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Abstract. We prove three results concerning the existence of Bohr sets in threefold sum-

sets. More precisely, letting G be a countable discrete abelian group and ϕ1, ϕ2, ϕ3 : G→ G

be commuting endomorphisms whose images have �nite indices, we show that

(1) If A ⊂ G has positive upper Banach density and ϕ1 + ϕ2 + ϕ3 = 0, then ϕ1(A) +

ϕ2(A)+ϕ3(A) contains a Bohr set. This generalizes a theorem of Bergelson and Ruzsa

in Z and a recent result of the �rst author.

(2) For any partition G =
⋃r

i=1Ai, there exists an i ∈ {1, . . . , r} such that ϕ1(Ai) +

ϕ2(Ai)− ϕ2(Ai) contains a Bohr set. This generalizes a result of the second and third

authors from Z to countable abelian groups.

(3) If B,C ⊂ G have positive upper Banach density and G =
⋃r

i=1Ai is a partition,

B + C + Ai contains a Bohr set for some i ∈ {1, . . . , r}. This is a strengthening of a

theorem of Bergelson, Furstenberg, and Weiss.

All results are quantitative in the sense that the radius and rank of the Bohr set obtained

depends only on the indices [G : ϕj(G)], the upper Banach density of A (in (1)), or the

number of sets in the given partition (in (2) and (3)).
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1. Introduction

This paper continues the investigation set forth in [33]. Let G be an abelian topological

group. If A,B ⊂ G, the sumset and di�erence set of A and B are A + B := {a + b : a ∈
A, b ∈ B} and A− B := {a− b : a ∈ A, b ∈ B}, respectively. For a ∈ G, the translate a+ B

is {a+B : b ∈ B}. If s ∈ Z, we de�ne sA := {sa : a ∈ A}. A character of G is a continuous

homomorphism from G to S1 := {z ∈ C : |z| = 1}.
Many classical results in additive combinatorics state, roughly, that sumsets are more

structured than their summands. Such results often quantify the structure found in sumsets

in terms of Bohr sets, which we de�ne here. For a �nite set Λ of characters of G and a constant

η > 0, the set

B(Λ; η) := {x ∈ G : |γ(x)− 1| < η for all γ ∈ Λ}

is called a Bohr set, a Bohr0-set, or a Bohr neighborhood of 0 in the literature. In this paper

we use mostly the �rst nomenclature. The set B(Λ; η) is also called a Bohr-(k, η) set where

k = |Λ|. We refer to η as the radius and k as the rank of the Bohr set. By a translate of a

Bohr set, or a Bohr neighborhood, we mean a set of the form a+B(Λ; η) for some a ∈ G.

After summarizing previous results in Sections 1.1 and 1.2, we state our new results in

Section 1.3.

1.1. Previous results in Z. If A ⊂ Z, the upper Banach density of A is

d∗(A) = lim sup
N→∞

max
M∈Z

|A ∩ {M + 1, . . . ,M +N}|
N

.

The study of Bohr sets in sumsets started with the following important theorem of Bogolyubov

[11].

Theorem A (Bogolyubov). If A ⊂ Z has positive upper Banach density, then A−A+A−A
contains a Bohr set whose rank and radius depend only on d∗(A).
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While it originated from the study of almost periodic functions, Bogolyubov's theorem is

now a standard tool in additive combinatorics. It was used in Ruzsa's proof of Freiman's

theorem [35] and in Gowers's proof of Szemerédi's theorem [22].

Følner [15] showed that the last two summands in Bogolyubov's theorem are �almost�

redundant by proving that A−A already contains a set of the form B \E, where B is a Bohr

set and d∗(E) = 0. The exceptional set E is unavoidable: Kriz [32] demonstrated that there

exists a set A of positive upper Banach density for which A− A contains no Bohr sets. The

�rst author [26] showed that there is a set A having d∗(A) > 0 such that A− A contains no

Bohr neighborhood of any integer.

Hegyvári and Ruzsa [28] generalized Bogolyubov's theorem in a di�erent direction, showing

that there exist �many� a ∈ Z for which A − A + A − a contains a Bohr set. Björklund and

the �rst author [10, Theorem 1.1] strengthened this result by providing explicit bounds on

the rank and radius of such a Bohr set, and generalized the result to all countable amenable

discrete groups (and hence all countable discrete abelian groups).

Regarding more general threefold sumsets, Bergelson and Ruzsa proved the following:

Theorem B ([7, Theorem 6.1]). Let s1, s2, s3 be non-zero integers satisfying s1+s2+s3 = 0.

If A ⊂ Z has positive upper Banach density, then s1A+ s2A+ s3A contains a Bohr set whose

rank and radius depend only on s1, s2, s3 and d∗(A).

Since any Bohr set in Z must contain 0, the condition s1 + s2 + s3 = 0 is easily seen to be

necessary by taking A = MZ + 1 for some M > |s1| + |s2| + |s3|. In particular, one cannot

expect A+A−A to contain a Bohr set for every A of positive upper Banach density. When

(s1, s2, s3) = (1, 1,−2), Theorem B generalizes Theorem A, since A+A−2A ⊂ A+A−A−A.
While the problem of �nding Bohr sets in sumsets where the summands have positive upper

Banach density has attracted much attention, the analogous question concerning partitions

was little studied until recently, and the situation is less well understood. The following

question, popularized by Katznelson [31] and Ruzsa [36, Chapter 5], is a well-known open

problem in additive combinatorics and dynamical systems.

Question 1.1. If Z =
⋃r
i=1Ai, must one of the di�erence sets Ai −Ai contain a Bohr set?

In terms of dynamical systems, Question 1.1 asks if every set of recurrence for minimal

isometries (also known as a set of Bohr recurrence) is also a set of recurrence for minimal

topological systems. See [20] for a detailed account of the history of Question 1.1 and many

equivalent formulations. See [27] for more equivalent formulations and resolution of some

special cases.

Regarding three summands, the second and third authors proved the following partition

analogue of Theorem B.

Theorem C ([33, Theorem 1.4]).

(i) Let s1, s2 ∈ Z \ {0}. For any partition Z =
⋃r
i=1Ai, there is an i such that s1Ai +

s2Ai − s2Ai contains a Bohr set whose rank and radius depend only on s1, s2 and r.
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(ii) For any partition Z =
⋃r
i=1Ai, there is an i such that Ai −Ai + sAi contains a Bohr

set for any s ∈ Z \ {0}.

Rado's theorem says that an equation
∑k

j=1 sjxj = 0 with coe�cients sj ∈ Z \ {0} is

partition regular over Z \ {0} if and only if there exists J ⊂ {1, . . . , k}, J ̸= ∅ such that∑
j∈J sj = 0. Combined with Theorem B, part (i) of Theorem C gives a complete charac-

terization of tuples (s1, . . . , sk) ∈ (Z \ {0})k that guarantee the existence of a Bohr set in∑k
j=1 sjAi, for some i, as long as k ≥ 3: They are precisely tuples satisfying Rado's condi-

tion.1 This characterization is a strengthening of Rado's theorem. As the integer s in Part

(ii) can be arbitrarily large, this suggests that either the answer to Question 1.1 is positive,

or the construction of a counterexample must be very delicate.

1.2. Previous results in compact groups. As part of a general program, we aim to study

the Bohr sets in sumsets phenomenon in more general groups. A natural setup is amenable

groups, since in these groups there is a natural notion of density, and Bohr sets can also be

de�ned.2 A locally compact group G with left Haar measuremG is said to be amenable if there

exists an invariant mean on G, that is, a linear functional λ on L∞(mG) that is nonnegative

(i.e. λ(f) ≥ 0 if f ≥ 0), of norm 1 (i.e. λ(1G) = 1) and left-invariant (i.e. λ(ft) = λ(f), where

ft(x) = f(t−1x)). If A ⊂ G is a Borel set, we can de�ne its upper Banach density as

d∗(A) = sup{λ(1A) : λ is an invariant mean on G.} (1)

The supremum is actually a maximum, since the set of invariant means on G is weak*-

compact, by the Banach-Alaoglu theorem. It is well known that all locally compact abelian

groups are amenable. Følner [15, 16] generalized Theorem A to discrete abelian groups, and

the results of [10] mentioned above apply to countable discrete amenable groups which are

not necessarily abelian.

Against this backdrop, our objective in this program is threefold. First, we ask for analogues

of Theorems B and C in (a subclass of) amenable groups. Second, in the context of general

groups, we can replace the dilate sA by ϕ(A), the image of A under a homomorphism ϕ. This

point of view leads to a wider range of applications: we can consider linear maps on vector

spaces and multiplication by an element in a ring (see Corollary 1.6 below). This broader

perspective was also adopted in recent works [2, 3] on Khintchine-type recurrence for actions

of an abelian group. Third, we aim for uniformity in terms of rank and radius of the Bohr

set in question, i.e., they are allowed to depend on d∗(A) and other parameters, but not A

itself. This is because, in some situations, the existence of Bohr sets is straightforward (for

example, an interval around 0 in R/Z always contains a Bohr set), but obtaining uniformity

is much harder.

1To see that this condition is necessary, suppose
∑k

j=1 sjAi contains a Bohr set. By giving 0 its own

partition class, we may assume 0 ̸∈ Ai. Since a Bohr set must necessarily contain 0, this implies that there

are xj ∈ Ai such that
∑k

j=1 sjxj = 0, and Rado's condition applies. To see that this condition is su�cient,

observe that (s+ t)A ⊂ sA+ tA, so the case k ≥ 3 can be reduced to the case k = 3.
2For non-abelian groups G, Bohr sets can be de�ned in terms of �nite-dimensional unitary irreducible

representations of G, see [10].
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In [33], these objectives were achieved for compact abelian groups. Note that in this case,

the only invariant mean on G is given by mG (the normalized Haar measure on G) and

d∗(A) = mG(A). The second and third authors proved the following.

Theorem D (Le-Lê [33]). Let K be a compact abelian group with normalized Haar mea-

sure mK . Let ϕ1, ϕ2, ϕ3 : K → K be commuting continuous endomorphisms such that

[K : ϕj(K)] <∞ for each j.

(i) If ϕ1 + ϕ2 + ϕ3 = 0 and A ⊂ K is a Borel set with mK(A) > 0, then ϕ1(A) +

ϕ2(A) + ϕ3(A) contains a Bohr-(k, η) set, where k and η depend only on mK(A) and

[G : ϕj(G)].

(ii) If K =
⋃r
i=1Ai is a partition of K into Borel sets, then there exists i such that

ϕ1(Ai) + ϕ2(Ai)− ϕ2(Ai) contains a Bohr-(k, η) set, where k and η depend only on r

and [G : ϕj(G)].

The �nite index condition is necessary and also appears in [2]. On the other hand, we do

not know if the assumption that the ϕj commute can be omitted.

1.3. New results in discrete groups. In this paper we extend many of the preceding results

to the setting of countable discrete abelian groups. Our main results are discrete analogues

of Theorem D, and as such are direct generalizations of Theorems B and C.

Theorem 1.2. Let G be a countable discrete abelian group. Let ϕ1, ϕ2, ϕ3 : G → G be

commuting endomorphisms such that ϕ1 + ϕ2 + ϕ3 = 0 and [G : ϕj(G)] are �nite for j ∈
{1, 2, 3}. Suppose A ⊂ G has positive upper Banach density, i.e. d∗(A) > 0. Then the set

ϕ1(A) + ϕ2(A) + ϕ3(A)

contains a Bohr-(k, η) set, where k and η depend only on d∗(A) and the indices [G : ϕj(G)].

Remark 1.3.

• In the special case ϕj(x) = sjx where sj ∈ Z \ {0}, Theorem 1.2 was proven by the

�rst author [23] without the conclusion on the uniformity of k and η.

• The conclusion of Theorem 1.2 remains valid if the ϕj do not necessarily commute,

but one of them is an automorphism. Indeed, assume that ϕ1 is an automorphism.

We observe that

ϕ1(A) + ϕ2(A) + ϕ3(A) = ϕ1
(
A+ ϕ−1

1 ◦ ϕ2(A) + ϕ−1
1 ◦ ϕ3(A)

)
.

Consider the endomorphisms Id, ϕ−1
1 ◦ ϕ2 and ϕ−1

1 ◦ ϕ3. They add up to 0 since

Id+ ϕ−1
1 ◦ ϕ2 + ϕ−1

1 ◦ ϕ3 = Id+ ϕ−1
1 ◦ (ϕ2 + ϕ3) = Id+ ϕ−1

1 ◦ (−ϕ1) = 0.

They also commute3, and have �nite index images. Theorem 1.2 implies A + ϕ−1
1 ◦

ϕ2(A) + ϕ−1
1 ◦ ϕ3(A) contains a Bohr set, and the image of a Bohr set under an auto-

morphism is easily seen to be a Bohr set of the same rank and radius (see Lemma 2.2).

3Whenever three endomorphisms sum to 0 and two of them commute, all three must commute. Since Id

commutes with every endomorphism, these three commute.
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• The hypothesis ϕ1 + ϕ2 + ϕ3 = 0 cannot be removed as demonstrated in the remark

after Theorem B.

• Similarly, the condition that each index [G : ϕj(G)] is �nite cannot be omitted. For

example, take G = Z, ϕ1(x) = x, ϕ2(x) = −x, and ϕ3(x) = 0 for x ∈ Z. Then

ϕ1(A) + ϕ2(A) + ϕ3(A) = A − A, and the Kriz example [32] shows that there exists

a set A of positive upper Banach density such that A−A does not contain any Bohr

set. See [23, Remark 1.6] for further discussion.

Theorem 1.4. Let G be a discrete abelian group and let ϕ1, ϕ2 : G → G be commuting

endomorphisms such that [G : ϕj(G)] is �nite for j ∈ {1, 2}. Then for every �nite partition

G =
⋃r
i=1Ai, there exists i ∈ {1, . . . , r} such that

ϕ1(Ai) + ϕ2(Ai)− ϕ2(Ai)

contains a Bohr-(k, η) set, where k and η depend only on r and the indices [G : ϕj(G)].

Remark 1.5.

• In contrast to Theorem 1.2 and Theorem 1.7 below, Theorem 1.4 does not assume G

is countable. The reason is that the former two theorems use Kronecker factors via

Furstenberg's correspondence principle, and the theory of factors requires the group

to be countable. There are two ways to think of a factor of a measure preserving

G-system: as a spatial map or as a G-invariant sub σ-algebra. The latter can be

obtained trivially from the former, but the converse is not trivial, and requires the

group to be countable (in addition to the σ-algebras being separable). For instance,

the method of proof of Theorem 5.15 in [18] requires G to be countable.

• Since Bohr sets contain 0, Theorem 1.4 implies that the equation ϕ1(x) + ϕ2(y) −
ϕ2(z) = 0 is partition regular in discrete abelian groups, that is, under any partition

G =
⋃r
i=1Ai, there exists non-zero x, y, z in the same class Ai such that ϕ1(x) +

ϕ2(y) − ϕ2(z) = 0. (To see that we can take x, y, z to be nonzero, give 0 its own

partition class.)

• If d∗(A) > 0, then A+A−A is not guaranteed to contain a Bohr set as remarked after

Theorem B. In particular, the analogous version of Theorem 1.4 for sets of positive

upper Banach density is false.

• The hypothesis that ϕ2(G) has �nite index in G cannot be omitted. For example,

taking ϕ2 = 0 and ϕ1(x) = x for x ∈ G, the sumset in Theorem 1.4 simpli�es to Ai.

The question of whether the Theorem 1.4 remains true without the assumption that

[G : ϕ1(G)] is �nite is essentially Question 1.1: we may take ϕ1(x) = 0 and ϕ2(x) = x

for all x ∈ G, and the sumset in Theorem 1.4 simpli�es to Ai −Ai.

• Similar to Theorem 1.2, the hypothesis that the ϕj commute can be removed if one

of them is an automorphism.

As a consequence of Theorems 1.2 and 1.4, we obtain immediately the following number

�eld generalization of Theorems B and C. In [33], this result was proved (at least for Z[i])
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using a di�erent argument, similar to Bogolyubov and Bergelson-Ruzsa's proofs of Theorems

A and B in Z.

Corollary 1.6. Let K be an algebraic number �eld of degree d and OK be its ring of integers

(so the additive group of OK is isomorphic to Zd). Let s1, s2, s3 ∈ OK \ {0} such that

s1 + s2 + s3 = 0.

(i) If A ⊂ OK has d∗(A) > 0, then s1A+ s2A+ s3A contains a Bohr set, whose rank and

radius depend only on d∗(A) and the norms of s1, s2, s3.

(ii) If OK =
⋃r
i=1Ai, then there exists i such that s1Ai + s2Ai − s2Ai contains a Bohr

set, whose rank and radius depend only on r and the norms of s1 and s2.

Bergelson, Furstenberg, and Weiss [5, Corollary 1.3] showed that if B,C ⊂ Z have positive

upper Banach density and A ⊂ Z is syndetic, then B +C +A contains a translate of a Bohr

set. Here a set A ⊂ Z is syndetic if a collection of �nitely many translates of A covers Z. Our
next theorem not only generalizes Bergelson-Furstenberg-Weiss's result to countable abelian

groups but also strengthens it by only assuming that A arises from an arbitrary partition.

Moreover, we provide quantitative bounds on the radius and rank of the Bohr set, a feature

not presented in [5].

Theorem 1.7. Let G be a countable discrete abelian group and let B,C ⊂ G have positive

upper Banach density. Then for any partition G =
⋃r
i=1Ai, there is an i ∈ {1, . . . , r} such

that B + C +Ai contains a Bohr-(k, η) set where k, η depend only on d∗(B), d∗(C) and r.

We deduce Theorems 1.2, 1.4 and 1.7 from their counterparts for compact abelian groups

(i.e. Theorems D and 10.1). However, the latter can be used as black boxes and the reader

does not need to know their inner workings. The heavy lifting of this paper is done by corre-

spondence principles, which state that sumsets in discrete abelian groups can be modeled by

sumsets in compact abelian groups. This strategy dates back at least to Furstenberg's corre-

spondence principle [17], used in his proof of Szemerédi's theorem. However, to accommodate

the three di�erent kinds of sumsets in our results, we need three di�erent correspondence

principles. These are Proposition 6.2, Proposition 7.1, and Proposition 9.6.

Our bounds for k and η in Theorems 1.2, 1.4 and 1.7 are transferred from and have the

same quality as their compact analogues. Since the proof of Theorem D (i) relies on a

regularity lemma, the bounds in Theorem 1.2 are of tower type. The proof of Theorem D(ii)

relies on the Hales-Jewett theorem, so the bounds in Theorem 1.4 are extremely poor (albeit

still primitive recursive). As for Theorem 1.7, we get more appealing bounds of the form

η = Ω(d∗(B)d∗(C)r−1) and k = O(d∗(B)−2d∗(C)−2r2), though these may not be optimal

(see Question 11.2).

1.4. Main ideas of the proofs. Here we outline the obstacles to proving Theorems 1.2,

1.4 and 1.7 and our strategies for overcoming them. We will use notation and terminology

de�ned in Section 2.

Theorem 1.2: To prove the �rst theorem, we �nd a parameterized solution to the relation

ϕ1(w) ∈ ϕ1(A) + ϕ2(A) + ϕ3(A). (2)
7



For instance, w will satisfy (2) if

u+ w − ϕ2(v), u+ ϕ1(v), and u all belong to A for some u, v ∈ G.

Then Furstenberg's correspondence principle is applied to show that the set of such w contains

the support of the multilinear ergodic average:

I(w) := UC − lim
g∈G

∫
X
f · Tϕ1(g)f · Tw−ϕ2(g)f dµ (3)

where (X,µ, T ) is an ergodic G-system and f : X → [0, 1] is a measurable function with∫
X f dµ = d∗(A). As shown in [2], the Kronecker factor (Z,mZ , R) is characteristic for the

average in (3) and so

I(w) = UC − lim
g∈G

∫
X
f̃ ·Rϕ1(g)f̃ ·Rw−ϕ2(g)f̃ dmZ ,

where f̃ : Z → [0, 1] satis�es
∫
f̃ dmZ =

∫
f dµ (see Section 2.2 for the de�nition of UC−lim).

In order to utilize the corresponding result in compact groups [33], we need to show that the

homomorphisms ϕ1, ϕ2, ϕ3 induce homomorphisms ϕ̃j on Z satisfying ϕ̃j ◦ τ = τ ◦ ϕj , where
τ is a natural embedding of G in Z. This is straightforward under the additional assumption

that spectrum of (X,µ, T ) (i.e. the group of eigenvalues) is closed under each ϕj . However,

the spectrum of (X,µ, T ) will not, in general, be closed under the ϕj .

To overcome this problem, we �nd an ergodic extension (Y, ν, S) of (X,µ, T ) such that the

spectrum of (Y, ν, S) contains a subgroup Γ which extends the spectrum of (X,µ, T ) and is

invariant under each ϕj . After lifting f to Y , the Kronecker factor Z of X can be viewed as a

factor of Y, and is still characteristic for the averages in (3). Thus, any extension of Z in Y

will also be characteristic for these averages. The group rotation factor K of Y corresponding

to Γ is such an extension of Z, and this allows us to transfer the Bohr sets obtained in [33]

to G. The diagram below demonstrates the relations among X,Y,Z and K where Y → X

means Y is an extension of X.

Y

X K

Z

Figure 1. Relations among X,Y, Z and K

Theorem 1.4: In contrast to the sumset ϕ1(A) + ϕ2(A) + ϕ3(A), a parametrized solution

to ϕ2(w) ∈ ϕ1(A) + ϕ2(A)− ϕ2(A) is

ϕ2(v), u+ w, u+ ϕ1(v) ∈ A. (4)

The absence of the variable u in the �rst function prohibits us from using Furstenberg's corre-

spondence principle as we do in the Proof of Theorem 1.2. Instead we use (Proposition 7.1),

which models the relevant sumsets by convolutions on the Bohr compacti�cation of G. This
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idea was used in [10] to express A+A−A in terms of convolutions on a compact group. Parts

of this process also already appeared in Følner's works [15, 16].

Speci�cally, we �x an invariant mean ν on G with d∗(A) = ν(1A), and observe that the

di�erence set A−A contains the support of the convolution 1A ∗ν 1−A(t) := ν(1A1A+t). This

convolution is easily veri�ed to be a positive de�nite function on G, which can therefore be

represented as a Fourier transform of a positive measure σ on “G. The continuous part of σ

can be ignored, allowing us to expand 1A ∗ν 1−A(t) as a Fourier series and express A+A−A

in terms of a convolution hA ∗ hA ∗ h−A on bG, the Bohr compacti�cation of G.

To study the more complicated expression ϕ1(A) + ϕ2(A)− ϕ2(A), we need to investigate

the relationship between 1A ∗ν 1−A and 1ϕ2(A) ∗ν 1−ϕ2(A). This investigation leads to the

introduction of Radon-Nikodym densities ρνA, ρ
ν
ϕ2(A)

and their relationship in Section 4. Af-

ter the required relationship is established, we put all ingredients together (Proposition 7.1,

Corollary 4.10) and use the compact counterpart in [33] to prove Theorem 1.4.

Theorem 1.7: This last theorem relies on two ingredients:

(i) an estimate for the rank and radius of a Bohr set in sumsets of the form B +C +Ai,

where B,C are subsets of a compact abelian group K and K =
⋃r
i=1Ai. We bound

the rank and radius in terms of mK(B), mK(C), and r, using the pigeonhole principle

and elementary estimates on Fourier coe�cients.

(ii) a correspondence principle relating the expression B + C + Ai in a discrete abelian

group to an analogous expression in a compact abelian group.

The two correspondence principles previously mentioned do not apply to the expression

B+C +Ai; see Remark 1.8. Instead, we use a result from [25] which exhibits piecewise Bohr

structure in B + C. This allows us to relate B + C + Ai to a convolution hB ∗ hC ∗ hAi on

a compact group K, where each of these functions takes values in [0, 1],
∫
hB dmK ≥ d∗(B),∫

hC dmK ≥ d∗(C), and
∑r

i=1 hAi ≥ 1K .

Remark 1.8. None of the three correspondence principles outlined above subsumes the others.

The sumset ϕ1(A) + ϕ2(A) + ϕ3(A) with ϕ1 + ϕ2 + ϕ3 = 0 is translation invariant (replacing

A with a translate of A does not a�ect this sumset) and so a straightforward application of

Furstenberg's correspondence principle su�ces. The second sumset ϕ1(A)+ϕ2(A)−ϕ2(A) is

no longer translation invariant and hence requires a di�erent correspondence principle. Since

the last sumset B + C + Ai is neither translation invariant nor has the form A+ B − B, we

need yet another correspondence principle. Conversely, one cannot use the third principle

for the �rst two sums since this principle does not retain the relations among the summands

which are present in the fact that ϕ1(A), ϕ2(A), ϕ3(A) are images of the same set A.

1.5. Outline of the article. In Section 2, we set up notation and present some basic facts

about measure preserving systems, Bohr compacti�cations, Kronecker factors, etc. In Section

3 we describe a general construction of homomorphisms from discrete groups into compact

groups with dense image. This construction is used in the proofs of all of our results. Section

4 is devoted to transferring functions on discrete groups to compact groups, an ingredient used
9



in the proofs of Theorems 1.4 and 1.7. After these preliminaries, Theorem 1.2 is proved in

Sections 5 and 6, then Theorem 1.4 is proved in Sections 7 and 8. We prove the correspondence

principle needed for Theorem 1.7 in Section 9 and establish the theorem in Section 10. Lastly,

we present some open questions in Section 11.

Acknowledgement. We thank the anonymous referee for carefully reading the manu-

script, pointing out some oversights, and providing many suggestions which help improve

the presentation of the paper. The third author is partially supported by NSF Grant DMS-

2246921.

2. Background

2.1. Notation and convention. Throughout this paper, G is a countable discrete abelian

group, and K is used to denote a compact Hausdor� abelian group. We use mK to denote the

unique probability Haar measure on K. The set of all continuous functions on K is denoted

by C(K).

For r ∈ N, we use [r] to denote {1, 2, . . . , r}. By the support of a function f , denoted by

supp f , we mean {x : f(x) ̸= 0}.

2.2. Følner sequences and uniform Cesàro averages. A sequence F = (FN )N∈N of �nite

subsets of G is a Følner sequence if for all g ∈ G,

lim
N→∞

|FN△(g + FN )|
|FN |

= 0.

Every countable abelian group admits a Følner sequence. This is due to the fact that all

discrete abelian groups are amenable, and having a Følner sequence is one of the many

equivalent de�nitions of amenability for countable discrete groups (see [30]).

If F is a Følner sequence and A ⊂ G, the upper density of A with respect to F is

dF(A) := lim sup
N→∞

|A ∩ FN |
|FN |

.

The upper Banach density of A is

d∗(A) := sup{dF(A) : F is a Følner sequence}. (5)

(For a proof that the de�nitions (1) and (5) are equivalent, see [9, Proposition A.6].)

Let u : G→ C be a bounded sequence. We say (u(g))g∈G has a uniform Cesàro average if

for every Følner sequence (FN )N∈N, the limit

lim
N→∞

1

|FN |
∑
n∈FN

u(g)

exists and is independent of the choice of Følner sequence. In this case, we denote the common

limit by UC − limg∈G u(g).
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2.3. Measure preserving systems. A measure preserving G-system (or G-system) is a

quadruple X = (X,B, µ, T ) where (X,B, µ) is a probability space and G acts on X by trans-

formations Tg which preserve µ; that is

µ(T−1
g A) = µ(A)

for all measurable A ⊂ X and all g ∈ G. In this paper, all probability spaces underlying

G-systems are assumed to be separable, that is, B is countably generated modulo null sets,

or equivalently, Lp(X,B, µ) is separable for all 1 ≤ p < ∞. In particular, if X is a compact

metric space, B is its Borel σ-algebra and µ is any probability measure on B, then (X,B, µ) is
separable. When there is no danger of confusion, we will suppress the σ-algebra B and write

(X,µ, T ) for a G-system. We abbreviate G-systems with boldface letters: X = (X,µ, T ).

The G-system (X,B, µ, T ) is said to be ergodic if µ(A△T−1
g A) = 0 for all g ∈ G implies

µ(A) = 0 or µ(A) = 1.

If f ∈ L2(µ) and g ∈ G, we write Tgf for f ◦ Tg. This de�nes an action of G on L2(µ) by

unitary operators Tg.

A G-system Y = (Y,D, ν, S) together with a map π : X → Y de�ned for µ−almost every

x ∈ X is a factor of X = (X,B, µ, T ) if π∗µ = ν (i.e. µ(π−1(A)) = ν(A) for all A ∈ D) and

for all g ∈ G,

π(Tgx) = Sgπ(x) for µ-almost all x ∈ X.

The map π is called a factor map. The space L2(ν) can be identi�ed with the subspace of L2(µ)

consisting of functions of the form h ◦ π where h ∈ L2(ν). We use E(·|Y ) : L2(µ) → L2(ν) to

denote the corresponding orthogonal projection. Later we abuse notation and write �Y is a

factor of X� instead of �(Y, π) is a factor of X.�

For a Følner sequence (FN )N∈N inG, functions f0, . . . , fk ∈ L∞(µ), and sequences s1, . . . , sk :

G→ G, we say the factor Y is characteristic for the average

I := lim
N→∞

1

|FN |
∑
g∈FN

∫
X
f0 · Ts1(g)f1 · · ·Tsk(g)fk dµ

if

I = lim
N→∞

1

|FN |
∑
g∈FN

∫
Y
f̃0 · Ts1(g)f̃1 · · ·Tsk(g)f̃k dν

where f̃i = E(fi|Y ).

Let “G denote the Pontryagin dual of G, i.e. the group of characters χ : G → S1 with the

operation of pointwise multiplication. A character χ ∈ “G called an eigenvalue of X if there

exists a nonzero function f ∈ L2(µ) such that Tgf = χ(g)f for all g ∈ G. The set of all

eigenvalues for X forms a subgroup of “G, called the spectrum of X and denoted by E(X). If

Y is a factor of X, then E(Y) is a subgroup of E(X). If X is ergodic, then all eigenspaces are

one-dimensional and mutually orthogonal (for a proof, see [39, Theorem 3.1]). Since L2(µ) is

separable, E(X) is at most countable.
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2.4. Kronecker factors. A group rotation G-system is a G-systemK = (K,mK , R) in which

• K is a compact metrizable abelian group with Borel σ-algebra K, probability Haar

measure mK , and

• there is a homomorphism τ : G→ K such Rg(z) = z + τ(g) for all z ∈ K and g ∈ G.

The group rotation (K,mK , R) is ergodic if and only if τ(G) is dense in K. In this case,

(K,mK , R) is in fact uniquely ergodic, i.e.mK is the uniqueR-invariant probability measure on

K (for a proof, see [2, Lemma 2.4]). Consequently, the sequence (τ(g))g∈G is well-distributed

in K, i.e. for every continuous function h ∈ C(K),

UC − lim
g∈G

h(τ(g)) =

∫
K
h dmK . (6)

For an ergodic G-system X, its Kronecker factor K = (K,mK , R) is a factor of X with

factor map π : X → K such that L2(mK) is spanned by the eigenfunctions of X, meaning:

(i) every eigenfunction f ∈ L2(µ) is equal µ-a.e. to f̃ ◦ π for some eigenfunction f̃ ∈
L2(mK), and

(ii) the span of the eigenfunctions of K is dense in L2(mK).

It can be shown that K is the largest factor of X that is isomorphic to an ergodic group

rotation G-system. More concretely, K = (K,mK , R) where K = ’E(X) (see Lemma 3.3 (iii)).

Let (X,µ, T ) be an ergodic G-system with Kronecker factor (K,mK , R) and f1, f2, f3 ∈
L∞(X). It is shown in [2, Theorem 3.1] that if ϕ, ψ : G → G are homomorphisms such that

ϕ(G), ψ(G), and (ψ − ϕ)(G) each have �nite index in G,

UC − lim
g∈G

∫
X
f1 · Tϕ(g)f2 · Tψ(g)f3 dµ (7)

exists and is equal to

UC − lim
g∈G

∫
K
f̃1 ·Rϕ(g)f̃2 ·Rψ(g)f̃3 dmK

where f̃i = E(fi|K) is projection of fi onto L
2(mK). In other words, the Kronecker factor is

characteristic for the average in (7).

2.5. Invariant means. If f ∈ ℓ∞(G) and t ∈ G, de�ne ft ∈ ℓ∞(G) by ft(s) := f(s− t). An

invariant mean on G is a positive linear functional ν : ℓ∞(G) → C such that ν(1G) = 1 and

ν(ft) = ν(f) for every f ∈ ℓ∞(G), t ∈ G.

In the weak∗ topology on ℓ∞(G)∗, the space M(G) of invariant means forms a compact

convex set. An invariant mean ν is said to be extremal, or an extreme point, if it cannot be

written as a convex linear combination of two other invariant means.

Bauer's maximum principle [1, 7.69] implies that if C is a compact convex subset of a

locally convex Hausdor� space, then every real-valued continuous linear functional on C has

a maximizer that is an extreme point. Thus if A ⊂ G, there is an extremal invariant mean ν

such that d∗(A) = ν(1A).

Let H be a countable abelian group and ϕ : G → H be a surjective homomorphism. For

any invariant mean ν on G, the pushforward ϕ∗ν is an invariant mean on H and is de�ned by

ϕ∗ν(h) := ν(h ◦ ϕ),
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for all h ∈ ℓ∞(H). Given f ∈ ℓ∞(G) and an invariant mean ν, we sometimes write∫
G f(t) dν(t) instead of ν(f). If g ∈ ℓ∞(G), we de�ne the �convolution� of f and g with

respect to ν by

f ∗ν g(t) :=
∫
G
f(x)g(t− x) dν(x).

In conventional notation, this could be written as f ∗ν g := ν((g′)tf), where g
′(x) := g(−x).

The following lemma is a special case of [9, Proposition 2.1].

Lemma 2.1. If λ is an extremal invariant mean on G and f, g ∈ ℓ∞(G), then∫∫
G2

f(t)g(t− s) dλ(t)dµ(s) = λ(f)λ(g) (8)

for every invariant mean µ on G.

For completeness we include a proof.

Proof. It su�ces to prove (8) for 0 ≤ f ≤ 1. When λ(f) = 0 or 1, it is straightforward to

check (8). Suppose λ(f) = α ∈ (0, 1). De�ne two invariant means η and η′ by

η(g) =
1

α

∫∫
G2

f(t)g(t−s) dλ(t)dµ(s) and η′(g) =
1

1− α

∫∫
G2

(1−f(t))g(t−s) dλ(t)dµ(s).

Then it is easy to check that λ(g) = αη(g) + (1− α)η′(g). Since λ is extremal, we must have

η = η′ = λ, and we are done. □

2.6. Bohr compacti�cation. The Bohr compacti�cation of G is a compact abelian group

bG, together with a homomorphism τ : G → bG such that τ(G) is dense in bG and every

character χ ∈ “G can be written as χ = χ′ ◦ τ , where χ′ is a continuous homomorphism from

bG to S1. The homomorphism τ is universal with respect to homomorphisms into compact

Hausdor� groups; that is if K is another compact Hausdor� group and π : G → K is a

homomorphism, then there is a unique continuous homomorphism π̃ : bG → K such that

π = π̃ ◦ τ . The Bohr compacti�cation also has a concrete description; it is the dual of “G
where “G is given the discrete topology (see Section 3).

See [34] for basic results on the Bohr compacti�cation and [9] for a recent application to

sumsets.

2.7. Lemmas on Bohr sets. We document two lemmas concerning Bohr sets for later use.

Similar lemmas for compact abelian groups have been proved in [33]; the proofs for arbitrary

abelian groups are identical and so we omit them.

The �rst lemma states that the preimage of a Bohr set is a Bohr set.

Lemma 2.2 ([33, Lemma 2.9]). Let G,H be abelian groups and τ : G → H be a homomor-

phism. If B is a Bohr-(k, η) set in H, then τ−1(B) is a Bohr-(k, η) set in G.

The second lemma says that the image of a Bohr set under a homomorphism with �nite

index image is again a Bohr set.
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Lemma 2.3 ([33, Lemma 2.10] and [23, Lemma 1.7]). Let G be an abelian group and ϕ :

G→ G be an endomorphism with [G : ϕ(G)] <∞. If B is a Bohr-(k, η) set in G, then ϕ(B)

is a Bohr-(k′, η′) set in G where k′, η′ depend only on k, η, and [G : ϕ(G)].

2.8. Almost periodic functions and null functions. A function on G of the form g 7→∑k
i=1 ciχi(g) where ci ∈ C and χi ∈ “G is called a trigonometric polynomial.

An f ∈ ℓ∞(G) is called a (Bohr) almost periodic function if it is a uniform limit of a

sequence of trigonometric polynomials. Alternatively, f is almost periodic if f = h ◦ τ where

h is a continuous function on bG and τ : G→ bG is the natural embedding. Given an almost

periodic function f , a χ ∈ “G, and an invariant mean ν on G, we write f̂(χ) for the Fourier

coe�cient ν(fχ) - it is easy to verify that for an almost periodic f , f̂(χ) does not depend on

the choice of ν.

An f ∈ ℓ∞(G) is called a null function if ν(|f |) = 0 for every invariant mean ν on G.

3. Dense images of discrete groups in compact groups

This section describes a general way to construct a homomorphism τ : G → K from a

discrete abelian group G into a compact abelian groupK. It also provides su�cient conditions

for an endomorphism ϕ of G to induce an endomorphism ϕ̃ of K. This framework provides

a concrete description of the Bohr compacti�cation of G and of the Kronecker factor of an

ergodic G-system. We start with the following.

Lemma 3.1. Let Γ be a locally compact abelian group and let ϕ : Γ → Γ be a continuous

endomorphism. De�ne an endomorphism ϕ∗ : Γ̂ → Γ̂ by ϕ∗(χ) = χ ◦ ϕ. Then
(i) ϕ∗ is continuous.

(ii) Under the canonical identi�cation of
̂̂
Γ with Γ, (ϕ∗)∗ = ϕ.

Proof. (i) By de�nition, Γ̂ is equipped with the topology of uniform convergence on compact

subsets of Γ. It therefore su�ces to prove that if (χn)n∈I is a net of elements of Γ̂ converging

to χ ∈ Γ̂ uniformly on compact subsets of Γ, then (χn ◦ϕ)n∈I converges to χ ◦ϕ uniformly on

compact subsets of Γ. Continuity of ϕ implies ϕ(K) is compact for every compact K ⊂ Γ, so

the assumption that χn → χ uniformly on every compact K ⊂ Γ implies χn → χ uniformly

on ϕ(K) for every compact K ⊂ Γ. But this means (χn ◦ ϕ)n∈I converges to χ ◦ ϕ uniformly

on compact subsets of Γ, as desired.

(ii) For γ ∈ Γ, de�ne the evaluation map eγ(χ) = χ(γ) for any χ ∈ Γ̂. It su�ces to prove

that

(ϕ∗)∗(eγ) = eϕ(γ),

meaning (ϕ∗)∗(eγ)(χ) = χ(ϕ(γ)) for all χ ∈ Γ̂. To see this, note that χ 7→ (ϕ∗)∗(eγ)(χ) is

de�ned by eγ(ϕ
∗(χ)) = eγ(χ ◦ ϕ). □

We now apply Lemma 3.1 in the case where Γ is a discrete group.

Lemma 3.2. Let Λ be a subgroup of “G, viewed as a discrete group, so that Λ̂ is compact.

For g ∈ G, de�ne the evaluation map eg(χ) = χ(g) for χ ∈ “G. De�ne a homomorphism

τ : G→ Λ̂ by τ(g) = eg|Λ. Then
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(i) τ(G) is dense in Λ̂.

(ii) Suppose ϕ : G → G is an endomorphism such that χ ◦ ϕ ∈ Λ for all χ ∈ Λ. Then

there is a continuous endomorphism ϕ̃ of Λ̂ such that ϕ̃ ◦ τ = τ ◦ ϕ. Furthermore,

[Λ̂ : ϕ̃(Λ̂)] ≤ [G : ϕ(G)].

Proof. (i) Let ψ ∈ Λ̂, let F = {χ1, . . . , χd} ⊂ Λ be �nite, and ε > 0. We will show that there

is a g ∈ G such that |ψ(χj)− eg(χj)| < ε for all χj ∈ F . Consider the subgroup

H := {(χ1(g), . . . , χd(g)) : g ∈ G} ⊂ (S1)d.

It su�ces to prove that

t⃗ := (ψ(χ1), . . . , ψ(χd)) ∈ H. (9)

Assume, to get a contradiction, that (9) is false. Then there is a nontrivial character α ∈ ’(S1)d

which annihilates H but does not annihilate t⃗. Writing α(x1, . . . , xd) as x
n1
1 · · ·xnd

d , we have

χ1(g)
n1 · · ·χd(g)nd = 1 for all g ∈ G, (10)

but ψ(χ1)
n1 · · ·ψ(χd)nd ̸= 1. Since ψ is a character, the latter equation means

ψ(χn1
1 · · ·χnd

d ) ̸= 1. (11)

But (10) means that χn1
1 · · ·χnd

d is trivial, contradicting (11).

(ii) De�ne ϕ′ : Λ → Λ by ϕ′(χ) = χ ◦ ϕ. Let ϕ̃ := (ϕ′)∗ as in Lemma 3.1, meaning that

for ψ ∈ Λ̂, ϕ̃(ψ) = ψ ◦ ϕ′. By Lemma 3.1, ϕ̃ is a continuous endomorphism. To verify that

ϕ̃ ◦ τ = τ ◦ ϕ, �x χ ∈ Λ, g ∈ G, and evaluate

ϕ̃(τ(g))(χ) = eg(ϕ
′(χ)) = eg(χ ◦ ϕ) = χ ◦ ϕ(g) = eϕ(g)(χ) = τ(ϕ(g))(χ).

Thus ϕ̃ ◦ τ = τ ◦ ϕ.
Now let k = [G : ϕ(G)] (assuming this index is �nite), and let tj + ϕ(G), j = 1, . . . , k be

coset representatives of ϕ(G). The identity ϕ̃ ◦ τ = τ ◦ ϕ implies ϕ̃(Λ̂) contains τ(ϕ(G)). The

latter subgroup has index at most k, since the translates τ(tj + ϕ(G)) = τ(tj) + τ(ϕ(G)) are

closed and cover a dense subset of Λ̂. Thus ϕ̃(Λ̂) also has index at most k. □

It can be shown that all homomorphisms from G into compact groups with dense images

arise from the construction in Lemma 3.2, though we do not need this fact. When Λ = “G
with the discrete topology, Λ̂ is the Bohr compacti�cation bG of G, which is relevant in the

proof of Theorem 1.4.

In the proofs of Theorems 1.2 and 1.7, we will focus on the case where Λ is at most countable.

The relevance of countability is that, in this case, Λ̂ is compact and metrizable. Consequently,

its Borel σ-algebra is separable (so the theory of factors applies).

The group Λ̂ being abelian, we can write its group operation additively. Equipped with its

normalized Haar measure m
Λ̂
, Λ̂ is naturally endowed with a group rotation via the G-action

R given by Rg(z) := z+ τ(g) for all z ∈ Λ̂ and g ∈ G, where τ is de�ned in Lemma 3.2. Since

τ(G) is dense in Λ̂, this action is ergodic. We will now state some properties of these group

rotations.
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Lemma 3.3.

(i) For all countable subgroups Λ of “G, we have E(Λ̂,m
Λ̂
, R) = Λ. Furthermore, all the

eigenvectors of R corresponding to the eigenvalue λ ∈ Λ are constant multiples of vλ,

where vλ(x) = x(λ) for all x ∈ Λ̂.

(ii) If Λ1 ≤ Λ2 are countable subgroups of “G, then the group rotation associated with Λ̂1

is a factor of the group rotation associated with Λ̂2.

(iii) If X = (X,µ, T ) is an ergodic G-system and Λ = E(X), then (Λ̂,m
Λ̂
, R) is the Kro-

necker factor of X.

Proof. (i) For λ ∈ Λ and x ∈ Λ̂, we have

vλ(x+ τ(g)) = (x+ eg)(λ) = x(λ)λ(g) = λ(g)vλ(x).

This shows that λ is an eigenvalue of (Λ̂,m
Λ̂
, R) and vλ is a corresponding eigenvector.

Conversely, suppose χ ∈ “G and there exists non-zero f ∈ L2(Λ̂) such that for all g ∈ G,

f(x + τ(g)) = χ(g)f(x) for almost all x, we need to show that χ ∈ Λ. Since f is not zero,

there exists λ ∈ Λ such that f̂(λ) ̸= 0. Computing the Fourier coe�cients of both sides, we

have

χ(g)f̂(λ) = eg(λ)f̂(λ) = λ(g)f̂(λ)

for any g ∈ G. Since f̂(λ) ̸= 0, this implies that χ(g) = λ(g) for any g ∈ G. Therefore,

χ = λ ∈ Λ. Furthermore, this also shows that f has exactly one non-zero Fourier coe�cient

and f = f̂(λ)vλ.

(ii) De�ne π : Λ̂2 → Λ̂1 by π(x) = x|Λ1 for all x ∈ Λ̂2. Then π is a surjective, continuous

group homomorphism. By [33, Lemma 2.7], π is measure-preserving.

Recall that the homomorphisms from G to Λ̂1 and Λ̂2 are τ1(g) = eg|Λ1 and τ2(g) = eg|Λ2 .

It is clear that

π(x+ τ2(g)) = π(x) + τ1(g),

thus showing that π is a factor map.

(iii) We assume (see Section 2.3) that L2(µ) is separable. For each λ ∈ Λ = E(X), there is

an eigenvector fλ ∈ L2(X) such that Tgfλ = λ(g)fλ for any g ∈ G. Arguing similarly to

[39, Theorem 3.4], we may assume that |fλ| = 1 and fλξ = fλfξ for any λ, ξ ∈ Λ. De�ning

V (vλ) = fλ and extending V linearly, we have an isometry V : L2(Λ̂) → L2(X) satisfying

V (fg) = V (f)V (g) for any f, g ∈ L2(Λ̂). By [39, Theorem 2.4], V induces a homomorphism

of measure algebras, and therefore a factor map X → Λ̂. Since E(Λ̂) = Λ, part (ii) shows that

Λ̂ is the largest group rotation that is a factor of X. □

4. Radon-Nikodym densities

In this section we make no assumption on the countability (or uncountability) of G. In

particular, the lemmas here will apply when G is an arbitrary discrete abelian group.
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4.1. De�nition of Radon-Nikodym densities. Let K be a compact abelian group and

τ : G→ K be a homomorphism such that τ(G) is dense in K. We describe a way to transfer

a function f : G → [0, 1] to a function ρ : K → [0, 1] with the aid of invariant means. This

construction follows the proof of [24, Lemma 2.5] (cf. Section 4 of [10]); it will be used in the

proofs of Theorems 1.4 and 1.7.

De�nition 4.1. Let f : G→ [0, 1] and let ν be an invariant mean on G. The Radon-Nikodym

density associated with f and ν is a Borel measurable function ρνf : K → [0, 1] satisfying

ν((h ◦ τ) · f) =
∫
K
h · ρνf dmK . (12)

for every continuous h : K → C. It is unique up to mK-measure 0.

Thus ρνf depends on the compact groupK and the map τ . When f = 1A is the characteristic

function of a subset of G, we write ρνA in place of ρν1A to avoid nested subscripts.

Given an invariant mean ν on G, and f : G → [0, 1] we will prove that there is a function

ρνf satisfying De�nition 4.1. We �rst observe the following.

Lemma 4.2. For all h ∈ C(K), we have

ν(h ◦ τ) =
∫
K
h dmK . (13)

Proof. We de�ne a linear functional L on C(K) by

L(h) := ν(h ◦ τ).

By the Riesz representation theorem, there exists a regular Borel probability measure m on

K such that L(h) =
∫
K h dm. On the other hand, for any g ∈ G, we have

L(hτ(g)) = ν((h ◦ τ)g) = ν(h ◦ τ) = L(h) (14)

by translation invariance of ν. Since the map x 7→ hx from K to C(K) is continuous, and

since τ(G) is dense in K, (14) implies L(hx) = L(h) for all x ∈ K. Hence m is translation

invariant. By uniqueness of the Haar measure, we have m = mK as desired. □

Given f : G→ [0, 1], we de�ne a linear functional Λνf : C(K) → R by

Λνf (h) := ν((h ◦ τ) · f). (15)

Clearly Λνf is a positive linear functional; thus by the Riesz representation theorem, there

exists a regular Borel measure m on K such that

Λνf (h) =

∫
K
h dm (16)

for all h ∈ C(K).

Lemma 4.3. The measure m de�ned by (16) is absolutely continuous with respect to the Haar

probability measure mK on K, and in fact m(B) ≤ mK(B) for all Borel sets B ⊂ K.
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Proof. First, by (13), we have∫
K
h dm = ν((h ◦ τ) · f) ≤ ν(h ◦ τ) =

∫
K
h dmK (17)

for any h ∈ C(K).

Let B be any Borel set in K. By regularity of m and mK , there is an open set U , a closed

set V , such that V ⊂ B ⊂ U , m(U \ V ) < ϵ and mK(U \ V ) < ϵ. By Urysohn's lemma, there

exists a continuous function h : K → [0, 1] such that h = 1 on V and h = 0 on U c. Applying

(17), we have

m(B) ≤ m(V ) + ϵ ≤
∫
K
h dm+ ϵ ≤

∫
K
h dmK + ϵ ≤ mK(U) + ϵ ≤ mK(B) + 2ϵ.

Since ϵ is arbitrary, this implies that m(B) ≤ mK(B). Therefore, m is absolutely continuous

with respect to mK . □

We now prove that, for each f : G→ [0, 1], there is a ρνf satisfying (12). Given such an f , we

consider the measure m on K de�ned above. Since m is absolutely continuous with respect to

mK , we may de�ne ρνf to be the Radon-Nikodym derivative ofm with respect tomK , meaning

ρνf is the unique (up to mK-measure 0) function in L1(mK) satisfying
∫
h ρνf dmK =

∫
h dm

for all h ∈ C(K). Then (12) follows from (15) and (16). The inequality 0 ≤ ρνf ≤ 1 mK-

a.e. follows from the fact that 0 ≤ m(B) ≤ mK(B) for all Borel sets B.

4.2. Properties of ρνA. We will now state some properties of ρνf when f is the characteristic

function of a set. Recall that we write ρνA in place of ρν1A .

Lemma 4.4. Let A ⊂ G and let ν be an invariant mean on G. Then

(i)
∫
K ρ

ν
A dmK = ν(1A),

(ii) ρνA is supported on τ(A), that is, ρνA = 0 mK-a.e. on K \ τ(A).

Proof. The �rst claim follows from the de�nition of ρνA. For the second claim, let h : K → R≥0

be any continuous function that is supported on K \ τ(A). If g ∈ A, then τ(g) ∈ τ(A) will

not be in the support of h. In other words, h ◦ τ · 1A(g) = 0 for all g ∈ G, and so∫
K
h · ρνA dmK = ν((h ◦ τ) · 1A) = 0. (18)

Suppose for a contradiction that there exists a Borel set V ⊂ K \ τ(A) with mK(V ) > 0

such that ρνA > 0 on V . Since mK is regular, we may assume that V is closed. By Urysohn's

lemma, there is a continuous function h : K → [0, 1] that is equal to 1 on V and 0 on τ(A).

Then (18) implies that
∫
V ρ

ν
AdmK = 0, a contradiction. □

Lemma 4.5. Let G =
⋃r
i=1Ai be a partition of G and let ν be an invariant mean on G.

Then
r∑
i=1

ρνAi
(x) = 1

for mK-almost every x.
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Proof. Since
∑r

i=1 1Ai = 1, for any h ∈ C(K),∫
K
h

(
r∑
i=1

ρνAi

)
dmK =

r∑
i=1

ν(h ◦ τ · 1Ai) = ν(h ◦ τ) =
∫
K
h dmK

where the last equality comes from Lemma 4.2. Since C(K) is dense in L1(mK), this implies

that
∑r

i=1 ρ
ν
Ai

= 1 almost everywhere. □

4.3. Relation between ρA and ρϕ(A). Let G = A1 ∪ · · · ∪ Ar. Our proof of Theorem 1.4

relies on a correspondence principle relating ϕ1(Ai) +ϕ2(Ai)−ϕ2(Ai) to a convolution of the

form 1ϕ̃1(Bi)
∗1ϕ̃2(Bi)

∗1ϕ̃2(−Bi)
on a compact abelian group K. To prove such a correspondence

principle, we need Lemma 4.6 and Corollary 4.10, which specify the relationship between the

Radon-Nikodym densities of 1A and 1ϕ(A). In order to make the relevant issues apparent, the

next lemma takes place in slightly greater generality than we need for our application.

Lemma 4.6. Let G and H be discrete abelian groups and let ϕ : G → H be a surjective

homomorphism. Let K1, K2 be compact abelian groups and τ1 : G → K1, τ2 : H → K2

be homomorphisms with dense images. Suppose ϕ̃ : K1 → K2 is a continuous surjective

homomorphism such that

(i) ϕ̃ ◦ τ1 = τ2 ◦ ϕ, and
(ii) for all χ ∈ “K1, if there is a ψ ∈ “H such that χ ◦ τ1 = ψ ◦ ϕ, then there is a χ′ ∈ “K2

such that ψ = χ′ ◦ τ2 (see Diagram (19)).

Let f : H → [0, 1] and let ν be an invariant mean on G. Let ρνf◦ϕ : K1 → [0, 1] and

ρϕ∗νf : K2 → [0, 1] be the associated Radon-Nikodym densities as in De�nition 4.1. Then

ρνf◦ϕ = (ρϕ∗νf ) ◦ ϕ̃

mK1-almost everywhere.

G K1 S1

H K2

τ1

ϕ

χ

ϕ̃

τ2

ψ

χ′
(19)

Figure 2. Illustration of (ii)

Remark 4.7.

• The surjectivity of ϕ is required for ϕ∗ν to be an invariant mean on H, and thus for

ρϕ∗νf to be de�ned on K2.

• The assumption (ii) is satis�ed by the groups we use in the proof of Theorem 1.4;

namely K1 will be the Bohr compacti�cation of G, K2 will be ϕ̃(K1), which will

coincide with the Bohr compacti�cation bH of H, and τ2 : H → K2 will be the usual

embedding of H into bH.
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Proof. We will prove that ‘ρνf◦ϕ =
⁄�
(ρϕ∗νf ) ◦ ϕ̃. (20)

We �rst identify some characters of G which are orthogonal to f ◦ ϕ.

Claim 4.8. Let ψ ∈ “G. Then ν((f ◦ ϕ) · ψ) = 0 unless ψ = ψ′ ◦ ϕ for some ψ′ ∈ “H.

Similarly, if χ ∈ “K1, and h ∈ L2(mK2), then
’
h ◦ ϕ̃(χ) = 0 unless χ = χ′ ◦ ϕ̃ for some

χ′ ∈ “K2.

To see this, assume ψ ∈ “G does not have the form ψ′ ◦ ϕ for some ψ′ ∈ “H. Then there is a

g ∈ kerϕ such that ψ(g) ̸= 1.4 We then have

ν((f ◦ ϕ) · ψ) = ν
(
((f ◦ ϕ) · ψ)g

)
= ν

(
(f ◦ ϕ) · (ψ)g

)
= ψ(g)ν

(
(f ◦ ϕ) · ψ

)
.

So ν((f ◦ ϕ) · ψ) = ψ(g)ν((f ◦ ϕ) · ψ), which means ’f ◦ ϕ(ψ) = 0, since ψ(g) ̸= 1. This proves

the �rst statement in the claim, and the second statement is proved similarly.

Claim 4.9. Let χ ∈ “K1. Then ‘ρνf◦ϕ(χ) = 0 unless χ = χ′ ◦ ϕ̃ for some χ′ ∈ “K2.

To prove this claim, let χ ∈ “K1. Then‘ρνf◦ϕ(χ) = ∫
K1

ρνf◦ϕ χdmK1 = ν ((f ◦ ϕ) · (χ ◦ τ1)) .

By Claim 4.8, the above evaluates to 0 unless χ ◦ τ1 = ψ ◦ ϕ for some ψ ∈ “H. Choosing such

a ψ, we have ‘ρνf◦ϕ(χ) = ν((f ◦ ϕ) · (ψ ◦ ϕ)) = ϕ∗ν(fψ).

By assumption (ii), we may write ψ as χ′ ◦ τ2 for some χ′ ∈ “K2. Then χ ◦ τ1 = (χ′ ◦ τ2) ◦ ϕ =

χ′ ◦ ϕ̃ ◦ τ1. So χ ◦ τ1 = χ′ ◦ ϕ̃ ◦ τ1. The denseness of τ1(G) in K1 and continuity of χ then

implies χ = χ′ ◦ ϕ̃. This shows that ‘ρνf◦ϕ(χ) = 0 unless χ = χ′ ◦ ϕ̃ for some χ′ ∈ “K2.

We now prove equation (20).

4Supposing ψ(g) = 1 for all g ∈ kerϕ, we de�ne a character ψ′ on H by ψ′(ϕ(g)) = ψ(g). This is well

de�ned, since ϕ(g) = ϕ(g′) implies ψ(g) = ψ(g′). To check that ψ′(h+ h′) = ψ′(h)ψ′(h′), choose g, g′ so that

ϕ(g) = h and ϕ(g′) = h′, and evaluate ψ′(h+ h′) as ϕ(g + g′) = ϕ(g)ϕ(g′) = ψ′(ϕ(g))ψ′(ϕ(h)).
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Case 1: χ = χ′ ◦ ϕ̃ for some χ′ ∈ “K2. Then‘ρνf◦ϕ(χ) = ∫
K1

ρνf◦ϕ χdmK1

= ν ((f ◦ ϕ) · (χ ◦ τ1)) by de�nition of ρνf◦ϕ

= ν
(
(f ◦ ϕ) ·

(
χ′ ◦ ϕ̃ ◦ τ1

))
= ν

(
(f ◦ ϕ) ·

(
χ′ ◦ τ2 ◦ ϕ

))
= ϕ∗ν

(
f · χ′ ◦ τ2

)
=

∫
K2

ρϕ∗νf χ′ dmK2

=

∫
K1

Ä
ρϕ∗νf ◦ ϕ̃

ä
·
Ä
χ′ ◦ ϕ̃

ä
dmK1

=
ÿ�
ρϕ∗νf ◦ ϕ̃(χ).

Case 2: χ ̸= χ′ ◦ ϕ̃ for all χ′ ∈ “K2. In this case, Claim 4.8 implies
⁄�
(ρϕ∗νf ) ◦ ϕ̃(χ) = 0 and

Claim 4.9 implies ‘ρνf◦ϕ(χ) = 0. □

Corollary 4.10. Let G be a discrete abelian group, ν an invariant mean on G and ϕ : G→ G

an endomorphism. Let K be a compact abelian group, τ : G→ K a homomorphism with dense

image, and ϕ̃ : K → K an endomorphism such that ϕ̃ ◦ τ = τ ◦ ϕ. Assume further that for all

χ ∈ “K, if there is a ψ ∈ “G such that χ◦ τ = ψ ◦ϕ, then there is a χ′ ∈ “K such that ψ = χ′ ◦ τ .
Let H = ϕ(G), A ⊂ G, and let ρνA : K → [0, 1] and ρϕ∗νϕ(A) : ϕ̃(K) → [0, 1] be the associated

Radon-Nikodym densities. Then

0 ≤ ρνA ≤ ρϕ∗νϕ(A) ◦ ϕ̃

mK-almost everywhere.

Proof. Applying Lemma 4.6 for H = ϕ(G) and f = 1ϕ(A) : H → [0, 1], we get

ρν1ϕ(A)◦ϕ = ρϕ∗ν1ϕ(A)
◦ ϕ̃.

Since 1ϕ(A) ◦ ϕ = 1ϕ−1(ϕ(A)) ≥ 1A, we have

ρν1ϕ(A)◦ϕ ≥ ρνA.

It follows that ρν1A ≤ ρϕ∗ν1ϕ(A)
◦ ϕ̃, meaning

ρνA ≤ ρϕ∗νϕ(A) ◦ ϕ̃. □

5. Reducing correlation sequences to integrals in compact groups

The goal of this section is to show that certain averages for ergodic G-systems can be re-

duced to double integrals on a compact group. Lemma 5.1 establishes this for group rotations

on a compact abelian group K, as long as some endomorphisms on G can be extended to all

of K.
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Lemma 5.1. Let K be a compact abelian group and let τ : G → K be a homomorphism

with dense image. Let ϕ1, ϕ2, ϕ3 : G → G be endomorphisms. Suppose there are continuous

endomorphisms ϕ̃i : K → K such that ϕ̃i ◦ τ = τ ◦ ϕi for 1 ≤ i ≤ 3. Then for all bounded

measurable f1, f2, f3 : K → C, we have

I(f⃗ , ϕ⃗) := UC − lim
g∈G

∫
K
f1(z + τ(ϕ1(g)))f2(z + τ(ϕ2(g)))f3(z + τ(ϕ3(g))) dmK(z)

=

∫∫
K2

f1(z + ϕ̃1(t))f2(z + ϕ̃2(t))f3(z + ϕ̃3(t)) dmK(z) dmK(t).

Proof. Since I(f⃗ , ϕ⃗) is continuous in fi (with respect to the L2(mK)-norm) and multilinear in

fi, it su�ces to prove the identity when each fi is a character χi of K. In this case we have

I(χ1, χ2, χ3, ϕ⃗) = UC − lim
g∈G

∫
K
χ1χ2χ3(z)

3∏
i=1

χi(τ(ϕi(g))) dmK(z)

= UC − lim
g∈G

∫
K
χ1χ2χ3(z)

3∏
i=1

χi ◦ ϕ̃i(τ(g)) dmK(z).

By (6), we have

I(χ1, χ2, χ3, ϕ⃗) =

∫∫
K2

χ1χ2χ3(z)

3∏
i=1

χi ◦ ϕ̃i(t) dmK(z)dmK(t)

=

∫∫
K2

3∏
i=1

χi(z + ϕ̃i(t)) dmK(z)dmK(t),

and this �nishes our proof. □

The next proposition deals with a general ergodic G-system X. The compact group in

question will be an extension K of the group Z underlying Kronecker factor of X, constructed

to be invariant under the corresponding ϕ̃i, as required by Lemma 5.1.

Proposition 5.2. Given an ergodic measure preserving G-system X = (X,µ, T ) and f : X →
[0, 1], de�ne I : G→ R≥0 by

I(w) := UC − lim
g∈G

∫
X
f · Tϕ3(g)f · Tw−ϕ2(g)f dµ,

where ϕ2, ϕ3 : G → G are endomorphisms such that ϕ2, ϕ3, ϕ2 + ϕ3 have �nite index images

in G.

Then there are a compact abelian group K, a homomorphism τ : G→ K with dense image,

endomorphisms ϕ̃2, ϕ̃3 : K → K and f̃ : K → [0, 1] with
∫
K f̃ dmK =

∫
X f dµ such that for

all w ∈ G,

I(w) =

∫∫
K2

f̃(z)f̃(z + ϕ̃3(t))f̃(z + τ(w)− ϕ̃2(t)) dmK(z) dmK(t). (21)

Furthermore, [K : ϕ̃i(K)] ≤ [G : ϕi(G)] for each i ∈ {2, 3} and [K : (ϕ̃2 + ϕ̃3)(K)] ≤ [G :

(ϕ2 + ϕ3)(G)].
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Proof. Let ϕ1 = −ϕ2 − ϕ3. We �rst prove the special case of the lemma where E(X) is

invariant under each ϕi, meaning that for all eigenvalues λ ∈ E(X) and i ∈ {1, 2, 3}, we have
λ◦ϕi ∈ E(X). In this case, the conclusion was also observed in [2, Remark 3.2]. By [2, Section

3], the Kronecker factor (Z,mZ , R) of (X,µ, T ) is characteristic for the average de�ning I(w).

Let τ : G → Z be the canonical projection. We can therefore replace f with f̃ := E(f |Z)
without changing I(w):

I(w) = UC − lim
g∈G

∫
Z
f̃ ·Rϕ3(g)f̃ ·Rw−ϕ2(g)f̃ dmZ

= UC − lim
g∈G

∫
Z
f̃(z)f̃(z + τ(ϕ3(g)))f̃(z + τ(w − ϕ2(g))) dmZ(z). (22)

In view of Lemma 3.2, let ϕ̃i : Z → Z be continuous endomorphisms satisfying τ◦ϕi = ϕ̃i◦τ .
Applying this identity to (22), we have

I(w) = UC − lim
g∈G

∫
Z
f̃(z)f̃(z + ϕ̃3(τ(g)))f̃(z + τ(w)− ϕ̃2(τ(g))) dmZ(z).

By Lemma 5.1, we can rewrite the previous line as

I(w) =

∫∫
Z2

f̃(z)f̃(z + ϕ̃3(t))f̃(z + τ(w)− ϕ̃2(t))) dmZ(z) dmZ(t).

Taking K = Z, we prove the proposition in this special case.

For the general case, let Λ be the smallest subgroup of “G that contains E(X) and is

closed under each ϕ∗i . Since E(X) is countable, it is easy to see that Λ is countable. Let

K = (Λ̂,m
Λ̂
, R) be the group rotation on Λ̂ described in Lemma 3.3. By part (i) of Lemma 3.3,

we have E(K) = Λ. Since E(Z) = E(X) ⊂ Λ, part (ii) of Lemma 3.3 implies that Z is a factor

of K.

We now �x an ergodic G-system Y = (Y, ν, S) that is a common extension of X and K.

For example, we can take Y = (X ×K, ν, T ×R) to be an ergodic joining of X and K. (For

details about joinings and the existence of ergodic joinings, see Glasner [19, Section 6] or de

la Rue [14, Section 3.1].)

Writing π : Y → X for the factor map, we de�ne f ′ : Y → [0, 1] to satisfy f ′ := f ◦ π and

I ′(w) := UC − lim
g∈G

∫
Y
f ′ · Sϕ3(g)f

′ · Sw−ϕ2(g)f
′ dν.

Since f ′ is a lift from f on X, it is obvious that I ′ = I and the Kronecker factor Z of

X is characteristic for the averages I ′(w). Thus any factor of Y between Y and Z is also

characteristic for I ′(w). In particular,K is characteristic for I ′(w). Now applying an argument

similar to the �rst part of the proof to the factor K of Y and the function f ′, we obtain the

compact group K = Λ̂, the function f̃ = E(f ′|K), and endomorphisms ϕ̃i satisfying (21).

Finally, we have [K : ϕ̃i(K)] ≤ [G : ϕi(G)] for each i ∈ {1, 2, 3} by Lemma 3.2 (ii). □

6. First correspondence principle and Bohr sets in ϕ1(A) + ϕ2(A) + ϕ3(A)

Proposition 6.1. Let G be a countable abelian group. Let ϕ1, ϕ2, ϕ3 : G → G be commuting

endomorphisms with �nite index images such that ϕ1 + ϕ2 + ϕ3 = 0. Let (X,µ, T ) be an
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ergodic G-system and f : X → [0, 1] with
∫
X f = δ > 0. De�ne the function I : G→ [0, 1] by

I(w) := UC − lim
g∈G

∫
X
f · Tϕ3(g)f · Tw−ϕ2(g)f dµ.

Then supp(I) contains a Bohr-(k, η) set where k, η depend only on δ and the indices of ϕi(G)

in G.

Proof. By Proposition 5.2, there exist a compact abelian group K with Haar measure mK ,

a homomorphism τ : G → K with dense image, and endomorphisms ϕ̃i : K → K, and

f̃ : K → [0, 1] with
∫
K f̃ dmK =

∫
X f dµ = δ such that

I(w) =

∫∫
K2

f̃(z)f̃(z + ϕ̃3(t))f̃(z + τ(w)− ϕ̃2(t)) dmK(z) dmK(t).

Furthermore, [K : ϕ̃i(K)] ≤ [G : ϕi(G)] for each i. Now de�ne I ′ : K → [0, 1] by

I ′(w̃) :=

∫∫
K2

f̃(z)f̃(z + ϕ̃3(t))f̃(z + w̃ − ϕ̃2(t)) dmK(z) dmK(t).

By change of variable z 7→ z + ϕ̃2(t) and using ϕ2 + ϕ3 = −ϕ1, we obtain

I ′(w̃) =

∫∫
K2

f̃(z + ϕ̃2(t))f̃(z − ϕ̃1(t))f̃(z + w̃) dmK(z) dmK(t).

Applying [33, Proposition 4.3], it follows that supp(I ′) contains a Bohr-(k, η) set B in K

where k, η depends only on δ and the indices [K : ϕ̃i(K)]. It is easy to see that supp(I)

contains τ−1(B). Moreover, Lemma 2.2 implies that τ−1(B) contains a Bohr-(k, η) set in G,

completing the proof. □

Proposition 6.2 (First correspondence principle). Let G be a countable abelian group and

A ⊂ G with d∗(A) = δ > 0. Let ϕ1, ϕ2, ϕ3 be commuting endomorphisms of G with �nite

index image such that ϕ1 + ϕ2 + ϕ3 = 0. Then there is an ergodic G-system X := (X,µ, T )

and a function f : X → [0, 1] with
∫
X f dµ = d∗(A) such that the function I : G → [0, 1]

de�ned by

I(w) := UC − lim
g∈G

∫
X
f · Tϕ3(g)f · Tw−ϕ2(g)f dµ

satis�es ϕ3(supp I) ⊂ ϕ1(A) + ϕ2(A) + ϕ3(A).

Proof. By Furstenberg's correspondence principle (for example, see [6, Theorem 2.8]), there

exists an ergodic G-system (X,µ, T ) and a measurable set E ⊂ X with µ(E) = d∗(A) such

that for all w1, w2 ∈ G,

µ(E ∩ T−1
w1
E ∩ T−1

w2
E) ≤ d∗(A ∩ (A− w1) ∩ (A− w2)).

Letting f = 1E , w1 = ϕ3(g) and w2 = w − ϕ2(g), we deduce that for all w and g ∈ G,∫
X
f · Tϕ3(g)f · Tw−ϕ2(g)f dµ ≤ d∗(A ∩ (A− ϕ3(g)) ∩ (A− (w − ϕ2(g))).

It follows that if w ∈ supp(I), then there are h ∈ A and g ∈ G such that h, h + ϕ3(g), and

h+ w − ϕ2(g) all belong to A. Therefore,

ϕ3(w) = ϕ1(h) + ϕ2(h+ ϕ3(g)) + ϕ3(h+ w − ϕ2(g)) ∈ ϕ1(A) + ϕ2(A) + ϕ3(A) (23)
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and this �nishes our proof. Note that in (23), we use the fact that ϕ2 ◦ ϕ3 = ϕ3 ◦ ϕ2. □

We are ready to prove Theorem 1.2.

Proof of Theorem 1.2. By Proposition 6.2, there exists an ergodic G-system (X,µ, T ) and

f : X → [0, 1] with
∫
X f = d∗(A) such that

I(w) = UC − lim
g∈G

∫
X
f · Tϕ3(g)f · Tw−ϕ2(g)f dµ

has ϕ3(supp(I)) ⊂ ϕ1(A) + ϕ2(A) + ϕ3(A).

In view of Proposition 6.1, supp(I) contains a Bohr-(k, η) set where k, η only depends

on δ and the indices of ϕi(G) in G. Lemma 2.3 then implies that ϕ3(supp(I)) contains a

Bohr-(k′, η′) set where k′, η′ depends only on δ and the indices mentioned above. □

7. Second correspondence principle

In this section we establish the second correspondence principle Proposition 7.1, which is

used in the proof of Theorem 1.4. This can be thought of as a special case of Propositions

3.1 and 3.2 of [10]. Here we write bG for the Bohr compacti�cation of G.

Proposition 7.1 (Second correspondence principle). Let K = bG and let τ : G → K be

the natural embedding. Let A,B ⊂ G and let ν, λ be two invariant means on G where λ is

extremal. Then A+B −B contains τ−1(supp(ρνA ∗ ρλB ∗ ρλ−B)).

Proof. By Lemma 4.4, the Radon-Nikodym density ρνA is supported on τ(A). Therefore the

convolution ρνA ∗ ρλB, which is de�ned as

ρνA ∗ ρλB(z) :=
∫
K
ρνA(x)ρ

λ
B(z − x) dmK(x),

is supported on τ(A)+τ(B) = τ(A+B). Similarly ρνA∗ρλB∗ρλ−B is supported on τ(A+B −B).

This, however, is weaker than the conclusion of Proposition 7.1 and is insu�cient for our pur-

pose.

De�ne ϕ, θ : G→ [0, 1] by

ϕ(t) := 1B ∗λ 1−B(t) :=
∫
G
1B(x)1−B(t− x) dλ(x)

and

θ(t) := 1A ∗ν ϕ(t) :=
∫
G
1A(y)ϕ(t− y) dν(y).

We can see that θ is supported on A+B−B. It remains to show that θ = (ρνA ∗ρλB ∗ρλ−B)◦ τ .

Claim 7.2. ϕ = η + ψ where ψ is a null function and η := (ρλB ∗ ρλ−B) ◦ τ .

Proof of claim. One can verify that ϕ is positive de�nite by writing
∑

g,h∈G cgchϕ(g − h) as∫
G(
∑

g cg1B(x−g))
∑

h ch1B(x− h) dλ(x) =
∫
G

∣∣∑
g 1B(x−g)

∣∣2 dλ(x) for a �nite collection of

coe�cients cg ∈ C. Therefore, by the Bochner-Herglotz Theorem, ϕ is the Fourier transform
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of a positive measure σ on “G. Decomposing σ = σd + σc where σd is the discrete component

of σ and σc is the continuous part, we have

ϕ = σ̂d + σ̂c. (24)

Since σd has only countably many atoms, σ̂d is an almost periodic function. On the other

hand, by Wiener's lemma (see [21, Théorème 16(2)]),
∫
G |σ̂c|2 dµ = 0 for all invariant means

µ on G.

Now we will prove that σ̂d = η. We �rst show that σ̂d and η are almost periodic functions

de�ned by Fourier series on G with absolutely summable coe�cients. To see this for σ̂d, we

write σ̂d =
∑

χ∈“G σ({χ})χ, where ∑χ∈“G σ({χ}) is a convergent sum of nonnegative values.

For η, note that both ρλB and ρλ−B are in L2(mK). Thus, their Fourier coe�cients are square-

summable, and the Fourier coe�cents of ρλB ∗ ρλ−B are absolutely summable. To prove that

σ̂d = η, it therefore su�ces to prove that σ̂d and η have the same Fourier coe�cients. This is

the same as showing that ϕ and η have the same Fourier coe�cients, as the Fourier coe�cients

of σ̂c are all 0 (since σ̂c is a null function). So we verify that

µ(ϕχ) = µ(ηχ)

for every invariant mean µ on G and every character χ ∈ “G. Fix the invariant mean µ,

characters χ ∈ “G, and χ′ ∈ “K such that χ = χ′ ◦ τ . We then have

µ(ϕχ) =

∫∫
G2

1B(t)1−B(s− t)χ(s) dλ(t)dµ(s)

=

∫∫
G2

(1B · χ)(t) · (1−B · χ)(s− t) dλ(t)dµ(s)

= λ(1B · χ)λ(1−B · χ) (by Lemma 2.1)

=

∫
K
ρλBχ

′ dmK ·
∫
K
ρλ−Bχ

′ dmK (by de�nitions of ρλB and ρλ−B)

= ρ̂λB(χ
′) ·‘ρλ−B(χ′)

=Ÿ�ρλB ∗ ρλ−B(χ
′)

=

∫
K
(ρλB ∗ ρλ−B) · χ′ dmK

= µ(ηχ) (by the de�nition of η and Lemma 4.2). □

We are ready to prove θ = (ρνA ∗ ρλB ∗ ρλ−B) ◦ τ . Indeed, by Claim 7.2,

θ := 1A ∗ν ϕ = 1A ∗ν η + 1A ∗ν ψ

where ψ is a null function and η = (ρλB ∗ ρλ−B) ◦ τ . For all t ∈ G, we have

|1A ∗ν ψ(t)| ≤ ν(| − ψt|) = ν(|ψ|) = 0.

Moreover, since η is a Fourier series with absolutely summable coe�cients, 1A ∗ν η is as well.

It follows that θ is almost periodic. Therefore, to show θ = (ρνA ∗ ρλB ∗ ρλ−B) ◦ τ , it su�ces

to check that θ and (ρνA ∗ ρλB ∗ ρλ−B) ◦ τ have the same Fourier coe�cients. We omit the

computations as they are nearly identical to the proof of Claim 7.2. □
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8. Bohr sets in ϕ1(Ai) + ϕ2(Ai)− ϕ2(Ai)

In this section we prove Theorem 1.4, which says that ϕ1(Ai) + ϕ2(Ai) − ϕ2(Ai) contains

a Bohr set for some Ai in any partition G =
⋃r
i=1Ai. Since the proof is technical and

uses cumbersome notation, we �rst sketch the main idea. Fix an invariant mean ν on G.

The pushforwards ϕ1,∗ν and ϕ2,∗ν are invariant means on H1 = ϕ1(G) and H2 = ϕ2(G),

respectively. Since H1, H2 are only subgroups of G, in order to apply the correspondence

principle (Proposition 7.1), we need to extend ϕ1,∗ν and ϕ2,∗ν to means ν1 and ν2 on G.

Furthermore, ν can be chosen in such a way that ν2 is extremal. Having found such extensions,

Proposition 7.1 implies that ϕ1(Ai) + ϕ2(Ai) − ϕ2(Ai) contains the preimage of the support

of

ρν1ϕ1(Ai)
∗ ρν2ϕ2(Ai)

∗ ρν2−ϕ2(Ai)
,

which in turn contains a Bohr set for some i ∈ [r] thanks to Corollary 4.10 and the corre-

sponding partition result in compact groups (Theorem D (ii)) from [33].

The precise result we need from [33] is the following.

Proposition 8.1 ([33, Proposition 3.4]). Let K be a compact abelian group and ϕ̃1, ϕ̃2 be

commuting continuous endomorphisms on K with �nite index images. Suppose ρ1, . . . , ρr :

K → [0, 1] are measurable functions such that
∑r

i=1 ρi ≥ 1 almost everywhere. For w ∈ G,

de�ne

Ri(w) =

∫∫
K2

ρi(ϕ̃2(v))ρi(w + u)ρi(u+ ϕ̃1(v)) dµK(u)dµK(v).

Then there are k, η > 0 depending only on [K : ϕ̃1(K)], [K : ϕ̃2(K)] and r such that for some

i ∈ [r], the support of Ri contains a Bohr-(k, η) set.

We turn to the details. The following lemma helps us extend an invariant mean on H =

ϕ(G) to a mean on G by thinking of ℓ∞(H) as embedded into ℓ∞(G) through the pullback

map ϕ∗.

Lemma 8.2. Let G and H be discrete abelian groups and ϕ : G → H be a surjective homo-

morphism. Then for every invariant mean µ on H, there exists an invariant mean ν on G

such that ϕ∗ν = µ.

Proof. First we observe that if ν is a linear functional on ℓ∞R (G) and ν(1G) = 1, then ν is

positive if and only if ν(f) ≥ p(f) := infx∈G f(x) for all f ∈ ℓ∞R (G). Clearly p is a concave

function.

Let V be the vector subspace of ℓ∞R (G) consisting of functions of the form h ◦ ϕ for some

h ∈ ℓ∞R (H). If f ∈ V , then by surjectivity of ϕ, there is a unique h ∈ ℓ∞R (H) such that

f = h ◦ ϕ. We have

µ(h) ≥ inf
y∈H

h(y) (since µ is an invariant mean on H)

= inf
x∈G

h(ϕ(x)) = p(f) (since ϕ is surjective).

By the Hahn-Banach theorem, the linear functional f 7→ µ(h) on V can be extended to a

linear functional λ on ℓ∞R (G) such that λ(f) ≥ p(f) for any f ∈ ℓ∞R (G). In particular, λ is
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positive and λ(1G) = λ(1H ◦ ϕ) = µ(1H) = 1. We now show that λ can be further re�ned to

become G-invariant.

We let η be an invariant mean on G, and de�ne

ν(f) :=

∫
G
λ(fx) dη(x)

for all f ∈ ℓ∞R (G). Then ν(fg) = ν(f) for all g ∈ G, since η is translation invariant. The

positivity of ν follows from the positivity of λ and η. If f = h ◦ ϕ ∈ V , then λ(fg) =

µ(hϕ(g)) = µ(h) for all g ∈ G, so ν(f) = µ(h). The lemma now follows, since an invariant

mean is completely determined by its values on real-valued functions. □

If H happens to be a subgroup of G, then another way to extend a mean on H to a mean

on G is to consider ℓ∞(H) as a subset of ℓ∞(G) consisting of functions supported on H. This

is the content of the next lemma.

Lemma 8.3. Let H be a subgroup of G of index k ∈ N and let µ be an invariant mean on

H. There exists a unique invariant mean ν on G such that

ν(f) =
µ(f)

k

for every f ∈ ℓ∞(G) supported on H. Furthermore, if µ is extremal then ν is also extremal.

Proof. Let H − gi for 0 ≤ i ≤ k − 1 be the cosets of H in G with g0 = 0. We �rst show that

an invariant mean ν satisfying the conclusion of the lemma must be unique. For a function f

supported on H − gi, the function fgi given by x 7→ f(x− gi) is supported on H. Therefore,

in this case, since ν is G-invariant, we must have

ν(f) = ν(fgi) =
µ(fgi)

k
. (25)

For an arbitrary f ∈ ℓ∞(G), de�ne f i = f · 1H−gi . Since f =
∑k−1

i=0 f
i, from the previous

paragraph, we must have

ν(f) =
k−1∑
i=0

ν(f i) =
1

k

k−1∑
i=0

µ((f i)gi). (26)

This equation uniquely de�nes ν.

It is easy to see that ν as de�ned in (26) is a linear functional on ℓ∞(G) with ν(1G) = 1.

To show ν is G-invariant, we consider arbitrary g ∈ G and f ∈ ℓ∞(G). By the linearity of ν

and (25),

ν(fg) =

k−1∑
i=0

ν((f i)g) =
1

k

k−1∑
i=0

µ(((f i)g)gj(i)) =
1

k

k−1∑
i=0

µ(((f i)g+gj(i)). (27)

where j(i) ∈ {0, . . . , k − 1} is such that −gi + g + gj(i) ∈ H. For i ∈ {0, . . . , k − 1}, let
h = −gi + g + gj(i). Since µ is H-invariant,

µ(((f i)g+gj(i)) = µ(((f i)gi+h) = µ((f i)gi). (28)

Relations (26), (27), and (28) give ν(fg) = ν(f), and so ν is G-invariant.
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Suppose µ is extremal. To show that ν is extremal, suppose ν = αν1+(1−α)ν2 where ν1 and
ν2 are means on G and 0 < α < 1. Restricting to S := {f ∈ ℓ∞(G) : f is supported on H},
we get

µ/k = ν|S = αν1|S + (1− α)ν2|S .
Since µ is extremal, it must be that ν1|S = ν2|S = µ/k. Due to the uniqueness of the extension

of µ from H to G, we deduce that ν1 = ν2 = ν. Therefore, ν is extremal. □

The next lemma shows that if H is a subgroup of G with �nite index, then the Radon-

Nikodym density associated with the mean µ on H and the one associated with its extension

on G are the same.

Lemma 8.4. Let H be a subgroup of G of index k ∈ N. Let K be a compact abelian group

and τ : G → K be a homomorphism with dense image and KH = τ(H). Let B ⊂ H and

µ be an invariant mean on H. Let ν be the extension of µ to G as stated in Lemma 8.3.

Suppose ρνB : K → [0, 1] and ρµB : KH → [0, 1] are the associated Radon-Nikodym densities.

By identifying ρµB with its extension to 0 outside of KH , we have

ρνB = ρµB

mK-almost everywhere.

Proof. As in the proof of Lemma 8.3, let H − gi for 0 ≤ i ≤ k − 1 be the cosets of H in G

with g0 = 0. Since B ⊂ H, according to Lemma 4.4, both ρνB and ρµB are supported on KH .

From (26), for h ∈ C(K),

ν(h ◦ τ · 1B) =
1

k

k−1∑
i=0

µ((h ◦ τ · 1B · 1H−gi)gi). (29)

Since 1B is supported on H,

h ◦ τ · 1B · 1H−gi = 0 if i ̸= 0.

Therefore, the right hand side of (29) is equal to

1

k
µ(h ◦ τ · 1B)

which is equal to
1

k

∫
KH

h · ρµB dmKH
.

It follows that ∫
K
h · ρνB dmK = ν(h ◦ τ · 1B) =

1

k

∫
KH

h · ρµB dmKH
.

Since when restricting to KH , the measure mK is equal to 1
kmKH

, we deduce that ρνB =

ρµB. □

We are ready to prove Theorem 1.4. Our proof will use Corollary 4.10, applied in the case

where K1 = bG, K2 = ϕ̃(bG) (where ϕ̃ is given by Lemma 3.2(ii)), and τ1 = τ2 = τ = the

canonical embedding of G into bG. In order to verify that the hypotheses of Corollary 4.10

are satis�ed, we want to know that every character ψ of ϕ(G) can be written in the form
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χ′ ◦ τ , where χ′ is a character of ϕ̃(bG). This is the case, as every ψ ∈’ϕ(G) can be extended

to a character ψ0 ∈ “G, and ψ0 = χ0 ◦ τ for some χ0 ∈ b̂G. Let χ′ := χ0|ϕ̃(bG). We claim that

χ′ ◦ τ = ψ. To see this, note that χ0 ◦ τ = ψ0, so (χ0 ◦ τ)|ϕ(G) = ψ0|ϕ(G) = ψ. Finally, note

that τ(ϕ(G)) ⊂ ϕ̃(bG), since ϕ̃ ◦ τ = τ ◦ ϕ. Thus (χ0 ◦ τ)|ϕ(G) = χ′ ◦ τ .

Proof of Theorem 1.4. LetH1 = ϕ1(G) andH2 = ϕ2(G). Let µ be an extremal invariant mean

on H2. By Lemma 8.2, there exists an invariant mean ν on G such that the pushforward ϕ2,∗ν

is equal to µ. In view of Lemma 8.3, ϕ1,∗ν can be extended canonically from H1 to a mean

ν1 on G such that

ν1(f) =
(ϕ1,∗ν)(f)

[G : H1]

for every f ∈ ℓ∞(G) supported on H1. Likewise, extend µ = ϕ2,∗ν from H2 to a mean ν2 on

G. Since µ is extremal, ν2 is extremal; however, ν1 may not be extremal.

Let A ⊂ G, K = bG and τ : G → K be the natural embedding. By Proposition 7.1 and

because ν2 is extremal, the sumset ϕ1(A) + ϕ2(A)− ϕ2(A) contains

τ−1(supp ρν1ϕ1(A) ∗ ρ
ν2
ϕ2(A)

∗ ρν2ϕ2(−A)).

In light of Lemma 8.4,

ρ
νj
ϕj(A)

= ρ
ϕj,∗ν
ϕj(A)

where we identify ρ
ϕj,∗ν
ϕj(A)

with its extension to 0 outside of ϕj(K). It follows that ϕ1(A) +

ϕ2(A)− ϕ2(A) contains

τ−1(supp ρ
ϕ1,∗ν
ϕ1(A)

∗ ρϕ2,∗νϕ2(A)
∗ ρϕ2,∗νϕ2(−A)).

For j ∈ {1, 2}, let ϕ̃j : K → K be continuous homomorphism such that ϕ̃j ◦ τ = τ ◦ ϕj .
Then ϕ̃1 ◦ ϕ̃2 ◦ τ = τ ◦ ϕ1 ◦ ϕ2 = τ ◦ ϕ2 ◦ ϕ1 = ϕ̃2 ◦ ϕ̃1 ◦ τ . It follows that ϕ̃1 and ϕ̃2 commute

since τ(G) is dense in K. By Lemma 3.2, [K : ϕ̃j(K)] ≤ [G : ϕj(G)] is �nite.

For ease of notation, we write

f := ρ
ϕ1,∗ν
ϕ1(A)

, g := ρ
ϕ2,∗ν
ϕ2(A)

and h := ρ
ϕ2,∗ν
ϕ2(−A).

Note that f, g, h are nonnegative.

Claim 8.5. The support of f ∗ g ∗ h contains the support of S : K → [0, 1] de�ned by

S(w) :=

∫∫
K2

f(ϕ̃1 ◦ ϕ̃2(v)) · g(w + ϕ̃2(u)) · h(−ϕ̃2(u)− ϕ̃2 ◦ ϕ̃1(v)) dmK(u)dmK(v).

Proof of Claim. Note that by [33, Lemma 2.6], ϕ̃1 ◦ ϕ̃2(K) has �nite index in K. We recall

[33, Lemma 2.8], which says that if f is a nonnegative function on a compact abelian group

K, ϕ is a continuous endomorphism on K and m = [K : ϕ(K)] <∞, then∫
K
f(ϕ(x)) dµK(x) ≤ m

∫
K
f(x) dµK(x).
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By two applications of this fact, we have

S(w) ≤ [K : ϕ̃2(K)]

∫∫
K2

f(ϕ̃1 ◦ ϕ̃2(v)) · g(w + u) · h(−u− ϕ̃2 ◦ ϕ̃1(v)) dmK(u)dmK(v)

≤ [K : ϕ̃2(K)] · [K : ϕ̃1 ◦ ϕ̃2(K)]

∫∫
K2

f(v) · g(w + u) · h(−u− v) dmK(u)dmK(v)

= [K : ϕ̃2(K)] · [K : ϕ̃1 ◦ ϕ̃2(K)] · f ∗ g ∗ h(w),

thus proving the claim. □

By Corollary 4.10 we have

f(ϕ̃1 ◦ ϕ̃2(v)) ≥ ρνA(ϕ̃2(v)), (30)

g(ϕ̃2(w) + ϕ̃2(u)) ≥ ρνA(w + u), (31)

and

h(−ϕ̃2(u)− ϕ̃2 ◦ ϕ̃1(v))) ≥ ρνA(u+ ϕ̃1(v)). (32)

Therefore

S(ϕ̃2(w)) ≥ RA(w) (33)

for all w ∈ K, where

RA(w) :=

∫∫
K2

ρνA(ϕ̃2(v))ρ
ν
A(w + u)ρνA(u+ ϕ̃1(v)) dmK(u)dmK(v).

Combining (30) - (33), we get that for all A ⊂ G, the sumset ϕ1(A)+ϕ2(A)−ϕ2(A) contains
τ−1(ϕ̃2(suppRA)).

As a consequence, we have for each partition G =
⋃r
i=1Ai and each i ∈ [r],

ϕ1(Ai) + ϕ2(Ai)− ϕ2(Ai) ⊃ τ−1(ϕ̃2(suppRAi)).

By Lemma 4.5,
∑r

i=1 ρ
ν
Ai

= 1 almost everywhere. Therefore, in view of Proposition 8.1, for

some i ∈ [r], the support of RAi contains a Bohr-(k, η) set B ⊂ K where k, η depend only on

r and the indices [K : ϕ̃1(K)], [K : ϕ̃2(K)].

By Lemma 2.3, ϕ̃2(B) is a Bohr-(k′, η′) set where k′, η′ depend only on k, η and [K : ϕ̃2(K)].

Lemma 2.2 then implies that τ−1(ϕ̃2(B)) contains a Bohr-(k′, η′) set and our proof �nishes. □

9. Third correspondence principle

In this section we derive a correspondence principle for B+C+Ai. Assuming only that the

summands A,B,C have positive upper Banach density, we cannot guarantee that A+B+C is

a Bohr set, a translate of a Bohr set, or even that A+B+C is syndetic.5 Under the stronger

assumption that A and B have positive upper Banach density and that C is syndetic, [5]

proves (for the ambient group Z) that A + B + C contains a translate of a Bohr set. Our

Theorem 1.7 has a similar, but weaker hypothesis: partitioning G as A1∪· · ·∪Ar, it is possible

5In every countably in�nite abelian group, there are sets D,E with positive upper Banach density where

D+E is not syndetic, and Proposition 6.2 of [4] produces sets A,B,C having positive upper Banach density

where A+B + C ⊂ D + E.
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that none of the Ai are syndetic. Of course, one of the Ai must be piecewise syndetic ([12],

[29]).

Proposition 9.6 says that when A,B,C ⊂ G with d∗(B), d∗(C) > 0, the sumset B+C +A

can be modeled by a convolution hB∗hC∗hA on a compact groupK, where
∫
hB dmK ≥ d∗(B)

and
∫
hC dmK ≥ d∗(C). In this correspondence principle, the hypothesis d∗(A) > 0 is not

strong enough to guarantee that hA is nonzero. However, assuming that G = A1 ∪ · · · ∪ Ar,
we will be able to conclude that

∑r
i=1 hAi ≥ 1 almost everywhere and this su�ces to give an

useful bound on the hB ∗ hC ∗ hAi(0) for some i ∈ [r].

De�nition 9.1. Let A,B ⊂ G. We write A ≺ B if for all �nite subsets A′ ⊂ A, there exists

t ∈ G such that A′ + t ⊂ B. In this case, we say that A is �nitely embeddable in B.

The following lemma is implicit in [25] and to some extent in [24]. A similar statement for

amenable groups can be obtained from Propositions 1.10 and 1.11 in [8].

Lemma 9.2. Let B,C ⊂ G. There exist a compact abelian group K, a homomorphism

τ : G→ K for which τ(G) is dense in K, functions hB, hC : K → [0, 1] such that

(i)
∫
K hB dmK = d∗(B) and

∫
K hC dmK = d∗(C), and

(ii) {g ∈ G : hB ∗ hC(τ(g)) > 0} ≺ B + C.

Remark 9.3. Readers familiar with Furstenberg's correspondence principle and Kronecker

factors may appreciate the following additional detail: to obtain the group K, one may apply

the Furstenberg correspondence principle to �nd ergodic measure preserving systems XB =

(XB, µB, TB) and XC = (XC , µC , TC) modeling B and C, with corresponding Kronecker

factors KB = (KB,mKB
, RB) and KC = (KC ,mKC

, RC). The groups KB and KC are the

respective duals of the eigenvalue groups E(XB) and E(XC) of XB and XC (as described by

Lemma 3.3). The group K may be realized as the phase space of the maximal common factor

of KB and KC , or, equivalently, as the dual of E(XB) ∩ E(XC).

Proof. By [25, Lemma 2.8], there is an ergodic measure preserving G-system (X,µ, T ), where

X is a compact metric space, and a clopen set OC ⊂ X with µ(OC) = d∗(C) such that for all

x ∈ X,

{g ∈ G : Tgx ∈
⋃
b∈B

T bOC} ≺ B + C. (34)

By [25, Lemma 4.1], there is a group rotation factor (K,mK , R) of (X,µ, T ) with factor map

π : X → K and a homomorphism τ : G→ K with dense image such that⋃
b∈B

T bOC ⊃ π−1(J) up to a set of µ-measure 0, (35)

where J := supp(fB ∗ fC) for some functions fB, fC : K → [0, 1] with
∫
K fB dmK = d∗(B)

and
∫
K fC dmK = d∗(C).

Note that for µ-almost every x ∈ X, Rgπ(x) = π(Tgx). Therefore, if Rg(π(x)) ∈ J , then

Tgx ∈ π−1(J). Thus, from (35), for µ-almost every x ∈ X, we have

if Rg(π(x)) ∈ J then Tgx ∈
⋃
b∈B

T bOC .
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Fix such an x. Then

{g ∈ G : fB ∗ fC(π(x) + τ(g)) > 0} ⊂ {g ∈ G : Tgx ∈
⋃
b∈B

T bOC}.

The relation (34) then implies {g ∈ G : fB ∗ fC(π(x) + τ(g)) > 0} ≺ B + C. By de�ning

functions hB, hC as hB(t) := fB(t+ π(x)) and hC = fC , we obtain our conclusion.

□

Lemma 9.4. Let K be a compact metrizable abelian group and τ : G→ K be a homomorphism

with dense image. Let h : K → [0, 1] be continuous and let Ah := {g ∈ G : h(τ(g)) > 0}. If

Ah ≺ D, then there is a translate h′ of h and an invariant mean λ on G such that

1D ∗λ q ≥ h′ ◦ τ ∗λ q

for all q : G→ [0, 1].

Proof. Let (FN )N∈N be a Følner sequence for G. Since FN ∩ Ah ⊂ Ah and Ah ≺ D, we may

choose, for each N ∈ N, a tN ∈ G so that (FN ∩ Ah) + tN ⊂ D. Note that (FN + tN )N∈N is

also a Følner sequence. Passing to a subsequence if necessary, we assume τ(tN ) converges to

a point k0 in K. Let h′(k) = h(k − k0) for k ∈ K, so that h(k − τ(tN )) converges uniformly

to h′(k).

De�ne a sequence of functions pN : FN + tN → [0, 1] by pN (g + tN ) = h(τ(g)). Since

h(τ(g)) = 0 for each g ∈ (FN \ Ah), and FN ∩ Ah + tN ⊂ D, we have 1D(g) ≥ pN (g) for all

g ∈ FN + tN .

For each N ∈ N and each q : G→ [0, 1] we have

1

|FN |
∑

g∈FN+tN

1D(g)q(t− g) ≥ 1

|FN |
∑

g∈FN+tN

pN (g)q(t− g)

=
1

|FN |
∑

g∈FN+tN

h(τ(g)− τ(tN ))q(t− g).

(36)

For eachN , let λN be the linear functional on ℓ∞(G) de�ned by λN (f) :=
1

|FN |
∑

g∈FN+tN
f(g).

Let λ be a linear functional on ℓ∞(G) that is a weak∗ limit point of the sequence λN (mean-

ing that for all f ∈ ℓ∞(G), all ε > 0, and all M ∈ N there is an N > M such that

|λ(f)− λN (f)| < ε). In other words, λ ∈
⋂∞
M=1 {λN : N > M}.

Since h(k− τ(tN )) converges uniformly in N to h(k−k0) = h′(k), (36) implies 1D ∗λ q(t) ≥
h′ ◦ τ ∗λ q(t) for all t ∈ G. □

Lemma 9.5. Let K be a compact abelian group and τ : G→ K be homomorphism with dense

image. Let h : K → [0, 1] be a continuous function and λ be an invariant mean on G. Then

for every A ⊂ G,

(h ◦ τ) ∗λ 1A = (h ∗ ρλA) ◦ τ,

where ρλA is de�ned in De�nition 4.1.
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Proof. Approximating h by trigonometric polynomials, it su�ces to prove the statement for

the special case where h is a trigonometric polynomial. By linearity, we may assume h = χ ∈“K. For such χ, we have

(χ ◦ τ) ∗λ 1A(g) :=
∫
G
χ ◦ τ(x) · 1A(g − x) dλ(x)

=

∫
G
χ ◦ τ(g + x)1A(−x) dλ(x)

= χ ◦ τ(g)
∫
G
χ ◦ τ(x) · 1A(−x) dλ(x)

= χ ◦ τ(g)
∫
G
χ ◦ τ · 1−A dλ

= χ ◦ τ(g)
∫
K
χ · ρλ−A dmK .

Computing χ ∗ ρλA(t) for t ∈ K, we get

χ ∗ ρλA(t) =
∫
K
χ(z)ρλA(t− z) dmK(z)

=

∫
K
χ(z + t)ρλA(−z) dmK(z)

= χ(t)

∫
K
χ(z)ρλ−A(z) dmK(z)

= χ(t)

∫
K
χ · ρλ−A dmK .

Substituting τ(g) for t, we get

(χ ◦ τ) ∗λ 1A(g) = (χ ∗ ρλA)(τ(g)),

completing the proof. □

Combining Lemmas 9.2, 9.4 and 9.5, we have a proposition which serves as a correspondence

principle for B + C +Ai.

Proposition 9.6 (Third correspondence principle). Let B,C ⊂ G. There exist a compact

abelian group K, a homomorphism τ : G → K with dense image, measurable functions

hB, hC : K → [0, 1] and an invariant mean λ on G such that

(i)
∫
K hB dmK = d∗(B) and

∫
K hC dmK = d∗(C),

(ii) for all A ⊂ G,

B + C +A ⊃ τ−1(supp(hB ∗ hC ∗ ρλA)).

Remark 9.7. The invariant mean λ depends on B and C; it may not realize the upper Banach

density of A. In particular, it is possible that λ(A) = 0 while d∗(A) > 0.

Proof. In view of Lemma 9.2, there are a compact abelian group K, homomorphism τ : G→
K with dense image, measurable functions hB, hC : K → [0, 1] with

∫
hB dmK = d∗(B),∫

hC dmK = d∗(C) such that

{g ∈ G : hB ∗ hC(τ(g)) > 0} ≺ B + C.
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We now apply Lemma 9.4 with hB ∗hC in place of h: there is an invariant mean λ on G such

that

1B+C ∗λ 1A ≥ h′ ◦ τ ∗λ 1A, (37)

where h′ is a translate of hB ∗ hC .
By Lemma 9.5,

h′ ◦ τ ∗λ 1A = (h′ ∗ ρλA) ◦ τ. (38)

Note that B + C + A contains the support of 1B+C ∗λ 1A and h′ can be written as h′B ∗ hC
where h′B is a translate of hB. Therefore, (37) and (38) imply

B + C +A ⊃ {g ∈ G : h′B ∗ hC ∗ ρλA(τ(g)) > 0}

and this proves our proposition. □

10. Bohr sets in B + C +Ai

The next proposition establishes the existence of Bohr sets in B+C+Ai in compact abelian

groups.

Proposition 10.1. Let δ1, δ2 > 0 and r ∈ N. There are constants η > 0 and k ∈ N such that

the following holds: Let K be a compact abelian group with probability Haar measure mK and

let f, g : K → [0, 1] be measurable functions such that
∫
K f dmK ≥ δ1 and

∫
K g dmK ≥ δ2.

For i ∈ [r], let hi : K → [0, 1] be measurable functions such that
∑r

i=1 hi = 1 mK-almost

everywhere. Then for some i ∈ [r], the support of f ∗ g ∗ hi contains a Bohr-(k, η) set.

Proof. The proof is similar to an argument used in [33] (Part I of this series). Since
∑r

i=1 hi =

1 almost everywhere, we have

f ∗ g ∗

(
r∑
i=1

hi

)
(x) = f ∗ g ∗ 1K(x) =

∫
K
f dmK ·

∫
K
g dmK ≥ δ1δ2

for all x ∈ K. Therefore, by the pigeonhole principle, there exists i ∈ [r] such that f∗g∗hi(0) ≥
δ1δ2/r.

By [33, Lemma 2.12], we have

|f ∗ g ∗ hi(t)− f ∗ g ∗ hi(0)| =
∣∣∣∣∫∫

K2

(g(x)− gt(x))f(y)hi(−x− y) dmK(x)dmK(y)

∣∣∣∣
≤ ∥ĝ − “gt∥∞∥f∥2∥hi∥2
≤ ∥ĝ − “gt∥∞,

where gt(x) = g(t+x). Hence f ∗ g ∗hi(t) > δ1δ2
2r whenever ∥ĝ−“gt∥∞ < δ1δ2

2r . By [33, Lemma

2.1], the set of those t contains a Bohr-(k, δ1δ22r ) set B with k ≤ 16r2

(δ1δ2)2
. □

We are ready to prove Theorem 1.7.

Proof of Theorem 1.7. By Proposition 9.6, there exist a compact abelian group K, a homo-

morphism τ : G → K with dense image, measurable functions hB, hC : K → [0, 1] and an

invariant mean λ on G such that

(i)
∫
K hB dmK = d∗(B) and

∫
K hC dmK = d∗(C),
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(ii) for all i ∈ [r], B + C +Ai ⊃ τ−1(supp(hB ∗ hC ∗ ρλAi
)).

In light of Lemma 4.5,
∑r

i=1 ρ
λ
Ai

= 1 almost everywhere. Therefore, by Proposition 10.1,

there exist k and η depending only on δ and r such that the support of hB ∗hC ∗ ρλAi
contains

a Bohr-(k, η) set in K for some i ∈ [r]. Lemma 2.2 then implies that B + C + Ai contains a

Bohr-(k, η) set in G. □

Remark 10.2. The proof of Theorem 1.7 follows a general phenomenon: ifD ⊂ G is a piecewise

Bohr set, then for any partition G =
⋃r
i=1Ai, there is an i ∈ [r] such that D +Ai contains a

Bohr set. However, if we did not know that D has the form B + C, it is impossible to give

any quantitative bounds on the rank and radius of the Bohr set in D+Ai. This necessitates

the presence of triple sum B + C +Ai in Theorem 1.7.

11. Open questions

In the proofs of Theorems 1.2 and 1.4, the assumption that ϕ1, ϕ2, ϕ3 commute is used to

provide a parameterized solution to the relation w ∈ ϕ1(A) + ϕ2(A) + ϕ3(A). This concern

raises the question:

Question 11.1. Can the assumption that the ϕj commute in Theorems 1.2 and 1.4 be omitted?

The Bohr sets in Proposition 10.1 and Theorem 1.7 have the same rank k and radius η.

Proposition 10.1 gives k ≪ α−6 and η ≫ α3, where α = (δ1δ2r
−1)1/3. If we are only interested

in translates of Bohr sets (i.e., Bohr neighborhoods of some element), then better bounds are

available. A result of Sanders [37, Theorem 2.4] implies that there exists i such that B+C+Ai

contains a translate of a Bohr-(k, η) set with k ≪ α−1 and η ≥ exp
(
−cα−1 logα−1

)
, for some

absolute constant c. We ask the following.

Question 11.2. Is it possible to improve on k and/or η in Theorem 1.7? Can we take

k ≪ α−1?

In the spirit of Ruzsa and Hegyvári's result [28] on Bohr sets in A+A−A−a mentioned in

the introduction, we ask whether the Bohr set in Theorem 1.7 can be given by a �xed element

of C. More precisely:

Question 11.3. If B,C ⊂ G with d∗(B), d∗(C) > 0 and G =
⋃r
i=1Ai, must there exist c ∈ C

and i ∈ [r] such that B + c+Ai contains a Bohr set?

The proof of Theorem 1.7 uses the fact that D := B +C is a piecewise Bohr set to deduce

the Bohr structure inD+Ai. It is natural to ask besides piecewise Bohr, what other conditions

on D guarantee the existence of a Bohr set in D +Ai.

Question 11.4. What is a su�cient condition on D ⊂ G so that for any partition G =⋃r
i=1Ai, there is i ∈ [r] such that D + Ai is Bohr set (or a translate of a Bohr set)? In

particular, does the assumption that D is piecewise syndetic or d∗(D) > 0 su�ce? What if

G = Z and D = P (the set of primes) or D = {n2 : n ∈ N}?
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Our Theorem 1.2 generalizes Theorem B in two ways: replacing the ambient group Z
with an arbitrary countable abelian group, and replacing the endomorphisms g 7→ sig with

commuting endomorphisms having �nite index image. The main result of [23] generalizes

Theorem B in a di�erent way: the endomorphisms still have the form g 7→ sig, but more

summands are considered. The following conjecture is a natural joint generalization of these

results.

Conjecture 11.5. Let G be a (not necessarily countable) abelian group, let d ≥ 3, let

ϕ1, . . . , ϕd be endomorphisms of G such that [G : ϕj(G)] < ∞ for each j, and such that

ϕ1 + · · ·+ ϕd = 0. Then for all A ⊂ G with d∗(A) > 0, the sumset ϕ1(A) + · · ·+ ϕd(A) con-

tains a Bohr set with rank and radius depending only on d∗(A) and the indices [G : ϕj(G)].

De�ning endomorphism ψ : G→ G by ψ(g) :=
∑d

j=3 ϕj(g). Then ϕ1 + ϕ2 + ψ = 0 and

d∑
j=1

ϕj(A) ⊃ ϕ1(A) + ϕ2(A) + ψ(A).

Therefore, if [G : ψ(G)] is �nite, then Conjecture 11.5 immediately follows from Theorem 1.2.

However, it is not true in general that ψ(G) has �nite index (for example, take d = 4,

ϕ3 = −ϕ4), and so Conjecture 11.5 is genuinely interesting. It may be necessary to impose

some additional hypotheses on the ϕj ; see [23, Section 4] for more discussion.

Along the same lines, we have the following conjecture for partition that extends Theo-

rem 1.4.

Conjecture 11.6. Let G be a (not necessarily countable) abelian group, let d ≥ 3 and let

ϕ1, . . . , ϕd be endomorphisms of G such that [G : ϕj(G)] <∞ for each j. Suppose
∑

j∈S ϕj = 0

for some non-empty subset S ⊂ [d]. Then for every �nite partition G =
⋃r
i=1Ai, there exists

i ∈ [r] such that
∑d

j=1 ϕj(Ai) contains a Bohr-(k, η) set, where k and η depend only on r and

the indices [G : ϕj(G)].
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