL(xm/|bni|) ≤ 1.

By the Fatou’s lemma and the right continuity of L, by passing with m→∞∑
i∈Zd

(|bni|/Bn)αL(Bn/|bni|) ≤ lim
m→∞

inf
∑
i∈Zd

(|bni|/xm)αL(xm/|bni|) ≤ 1.

This proves (17).

In the stable case, we have the following lemma paralleling to Proposition 2 of Mallik and Woodroofe
(2011). It is required in the proof of Theorem 3.2 and Theorem 3.3.

Lemma 6.2 For any p > max{1, α} if 0 < α < 2, and p = 2 if α = 2 and E ξ2
0 = ∞, take q with

1/p+ 1/q = 1. For the linear random field in the form of (1), we have

ρn � 2d[(∆n/Bn)1/(dp+1) + ∆n/Bn]. (30)

For the linear random field in the form of (3), if the sum is over Γdn, which has the form (21), then

∆n � 2dJ1/q
n (31)

and hence
ρn � 2d(J1/q

n /Bn)1/(dp+1) + 22dJ1/q
n /Bn. (32)
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Proof. For the ease on notation, we only prove the results for the case d = 2. In this case, by (18),

∆bi,j = bi,j − bi,j−1 − bi−1,j + bi−1,j−1.

Suppose that supi∈Z2 |bni| = supr,s∈Z |br,s| occurs at |br0,s0 |. Following the line in Mallik and Woodroofe
(2011), we have

br0+r,s0+s − br0,s0+s − br0+r,s0 + br0,s0 =

r0+r∑
u=r0+1

s0+s∑
v=s0+1

∆bu,v (33)

for r, s ≥ 1. For m ≥ 1, let

Qm =

m∑
r=1

m∑
s=1

r0+r∑
u=r0+1

s0+s∑
v=s0+1

|∆bu,v|. (34)

Putting (33) and (34) together, we have

m2|br0,s0 | ≤
m∑
r=1

m∑
s=1

(|br0+r,s0+s|+ |br0,s0+s|+ |br0+r,s0 |) +Qm. (35)

First we consider the case α = 2. By Remark 2.1 and Cauchy-Schwarz inequality, we have

m∑
r=1

m∑
s=1

|br0+r,s0+s| ≤ m

(
m∑
r=1

m∑
s=1

|br0+r,s0+s|2
)1/2

≤ mBn

(∑
r∈Z

∑
s∈Z

(|br,s|/Bn)2L(Bn/|br,s|)

)1/2

= mBn.

In the case 0 < α < 2, for 0 < ε < A to be decided later, we write

m∑
r=1

m∑
s=1

|br0+r,s0+s| =
m∑
r=1

m∑
s=1

|br0+r,s0+s|I(Bn/|br0+r,s0+s| > A)

+

m∑
r=1

m∑
s=1

|br0+r,s0+s|I(Bn/|br0+r,s0+s| < ε)

+

m∑
r=1

m∑
s=1

|br0+r,s0+s|I(ε ≤ Bn/|br0+r,s0+s| ≤ A)

= I + II + III.

By Hölder’s inequality, applied with p > max{1, α} we have for q satisfying 1/p+ 1/q = 1

I ≤ m2/q

(
m∑
r=1

m∑
s=1

|br0+r,s0+s|pI(Bn/|br0+r,s0+s| > A)

)1/p

≤ m2/qBn

(∑
r∈Z

∑
s∈Z

(|br,s|/Bn)pI(Bn/|br,s| > A)

)1/p

.

By the properties of slowly varying functions, there is A > 0 such that uniformly in r, s and n

(Bn/|br,s|)α−pI(Bn/|br,s| > A) ≤ L(Bn/|br,s|).

By (17),

I ≤ m2/qBn

(∑
r∈Z

∑
s∈Z

(|br,s|/Bn)αL(Bn/|br,s|)

)1/p

= m2/qBn.
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To treat II, note that by the definition of L(x) in (7), L(x) is a constant for x < b. Therefore there
exists a sufficiently small ε > 0, for all x < ε we have

x−αL(x) > 1.

Then, if Bn/|br,s| < ε, we have (|br,s|/Bn)αL(Bn/|br,s|) > 1. Recall that Bn satisfies (17). Clearly for this
selection of ε, we have

II =

m∑
r=1

m∑
s=1

|br0+r,s0+s|I(Bn/|br0+r,s0+s| < ε) = 0.

To treat III, by the definition of L(x) in (7), we choose A > b and have

L(x) ≥ Aα−2(2− α)/α := MA > 0

for ε ≤ x ≤ A. So
L(Bn/|br,s|) > MA for ε ≤ Bn/|br,s| ≤ A.

We apply again Hölder’s inequality,

III ≤ m2/qBn

(∑
r∈Z

∑
s∈Z

(|br,s|/Bn)pI(ε ≤ Bn/|br,s| ≤ A)

)1/p

≤ m2/qBn

(
1

MA

∑
r∈Z

∑
s∈Z

(|br,s|/Bn)pL(Bn/|br,s|)I(ε ≤ Bn/|br,s| ≤ A)

)1/p

≤ m2/qBn

(
εα−p

MA

∑
r∈Z

∑
s∈Z

(|br,s|/Bn)αL(Bn/|br,s|)

)1/p

� m2/qBn.

By the above estimates of I, II and III we obtain

m∑
r=1

m∑
s=1

|br0+r,s0+s| � m2/qBn.

Similarly,
m∑
r=1

m∑
s=1

|br0,s0+s| � m1+1/qBn,

and
m∑
r=1

m∑
s=1

|br0+r,s0 | � m1+1/qBn.

So
m2|br0,s0 | � m1+1/qBn +Qm.

By (35) and the above considerations we have

ρn =
|br0,s0 |
Bn

� m
1
q−1 +

Qm
m2Bn

.

Notice that in (34),

Qm =

r0+m∑
r=r0+1

s0+m∑
s=s0+1

(r0 +m+ 1− r)(s0 +m+ 1− s)|∆br,s| ≤ m4 sup
r,s
|∆br,s|.

Then, recalling our notation ∆n = supr,s |∆br,s|, we obtain

ρn � m
1
q−1 +

m2∆n

Bn
= m−

1
p +

m2∆n

Bn
.
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Denoting now by dxe the smallest integer that exceeds x and letting m =
⌈
(Bn/∆n)p/(2p+1)

⌉
and M =

(Bn/∆n)p/(2p+1), we have

ρn � (∆n/Bn)1/(2p+1) + 2(M2 + 1)∆n/Bn = 3(∆n/Bn)1/(2p+1) + 2∆n/Bn.

In the d dimensional case,

ρn � m−
1
p +

md∆n

Bn
.

Let m =
⌈
(Bn/∆n)p/(dp+1)

⌉
and M = (Bn/∆n)p/(dp+1), we have

ρn � (∆n/Bn)1/(dp+1) + 2d−1(Md + 1)∆n/Bn

= (2d−1 + 1)(∆n/Bn)1/(dp+1) + 2d−1∆n/Bn

� 2d[(∆n/Bn)1/(dp+1) + ∆n/Bn].

This proves (30).

Now we prove (31) for linear random field defined in (3). By the linearity of ∆ and the definition of Γ2
n,

we have

∆br,s = ∆

[ ∑
(u,v)∈Γ2

n

au−r,v−s

]
= ∆

[ Jn∑
k=1

∑
(u,v)∈Γ2

n(k)

au−r,v−s

]

=

Jn∑
k=1

∆

[ ∑
(u,v)∈Γ2

n(k)

au−r,v−s

]
.

For each k ∈ {1, 2, ..., Jn}, we have

∆

[ ∑
(u,v)∈Γ2

n(k)

au−r,v−s

]
= an1(k)−r,n2(k)−s − a(n1(k)+1)−r,n2(k)−s + a(n1(k)+1)−r,(n2(k)+1)−s − an1(k)−r,(n2(k)+1)−s.

See Fortune, Peligrad and Sang (2021) for the detailed calculation of the above formula. Hence, by Hölder’s
inequality,

|∆br,s| =

∣∣∣∣∣
Jn∑
k=1

(an1(k)−r,n2(k)−s − a(n1(k)+1)−r,n2(k)−s + a(n1(k)+1)−r,(n2(k)+1)−s − an1(k)−r,(n2(k)+1)−s)

∣∣∣∣∣
≤ 4J1/q

n ‖a‖p for all r, s,

where ‖a‖p = (
∑
i∈Zd |ai|p)1/p. Therefore ∆n � 4J

1/q
n . This proves (31) for d = 2.

Similarly, in the d dimensional case, we have

∆n � 2dJ1/q
n ,

hence (31) holds. Finally, it is clear that (32) follows from (30) and (31). This completes the proof.

Now we prove the main theorems in Section 4.

Proof of Theorem 4.1.

The proof is based on the study of the characteristic function of the sum Sn. According to Lemma 4.5
and arguments in Section VI.4 in Hennion and Hervé (2001) (see also Theorem 10.7 in Breiman (1992) and
Section 10.4 there), it suffices to prove (24) for all continuous complex valued functions g defined on R,
|g| ∈ L1(R) such that the transformation
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ĝ(t) =

∫
R
e−ιtxg(x)dx

has compact support contained in some finite interval [−M,M ].

The inversion formula gives:

g(x) =
1

2π

∫
R
eιsxĝ(s) ds.

Therefore, employing a change of variables and taking the expected value

E [g(Sn + u)] =
1

2πBn

∫
ĝ

(
t

Bn

)
ϕSn

(
t

Bn

)
exp

(
ιtu

Bn

)
dt,

where we used the notation
ϕX(v) = E (exp(ιvX)).

By the Fourier inversion formula we also have

fL(−u) =
1

2π

∫
ϕL(t) exp(ιtu) dt

and then

fL

(
− u

Bn

)
=

1

2π

∫
ϕL(t) exp

(
ιtu

Bn

)
dt.

Therefore

2π

[
BnE [g(Sn + u)]− fL

(
− u

Bn

)∫
R
g(x)dx

]
=

∫
ĝ

(
t

Bn

)
ϕSn

(
t

Bn

)
exp

(
ιtu

Bn

)
dt−

∫
ϕL(t) exp

(
ιtu

Bn

)
dt

∫
R
g(x)dx.

So

2π

∣∣∣∣BnE [g(Sn + u)]− fL
(
− u

Bn

)∫
R
g(x)dx

∣∣∣∣
≤
∫ ∣∣∣∣ĝ( t

Bn

)
ϕSn

(
t

Bn

)
− ϕL(t)

∫
R
g(x)dx

∣∣∣∣ dt.
By adding and subtracting ĝ( t

Bn
)ϕL(t), using the triangle inequality and taking into account that ĝ vanishes

outside [−M,M ] we bound the last term by∫
|t|≤MBn

∣∣∣∣ĝ( t

Bn

)
ϕSn

(
t

Bn

)
− ĝ

(
t

Bn

)
ϕL(t)

∣∣∣∣ dt
+

∫ ∣∣∣∣ĝ( t

Bn

)
ϕL(t)− ϕL(t)

∫
R
g(x)dx

∣∣∣∣ dt = In + IIn.

In ≤ ||ĝ||∞

(∫
|t|≤T

|ϕ Sn
Bn

(t)− ϕL(t)|dt+

∫
T<|t|≤MBn

|ϕ Sn
Bn

(t)− ϕL(t)|dt

)

≤ ||ĝ||∞

(∫
|t|≤T

|ϕ Sn
Bn

(t)− ϕL(t)|dt+

∫
T<|t|≤MBn

|ϕ Sn
Bn

(t)|dt+

∫
T<|t|

|ϕL(t)|dt

)
.

Because Sn/Bn ⇒ L, and ϕL(t) is integrable, In converges to 0 provided condition (23) is satisfied. The
second term

IIn ≤
∫ ∣∣∣∣ĝ( t

Bn

)
−
∫
R
g(x)dx

∣∣∣∣ · |ϕL(t)|dt

converges to 0 because ĝ is continuous and bounded, g and ϕL are integrable and Bn →∞. We obtain

19



sup
u

∣∣∣∣BnE [g(Sn + u)]− fL
(
− u

Bn

)∫
R
g(x)dx

∣∣∣∣→ 0, as n→∞

provided

lim
T→∞

lim sup
n

∫
T<|t|<MBn

|ϕ Sn
Bn

(t)|dt→ 0.

Proof of Theorem 4.2.

Recall that ϕSn(·) is the characteristic function of Sn and ϕL is the characteristic function of L. We
have ϕSn(t/Bn) =

∏
i∈Zd ϕξ(tbni/Bn). Let γn = supi |bni|.

By Theorem 3.2, we have the weak convergence result (22) in Theorem 4.1. Notice that if {bni}
are uniformly bounded in n and i, then obviously ρn = γn/Bn → 0 as n → ∞. In the case where
lim supn supi∈Zd |bni| =∞, we impose that ρn → 0.

Now we verify condition (23) in Theorem 4.1. A part of the argument is similar to the proof of Theorem
2 in Shukri (1976). In (1), we renumber {bni} into a sequence {b′k,n}∞k=1 such that γn = |b′1,n| ≥ |b′2,n| ≥ · · · .
Since (17), we can select a number kn ∈ N such that

kn = inf

{
l :

l∑
k=1

(|b′k,n|/Bn)αL(Bn/|b′k,n|) ≥ 1/2

}
.

Then

1

2
≤

kn∑
k=1

(|b′k,n|/Bn)αL(Bn/|b′k,n|) <
1

2
+ (γn/Bn)α/2.

Since γn/Bn → 0 as n → ∞, by the properties of slowly varying functions, there exists a constant C > 0,
such that for sufficiently large n,

kn∑
k=1

(|b′k,n|/Bn)αL(Bn/|b′k,n|) ≤ C(γn/Bn)αL(Bn/γn)kn.

Hence, for n large enough

kn ≥
1

2C(γn/Bn)αL(Bn/γn)
. (36)

By (9), for 0 < α ≤ 2, there exists ε > 0 such that for all |x| ≤ ε, we have

|ϕξ(x)| = exp{−cα|x|αL(1/|x|)}.

Since |tb′k,n/Bn| ≤ ε for |t| ≤ εBn/|b′kn,n|, k > kn, we obtain from the above equality

|ϕSn(t/Bn)| ≤
∞∏

k=kn+1

|ϕξ(tb′k,n/Bn)| (37)

= exp

{
−cα|t|α

∞∑
k=kn+1

|b′k,n/Bn|αL(Bn/|tb′k,n|)

}
.

Now, by Lemma 5.1 in Davydov (1974), without restricting the generality we shall assume that L also
satisfies the following condition

sup
x>0

L(x)

L(ux)
≤ u−α/2 for all 0 < u ≤ 1. (38)

Therefore, by applying (38) with u = |T/t| we obtain

L

(
Bn
|tb′k,n|

)
= L

(
T

|t|
Bn
|b′k,n|T

)
≥
∣∣∣∣Tt
∣∣∣∣α/2 L

(
Bn
|b′k,n|T

)
for |t| > T.
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By combining inequality (37) with the last inequality we obtain for T < |t| ≤ εBn/|b′kn,n|, and for n and
T sufficiently large

|ϕSn(t/Bn)| ≤ exp

{
−cα|t|α

∞∑
k=kn+1

|b′k,n/Bn|αL(Bn/|tb′k,n|)

}

≤ exp

{
−cαTα/2|t|α/2

∞∑
k=kn+1

|b′k,n/Bn|αL(Bn/|b′k,nT |)

}

≤ exp

{
−cα|t|α/2

∞∑
k=kn+1

|b′k,n/Bn|αL(Bn/|b′k,n|)

}
.

In the last step we used the properties of slowly varying functions. Notice that Bn/|b′k,n| → ∞ uniformly
for all k as n→∞.

By (17) and the selection of kn, we have

∞∑
k=kn+1

|b′k,n/Bn|αL(Bn/|b′k,n|) ≥
1

2
−
(
γn
Bn

)α/2
and, as a consequence

|ϕSn(t/Bn)| ≤ exp
{
−cα|t|α/2

}
.

Then we have found ε > 0 such that

lim
n→∞

∫
T<|t|<εBn/|b′kn,n|

|ϕSn(t/Bn)|dt

≤
∫
|t|>T

exp
{
−cα|t|α/2

}
dt,

which goes to 0 as T → ∞. If εBn/|b′kn,n| ≥ DBn, then condition (23) holds and the proof is complete.
Otherwise, it remains to analyze the term

Gn =

∫
εBn/|b′kn,n|<|t|≤DBn

|ϕSn(t/Bn)|dt.

We shall consider two cases. In the case (i) that |bni| is uniformly bounded by a constant b0 > 0 for all i ∈ Zd
and n ∈ N, notice that ε ≤ ε|b′k,n|/|b′kn,n| ≤ t|b′k,n|/Bn ≤ Db0 for εBn/|b′kn,n| < |t| ≤ DBn and 1 ≤ k ≤ kn.
Since the innovations have a non-lattice distribution and ϕξ is continuous, there exists 0 < r < 1 such that
|ϕξ(tb′k,n/Bn)| ≤ r for all εBn/|b′kn,n| < |t| ≤ DBn and 1 ≤ k ≤ kn. Therefore

Gn ≤
∫
εBn/|b′kn,n|<|t|≤DBn

kn∏
k=1

∣∣ϕξ(tb′k,n/Bn)
∣∣ dt (39)

≤ 2DBnr
kn .

By (36),

kn ≥
1

2C(γn/Bn)α−δ
>

Bα−δn

2Cbα−δ0

for some 0 < δ < α and n is sufficiently large. Then we have limn→∞Bnr
kn = 0 and Gn → 0 as n→∞.

In the case (ii) where lim supn supi∈Zd |bni| = ∞ we shall use the Cramér condition. By Lemma 5.2 in
Fortune, Peligrad and Sang (2021) we know that under Cramér condition, for every ε > 0 there exists r > 0
such that

|ϕξ(t)| ≤ r for all |t| > ε.

Since ε|b′k,n|/|b′kn,n| ≥ ε for |t| > εBn/|b′kn,n| and 1 ≤ k ≤ kn, |ϕξ(tb′k,n/Bn)| ≤ r for all |t| > εBn/|b′kn,n|
and 1 ≤ k ≤ kn. Therefore (39) still holds and we also have

lim
n→∞

Gn = 0.
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This completes the proof.

Proof of Theorem 4.3 and Theorem 4.4.

In the case that
∑
i∈Zd |ai| <∞, {bni} are uniformly bounded on i and n. Hence Theorem 4.3 holds by

the first part of Theorem 4.2. The proof of Theorem 4.4 with 1 ≤ α ≤ 2 and
∑
i∈Zd |ai| = ∞ is similar to

the proof of the second case in Theorem 4.2. Notice that condition Jn = o(Bqn) for q ≥ 2 implies the weak
convergence in Theorem 3.3.
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