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Abstract. Let G be a compact abelian group and ϕ1, ϕ2, ϕ3 be continuous endomor-

phisms on G. Under certain natural assumptions on the ϕi's, we prove the existence of

Bohr sets in the sumset ϕ1(A) + ϕ2(A) + ϕ3(A), where A is either a set of positive Haar

measure, or comes from a �nite partition of G. The �rst result generalizes theorems of

Bogolyubov and Bergelson-Ruzsa. As a variant of the second result, we show that for

any partition Z =
⋃r
i=1 Ai, there exists an i such that Ai − Ai + sAi contains a Bohr

set for any s ∈ Z \ {0}. The latter is a step toward an open question of Katznelson and

Ruzsa.

1. Introduction and statements of results

Let G be an abelian topological group. For a �nite set Λ of characters (i.e. continuous

homomorphisms from G to S1 := {z ∈ C : |z| = 1}) and η > 0, the set

B(Λ; η) := {x ∈ G : |γ(x)− 1| < η for any γ ∈ Λ}

is called a Bohr set or a Bohr neighborhood of 0. We refer to η as the radius and |Λ| as
the rank (or dimension) of the Bohr set. The set B(Λ; η) is also called a Bohr-(|Λ|, η) set.

If A,B ⊂ G, the sumset and di�erence set of A and B are A±B := {a±b : a ∈ A, b ∈ B}.
If c ∈ Z, we de�ne cA := {ca : a ∈ A}. The study of Bohr sets in sumsets started with the

following important theorem of Bogolyubov [7]1.

Theorem 1.1 (Bogolyubov [7]). If A ⊂ Z has positive upper Banach density, i.e.

d∗(A) := lim
N→∞

sup
M∈Z

|A ∩ [M + 1,M +N ]|
N

> 0,

then A+A−A−A contains a Bohr set whose rank and radius depend only on d∗(A).

While it originated from the study of almost periodic functions, Bogolyubov's theorem

is now a standard tool in additive combinatorics. It was used in Ruzsa's proof of Freiman's

theorem [26] and in Gowers' proof of Szemerédi's theorem [14]. See [5, 15] for a recent

variant of Bogolyubov's theorem and its applications.

The more copies of A are involved, the more structured the sumset is. This re�ects

the fact that more convolutions result in smoother functions. Thus, a natural question is:

What is the smallest number of copies of A that will guarantee the existence of a Bohr

set? In Z, it is known that A−A does not necessarily contain a Bohr set, which is a result
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1This is reminiscent of Steinhaus' theorem, which says that if A ⊂ R has positive Lebesgue measure,

then A−A contains an open interval around 0.
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of Kriz [22]. On the other hand, Følner [9] proved that there is a Bohr set B such that

(A−A) \B has density 0.

Regarding three copies of A, Bergelson and Ruzsa [3] proved the following:

Theorem 1.2 (Bergelson-Ruzsa [3]). Let r, s, t be non-zero integers satisfying r+s+t = 0.

If A ⊂ Z has positive upper Banach density, then rA+ sA+ tA contains a Bohr set whose

rank and radius depend only on r, s, t and d∗(A).

The condition r+s+t = 0 is easily seen to be necessary, by taking A =MZ+1 for some

M > |r|+ |s|+ |t|, since any Bohr set must necessarily contain 0. In particular, one cannot

expect A + A − A to contain a Bohr set. When (r, s, t) = (1, 1,−2), Bergelson-Ruzsa's

theorem generalizes Bogolyubov's, since A+A− 2A ⊂ A+A−A−A.

1.1. Partition results in Z. While the problem of �nding Bohr sets in sumsets of sets

having positive density has attracted much attention, the analogous question concerning

partitions of Z was little studied until recently. Regarding the latter, there is a well-known

problem in additive combinatorics and dynamical systems, which was popularized by Ruzsa

[27, Chapter 5] and Katznelson [21].

Question 1.3. If Z =
⋃r
i=1Ai, must there exist i ∈ {1, 2, . . . , r} such that Ai−Ai contains

a Bohr set?

In terms of dynamical systems, Question 1.3 asks if any set of recurrence for minimal

topological systems is also a set of recurrence for minimal isometries (also known as a set

of Bohr recurrence). See [13] for a detailed account of the history of Question 1.3, as well

as its many equivalent formulations.2 While Question 1.3 remains open at the moment

and only some partial results were obtained [13, 19], we do have a positive answer when

three copies of Ai are involved.

Theorem 1.4. Let Z =
⋃r
i=1Ai be a partition.

(a) For any s1, s2 ∈ Z\{0}, there exists i ∈ {1, 2, . . . , r} such that the set s1Ai−s1Ai+s2Ai
contains a Bohr set whose rank and radius depend only on r and s1, s2.

(b) There exists i ∈ {1, 2, . . . , r} such that for any s ∈ Z \ {0}, the set Ai − Ai + sAi

contains a Bohr set.

Theorem 1.4 highlights the di�erence between partition and density since, as we men-

tioned earlier, there is a set A ⊆ Z of positive density such that A−A+A does not contain

a Bohr set.

The expression s1Ai− s1Ai+ s2Ai is related to Rado's condition on partition regularity

[24]. Recall that an equation s1x1 + s2x2 + · · · + sℓxℓ = 0 with coe�cients in Z \ {0}
is partition regular if under any �nite partition (or coloring) of Z \ {0}, there exists a

monochromatic solution (x1, x2, . . . , xℓ). Rado's theorem says that the equation s1x1 +

s2x2 + · · · + sℓxℓ = 0 is partition regular if and only if {s1, . . . , sℓ} satis�es the following

condition: There exists a nonempty set J ⊂ {1, . . . , ℓ} such that
∑

i∈J si = 0. Using the

2In [13], what we call �Bohr set� is referred to as a �Bohr neighborhood of 0.� Their Bohr sets are our

Bohr sets translated by any element.
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facts that (s1+ . . .+sℓ)A ⊆ s1A+ . . .+sℓA, and a Bohr set must contain 0, Theorem 1.4(a)

implies that for ℓ ≥ 3 and s1, . . . , sℓ ∈ Z \ {0}, the following are equivalent:

(1) For any partition Z =
⋃r
i=1Ai, there exists i ∈ {1, . . . , r} such that s1Ai + . . .+ sℓAi

contains a Bohr set.

(2) {s1, . . . , sℓ} satis�es Rado's condition above.

A novelty of Theorem 1.4(b) is that it guarantees a single set Ai that works for every

coe�cient s (on the other hand, we do lose control on the rank and radius of the Bohr set).

When s is very large, the set sAi is small and so its contribution to the sum diminishes.

While there is no consensus on what the answer to Question 1.3 should be, Theorem 1.4(b)

provides evidence that the answer to Question 1.3 is either positive or very delicate.

In [13, Table 1, p. 8], Glasscock-Koutsogiannis-Richter summarized results on Bohr sets

in sumsets, pertaining to both density and partition. Our Theorem 1.4 �lls in the blank

on the Syndeticity3 column and rA+ sA+ tA row of their table.

1.2. Results in compact groups. Bogolyubov's theorem has been generalized to other

groups as well (in more general groups, the upper Banach density d∗ can be de�ned in terms

of Følner sequences or invariant means). Følner [9, 10] extended Bogolyubov's theorem

to all abelian groups. Answering a question of Hegyvári-Ruzsa [20], Björlund-Griesmer [6]

proved that in any countable discrete abelian group G, for any A ⊂ G with d∗(A) > 0, for

�many� a ∈ A, the set A+A−A−a contains a Bohr set whose rank and radius depend only

on d∗(A). Very recently, Griesmer [18] generalized Theorem 1.2 to all countable discrete

abelian groups, though his proof does not give e�ective bounds for the rank and radius of

the Bohr set in question.

Bergelson-Ruzsa and Bogolyubov �rst proved their theorems in the cyclic group ZN ,
and the statements in Z follow from a compactness argument. Likewise, in Björlund-

Griesmer [6] and Griesmer [18], certain compact groups (namely Bohr compacti�cations

and Kronecker factors) play a prominent role. In view of this �compact �rst� strategy,

the main goal of this paper is, in fact, to study the existence of Bohr sets in sumsets

of compact groups. Under this investigation, Theorem 1.4 arises as an application of our

general method. In a subsequent paper, we will study the existence of Bohr sets in arbitrary

discrete groups by transferring our results from compact groups.

Another feature of our work is the consideration of continuous homomorphisms ϕ : G→
G and the image ϕ(A) rather than just dilations cA. This point of view leads to a wider

range of applications, for example, linear maps on vector spaces and multiplication by an

element in a ring (see Theorems 1.7 and 1.8 below). This new perspective was also adopted

in recent work of Ackelsberg-Bergelson-Best [1] on Khintchine-type recurrence for actions

of an abelian group (Theorem 1.10 below).

Our main result on Bohr sets in sumsets arising from partitions is as follows.

Theorem 1.5. Let G be a compact abelian group with normalized Haar measure µ and let

ϕ1, ϕ2 : G→ G be continuous homomorphisms satisfying

3A subset A of a group G is called syndetic if G can be covered by �nitely many translated of A.
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(a) ϕ1, ϕ2 are commuting, and

(b) ϕ1(G), ϕ2(G) have �nite indices in G.

Let G =
⋃r
i=1Ai be a partition of G into measurable sets. Then for some 1 ≤ i ≤ r,

ϕ1(Ai)− ϕ1(Ai) + ϕ2(Ai)

contains a Bohr-(k, η) set, where k and η depend only on r, [G : ϕ1(G)] and [G : ϕ2(G)].

Remark 1.

• If µ(A) > 0, then A+ A− A is not guaranteed to contain a Bohr set. For a counterex-

ample, take G = Z2N for some large N and A = {a ∈ Z2N : a is odd}. In particular,

the analogous version of Theorem 1.5 for sets of positive measure fails.

• We do not know if the commuting condition can be removed entirely, though it can be

slightly relaxed (see Theorem 3.5). For example, commutativity is not required when ϕ1

or ϕ2 is an automorphism (see Remark 5).

• The �nite index condition on ϕ1(G) cannot be removed, by taking for example ϕ1 = 0

and ϕ2(x) = x. On the other hand, we do not know whether the �nite index condition

on ϕ2(G) can be removed. If we let ϕ2 = 0, then the situation amounts to Question 1.3

itself.

We now turn our attention to density results. In compact abelian groups, the Haar

measure plays the role of the upper Banach density.

Theorem 1.6. Let G be a compact abelian group with normalized Haar measure µ and

ϕ1, ϕ2, ϕ3 : G→ G be continuous homomorphisms satisfying

(a) ϕ1 + ϕ2 + ϕ3 = 0,

(b) ϕ1, ϕ2, ϕ3 are commuting,

(c) ϕ1(G), ϕ2(G), ϕ3(G) have �nite indices in G.

Let A ⊆ G be a measurable subset with µ(A) = δ > 0. Then

ϕ1(A) + ϕ2(A) + ϕ3(A)

contains a Bohr-(k, η) set, where k and η depend only on δ and the indices [G : ϕi(G)]

(1 ≤ i ≤ 3).

Remark 2.

• The condition ϕ1+ϕ2+ϕ3 = 0 cannot be removed. For a counterexample, take G = ZN
for some large N and A = {1, · · · , ⌊N/10⌋}. Then A + A + A does not contain 0, and

hence not a Bohr set.

• We do not know if the condition on commutativity can be removed entirely, though it

can be weakened (see Theorem 4.4). For example, commutativity is not required when

one of ϕ1, ϕ2 and ϕ3 is an automorphism (see Remark 6).

• The �nite index condition cannot be removed. Indeed, we can take G = Fn2 for some

large n, ϕ1(x) = x, ϕ2(x) = −x, ϕ3(x) = 0. In this setting, Bohr sets are simply vector

subspaces. A construction of Green [17, Theorem 9.4] gives a set A of size ≥ |G|/4 such

that any subspace contained in A−A must have codimension ≥
√
n.
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As an application, Theorem 1.6 can be used to obtain an e�ective version of the afore-

mentioned result of Griesmer [18]. We plan to pursue this idea in a subsequent paper.

1.3. Number-theoretic consequences. As mentioned earlier, the fact that we accom-

modate homomorphisms in Theorem 1.5 and Theorem 1.6 enables us to generalize Theo-

rem 1.2 and Theorem 1.4 to number �elds and function �elds.

In the following, for a subset A of a ring R and c ∈ R, we write

cA = {ca : a ∈ A} (1)

and

A/c = {b ∈ A : bc ∈ A}. (2)

The next theorem is true for any number �eld, but we only state for Z[i] for simplicity.

Theorem 1.7. Let s1, s2, s3 ∈ Z[i] \ {0} such that s1 + s2 + s3 = 0.

(a) If a set A ⊆ Z[i] has positive upper density, i.e.

d(A) := lim sup
N→∞

|A ∩ [−N,N ]d|
(2N + 1)d

= δ > 0,

then s1A + s2A + s3A contains a (k, η)-Bohr set in Z[i], where k and η depend only

on s1, s2, s3 and δ.

(b) If Z[i] =
⋃r
j=1Aj, then for some j ∈ {1, 2, . . . , r}, s1Aj − s1Aj + s2Aj contains a

(k, η)-Bohr set in Z[i], where k and η depend only on s1, s2 and r.

(c) If Z[i] =
⋃r
j=1Aj, then there exists j ∈ {1, 2, . . . , r} such that Aj −Aj + sAj contains

a Bohr set for any s ∈ Z[i] \ {0}.

Here, as a group, we identify Z[i] with Z2.

Our next result deals with the ring Fq[t] of polynomials over a �nite �eld Fq.

Theorem 1.8. Let s1, s2, s3 ∈ Fq[t] \ {0} such that s1 + s2 + s3 = 0.

(a) If a set A ⊆ Fq[t] has positive upper density, i.e.

d(A) := lim sup
N→∞

|{x ∈ Fq[t] : deg x < N}|
qN

= δ > 0,

then s1A + s2A + s3A contains a Fq-vector subspace of �nite codimension in Fq[t],
where the codimension depends only on s1, s2, s3 and δ.

(b) If Fq[t] =
⋃r
i=1Ai, then for some i ∈ {1, . . . , r}, s1Ai − s1Ai + s2Ai contains a Fq-

vector subspace of �nite codimension of Fq[t], where the codimension depends only on

s1, s2 and δ.

(c) If Fq[t] =
⋃r
i=1Ai, then there exists i ∈ {1, 2, . . . , r} such that Ai −Ai + sAi contains

an Fq-vector subspace of �nite codimension of Fq[t] for any s ∈ Fq[t] \ {0}.

We remark that the special case s1, s2, s3 ∈ Fq \ {0} of Theorem 1.8(a) is essentially

Corollary 1.4 in [18].
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1.4. Counting linear patterns. Similarly to the proofs of Bogolyubov [7] and Bergelson-

Ruzsa [3]'s theorems, we deduce Theorem 1.6 from a lower bound (of correct order of

magnitude) for the number of certain linear patterns in G. This is straightforward in

Bogolyubov's case, but less so in Bergelson and Ruzsa's. Bergelson and Ruzsa had to

count the number of generalized Roth patterns {x, x + ry, x + sy} (where r, s ∈ Z) and
they deduced this from Szemerédi's theorem [30] and Varnavides' argument [32]. For us,

we need to count the number of patterns {x, x + ϕ(y), x + ψ(y)} (where ϕ and ψ are

homomorphisms). This is accomplished by generalizing a Fourier-analytic argument of

Bourgain [8]. Bourgain's argument, in essence an arithmetic regularity lemma, allows us

to obtain the following Khintchine-type result.

Theorem 1.9 (Khintchine-Roth theorem in compact abelian groups). Let G be a compact

abelian group with probability Haar measure µ and ϕ, ψ : G→ G be continuous homomor-

phisms such that [G : ϕ(G)], [G : ψ(G)] and [G : (ϕ− ψ)(G)] are �nite. Let f : G → [0, 1]

be a measurable function with
∫
G f dµ = δ > 0.

Then for any ϵ > 0, there exists a constant c1 > 0 that depends only on δ, ϵ and the

indices above such that the set

B =

{
y ∈ G :

∫
G
f(x)f(x+ ϕ(y))f(x+ ψ(y)) dµ(x) > δ3 − ϵ

}
has measure at least c1. Consequently,∫∫

G2

f(x)f(x+ ϕ(y))f(x+ ψ(y)) dµ(x)dµ(y) ≥ c2 (3)

for some positive constant c2 depending only on δ and the indices above.

Theorem 1.9 was proved independently by Berger-Sah-Sawhney-Tidor [4], under the

hypothesis that ϕ, ψ and ϕ − ψ are automorphisms, using a very similar argument. Our

execution is slightly di�erent from theirs, in that we follow Bergelson-Host-McCutcheon-

Parreau [2]'s elaboration of Bourgain's argument, while they follow Tao [31]'s.

Theorem 1.9 is markedly similar to the following result of Ackelsberg, Bergelson and

Best:

Theorem 1.10 ([1, Theorem 1.10]). Let G be a countable discrete abelian group, and

ϕ, ψ : G→ G be homomorphisms such that [G : ϕ(G)], [G : ψ(G)] and [G : (ϕ−ψ)(G)] are

�nite. For any ergodic system (X,B, µ, (Tg)g∈G), any ϵ > 0, and any A ∈ B, the set

B =
{
g ∈ G : µ(A ∩ T−1

ϕ(g)A ∩ T−1
ψ(g)A) > µ(A)3 − ϵ

}
is syndetic in G.

As discussed in [1, Section 10], the �nite index condition in Theorem 1.10 is necessary.

The following result of Fox-Sah-Sawhney-Stoner-Zhao [11], improving on an earlier result

of Mandache [23], shows that the �nite index condition is also necessary in Theorem 1.9.

Example 1. Let ℓ < 4 be arbitrary and δ > 0 be su�ciently small in terms of l. Let

G = Fn2 × Fn2 where n is su�ciently large, ϕ(u, v) = (u, 0), ψ(u, v) = (0, u). Then the left

hand side of (3) counts the number of �corners� {(a, b), (a + u, b), (a, b + u)} in Fn2 × Fn2 .
6



[11, Corollary 1.3] states that there exists a set A ⊂ G of size ≥ δ|G| such that for any

u ∈ Fn2 \ {0}, we have

#{(a, b) ∈ G : (a, b), (a+ u, b), (a, b+ u) ∈ A} < δℓ|G|.

Hence, the set B in Theorem 1.9 has to be {0}×Fn2 . But the measure of this set in G goes

to 0 as n goes to in�nity.

Regarding Theorem 1.5, we deduce it from the following result, which counts the number

of monochromatic con�gurations under �nite partitions of G.

Theorem 1.11. Let G be a compact abelian group with probability Haar measure µ and

let ψ, ϕ1, . . . , ϕk : G→ G be continuous homomorphisms satisfying:

(a) ψ, ϕ1, . . . , ϕk are commuting, and

(b) ψ(G), ϕ1(G), . . . , ϕk(G) have �nite indices in G.

Suppose G =
⋃r
i=1Ai is a partition of G into measurable sets. Then

r∑
i=1

∫∫
G2

1Ai(ψ(y))1Ai(x)1Ai(x+ ϕ1(y)) · · · 1Ai(x+ ϕk(y)) dµ(x)dµ(y) ≥ c3 (4)

for some positive constant c3 depending only on r, k and the indices above.

Remark 3.

• By taking ψ = 0, we see that the condition [G : ψ(G)] is �nite cannot be removed.

However, we do not know whether the condition [G : ϕi(G)] <∞ is necessary or not.

• Our proof relies heavily on the commuting condition and we do not know if it can be

removed.

When ψ and ϕ are dilations, the con�guration {ψ(y), x+ϕ1(y), . . . , x+ϕk(y)} becomes

the Brauer con�guration {y, x, x+y, . . . , x+ky}. Results on counting such monochromatic

con�gurations have been established by Serra-Vena [29, Theorem 1.3] for �nite abelian

groups of bounded torsion. Thus, besides the fact that it allows for more general homo-

morphisms, Theorem 1.11 has the advantage of being uniform over all groups. On the other

hand, our �nite index condition is certainly related, and in a sense, dual to Serra-Vena's

bounded exponent condition [29].

We remark that despite the apparent similarity between (3) and (4), their proofs are

very di�erent. The proof of Theorem 1.11 is �Fourier-free� and its main ingredient is

the Hales-Jewett theorem. Thus, our approach in proving this theorem is also genuinely

di�erent from Serra-Vena's, which relies on a removal lemma for groups.

On the quantitative side, our bounds leave much to be desired. Since the proof of The-

orem 1.9 relies on the regularity lemma (Proposition 4.2), in Theorem 1.6, the dependence

of k and η on δ and [G : ϕi(G)] is of tower type. Likewise, since the proof of Theorem 1.11

uses the Hales-Jewett theorem, the bounds for k and η in Theorem 1.5 are even worse. It

is an interesting problem to obtain good bounds for Theorems 1.6 and 1.5, even in special

classes of groups such as Fnp . Indeed, Sanders [28, Theorem A.1] obtained a near optimal

bound for Bogolyubov's theorem in Fnp .
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Outline of the paper. In Section 2, we set up notation and collect some basic facts

about Bohr sets, kernels and homomorphisms in compact abelian groups. Section 3 is de-

voted to proving results involving partitions, especially, Theorems 1.5 and 1.11. Theorems

1.6, 1.9 and related density results will be proved in Section 4. Section 5 contains proofs

of results in Z, number �elds and function �elds, i.e. Theorems 1.4, 1.7 and 1.8. Lastly,

we present some related open questions in Section 6.

Acknowledgement. We thank Vitaly Bergelson and John Griesmer for many helpful

conversations on sets of recurrence, Bohr sets and related topics. The second author was

partially supported by National Science Foundation Grant DMS-1702296.

2. Preliminaries

In this section, we gather some background on Bohr sets, kernels and homomorphisms in

compact abelian groups. Most of the results are well-known or resemble known theorems.

We include proofs for the results that we cannot pinpoint precisely in the literature.

2.1. Notation. We write [N ] for the set {1, . . . , N}. If A and B are two quantities, we

write A = O(B) or A≪ B if there is a constant C such that |A| ≤ CB. We write e(x) for

e2πix.

Throughout this paper, G is a Hausdor� compact abelian group with probability Haar

measure µ and Γ is the dual of G, written additively. The relevance of homomorphisms is

that if γ ∈ Γ and ϕ : G→ G is a continuous homomorphism, then γ ◦ ϕ is also an element

of Γ.

If f : G → C is a function, for t ∈ G we de�ne the function ft(x) = f(x + t). For

f ∈ L1(G), the Fourier transform of f is the function

f̂(γ) =

∫
G
f(x)γ(x) dµ(x) for γ ∈ Γ.

For f, g ∈ L2(G), we then have Parseval's formula∫
G
f(x)g(x) dµ(x) =

∑
γ∈Γ

f̂(γ)ĝ(γ)

and Plancherel's formula ∫
G
|f(x)|2 dµ(x) =

∑
γ∈Γ

∣∣∣f̂(γ)∣∣∣2 .
2.2. Bohr sets. For Λ,Λ1,Λ2 ⊆ Γ and η1, η2 > 0, it follows from the de�nition of Bohr

sets that

B(Λ1; η1) ∩B(Λ2; η2) ⊃ B(Λ1 ∪ Λ2; min(η1, η2))

and

B(Λ; η1) +B(Λ; η2) ⊂ B(Λ; η1 + η2).

Lemma 2.1. Suppose f1, . . . , fk ∈ L∞(G), ∥fi∥∞ ≤ 1 for all i = 1, . . . , k. Let ϕ1, . . . , ϕk

be homomorphisms G→ G. Then for any η > 0, the set

B = {t ∈ G : ∥f̂i − f̂i,ϕi(t)∥∞ < η for i = 1, . . . , k}

contains a Bohr set B(Λ; η) where |Λ| ≤ 4k
η2
.
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Proof. Note that if ∥f̂i − f̂i,ϕi(t)∥∞ ≥ η, then for some γ ∈ Γ,

|f̂i(γ)− f̂i,ϕi(t)(γ)| = |1− γ(ϕi(t))||f̂i(γ)| ≥ η.

This implies that |1− γ(ϕi(t))| ≥ η and γ ∈ Λi := {λ ∈ Γ : |f̂i(λ)| > η/2}.
We have thus shown that

B(
k⋃
i=1

Λi ◦ ϕi; η) ⊂ B,

where Λi ◦ ϕi := {γ ◦ ϕi : γ ∈ Λi} ⊂ Γ. By Plancherel's formula,(η
2

)2
|Λi| ≤

∑
λ∈Λi

∣∣∣f̂i(λ)∣∣∣2 ≤ 1.

Therefore, |Λi| ≤ 4
η2

and |
⋃k
i=1 Λi ◦ ϕi| ≤

4k
η2
. □

Next lemma is needed in 5.

Lemma 2.2. Let H be a locally compact abelian group, K be a closed subgroup of �nite

index m. Then K is a Bohr-(m, |e(1/m)− 1|) set in H.

Proof. Let χ1, . . . , χm be all characters on H/K. For any x ∈ H/K and 1 ≤ i ≤ m, we

have |χi(x)|m = 1, so either χi(x) = 1 or |χi(x)− 1| ≥ |e(1/m)− 1|. If χi(x) = 1 for all i

then x = 0. Hence

{0} = B(χ1, . . . , χm; |e(1/m)− 1|).
The characters χi lift to characters χ̃i on H by χ̃i(h) = χi(h+K). Therefore,

H = B(χ̃1, . . . , χ̃m; |e(1/m)− 1|),

as desired. □

We will also need Bogolyubov's theorem for compact abelian groups.

Lemma 2.3 (Bogolyubov for compact abelian groups, see [26, Lemma 2.1]). Let G be

a compact abelian group with Haar measure µ and let A ⊆ G of positive measure. Then

A−A+A−A contains a Bohr-(k, η) set where k, η depends only on µ(A).

2.3. Kernels. A kernel onG is a non-negative continuous function that satis�es
∫
GK dµ =

1. Speci�cally, we will utilize the kernels whose Fourier transforms are also non-negative

and supported on given Bohr sets. For a kernel K, we write ∥K̂∥1 to denote
∑

γ∈Γ |K̂(γ)|.

Lemma 2.4 (cf. [2, Lemma 4.3]). Given a �nite set Λ ⊂ Γ and η ∈ (0, 1/2], there exists

a kernel K satisfying the following:

(1) K ≥ 0, K̂ ≥ 0 and
∫
GK dµ = ∥K∥1 = 1,

(2) ∥K̂∥1 = ∥K∥∞ ≤ 1/(C0η)
|Λ| for some absolute constant C0 > 0, and

(3) K vanishes outside the Bohr set B(Λ; η).

Consequently,

µ(B(Λ; η)) ≥ (C0η)
|Λ|. (5)

We remark that the bound (5) can also be obtained from an elementary covering argu-

ment (see [31]).
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Proof. First, for each λ ∈ Λ, there exists a kernel Kλ : G→ [0,∞) satisfying the following

properties:

(1) ∥Kλ∥1 = 1,

(2) K̂λ ≥ 0,

(3) Kλ is supported on B({λ}; η) = {x ∈ G : |λ(x)− 1| < η},
(4) ∥Kλ∥∞ = Kλ(0) ≤ 1/(C0η) for some absolute constant C0.

Indeed, let B = B({λ}; η2 ) and let Kλ = 1B
µ(B) ∗

1B
µ(B) . Clearly the �rst and second properties

are satis�ed. Additionally, Kλ is supported on B({λ}; η2 ) +B({λ}; η2 ) ⊂ B({λ}; η).
Concerning the last property, we have for every x ∈ G,

Kλ(x) =
∑
γ∈Γ

K̂λ(γ)γ(x)

and so

|Kλ(x)| ≤
∑
γ∈Γ

K̂λ(γ) = Kλ(0).

Therefore, ∥Kλ∥∞ = Kλ(0) = 1
µ(B) . Since λ is continuous, its image λ(G) is a closed

subgroup of S1 = {z ∈ C : |z| = 1}, and so it is either S1 or {z ∈ C : zq = 1} for some

q ∈ N. Since λ is a homomorphism, it is measure-preserving (see Lemma 2.7 below). Hence

µ(B) is equal to the normalized Haar measure of the set{
z ∈ S1 : |z − 1| < η

2

}
in the group λ(G). In either case, where λ(G) = S1 or {z ∈ C : |z|q = 1}, we �nd that

µ(B) ≥ C0η for some absolute constant C0. Therefore, ∥Kλ∥∞ ≤ 1/(C0η).

We now de�ne

K̃ =
∏
λ∈Λ

Kλ.

It follows that K̃ ≥ 0 and K̃ is supported on B(Λ; η). Repeatedly using the fact that

f̂g(γ) =
∑

λ∈Γ f̂(λ)ĝ(γ − λ) for all f, g ∈ L∞(G), we have
̂̃
K ≥ 0. Likewise, since

K̂λ(0) = ∥Kλ∥1 = 1, we have ∥K̃∥1 =
̂̃
K(0) ≥ 1. Upon de�ning

K = K̃/∥K̃∥1

we obtain the desired kernel. □

2.4. Homomorphisms. We will often make use of the following facts about homomor-

phisms G→ G.

Lemma 2.5. Let ϕ : G→ G be a continuous homomorphism such that [G : ϕ(G)] = m is

�nite. Then for any γ ∈ Γ, there are at most m elements χ ∈ Γ such that γ = χ ◦ ϕ.

Proof. It is easy to see that for each γ ∈ Γ, the set Sγ := {χ ∈ Γ : γ = χ ◦ ϕ} is either

empty, or a coset of the group S0. On the other hand, S0 is the annihilator of the group

ϕ(G), so by [25, Theorem 2.1.2], it is isomorphic to G/ϕ(G), and hence has cardinality

m. □
10



Lemma 2.6. Let ϕ, ψ : G → G be homomorphisms such that [G : ϕ(G)] = m and

[G : ψ(G)] = ℓ are �nite. Then [G : ϕ(ψ(G))] ≤ mℓ is �nite.

Proof. We have [G : ϕ(ψ(G))] = [G : ϕ(G)][ϕ(G) : ϕ(ψ(G))]. It su�ces to show that

[ϕ(G) : ϕ(ψ(G))] ≤ ℓ.

Let x1+ψ(G), . . . , xℓ+ψ(G) be all cosets of ψ(G) inG. Then ϕ(x1)+ϕ(ψ(G)), . . . , ϕ(xℓ)+

ϕ(ψ(G)) are all cosets of ϕ(ψ(G)) in ψ(G) (these are not necessarily distinct, so the actual

number of cosets may be less than ℓ), proving the desired claim. □

Lemma 2.7. Let G,H be compact abelian groups and µ, ν be the normalized Haar measures

of G and H, respectively. Suppose ϕ : G → H is a continuous surjective homomorphism.

Then ϕ∗µ = ν (i.e. ν(B) = µ(ϕ−1(B)) for any Borel set B ⊂ H).

Proof. Let ν0 = ϕ∗µ. By the uniqueness of the normalized Haar measure, it su�ces to

show that ν0 is a translation-invariant probability measure on H. First, ν0 is a probability

measure because ν0(H) = µ(ϕ−1(H)) = µ(G) = 1. Now let B ⊂ H be a Borel set and

h0 ∈ H be arbitrary. Since ϕ is surjective, there exists g0 ∈ G such that ϕ(g0) = h0. For

any g ∈ ϕ−1(B + h0), we have

ϕ(g − g0) = ϕ(g)− ϕ(g0) ∈ B + h0 − h0 = B.

Therefore, ϕ−1(B + h0) ⊆ ϕ−1(B) + g0. On the other hand,

ϕ(ϕ−1(B) + g0) ⊆ B + h0

and so ϕ−1(B + h0) = ϕ−1(B) + g0. Since µ is translation-invariant on G, it follows that

ν0(B + h0) = µ(ϕ−1(B + h0)) = µ(ϕ−1(B) + g0) = µ(ϕ−1(B)) = ν0(B).

Thus ν0 is translation-invariant on H and so ν0 = ν. □

Lemma 2.8. Let ϕ : G→ G be a continuous homomorphism such that [G : ϕ(G)] = m is

�nite. Then for any measurable set A ⊂ G, we have

µ(A) ≤ mµ(ϕ(A)) (6)

and

µ(ϕ−1(A)) ≤ mµ(A). (7)

Consequently, if f ∈ L1(G) is nonnegative, then∫
G
f(x) dµ(x) ≥ 1

m

∫
G
f(ϕ(x)) dµ(x).

Proof. First, since ϕ is continuous and G is compact, ϕ(G) is a compact subgroup of G.

Since G is Hausdor�, ϕ(G) is closed. In other words, ϕ(G) is a closed subgroup of G.

For each Borel set B ⊂ ϕ(G), λ(B) = mµ(B) de�nes a probability measure on ϕ(G).

Since this measure is translation invariant, it is equal to the normalized Haar measure on

ϕ(G). By Lemma 2.7, λ = ϕ∗µ. This means that for any Borel set B ⊂ ϕ(G), we have

µ(ϕ−1(B)) = mµ(B).
11



LetA be any Borel set inG. SinceA ⊂ ϕ−1(ϕ(A)), we have hence µ(A) ≤ µ(ϕ−1(ϕ(A)) =

mµ(ϕ(A)), and the �rst assertion is proved. Applying the �rst assertion to the set ϕ−1(A),

we get the second assertion.

The third assertion follows from the second one, and the fact that f can be approximated

by functions of the form
∑n

i=1 ci1Ai for Borel sets Ai and ci ≥ 0. □

The next lemmas deal with images and preimages of Bohr sets under homomorphisms.

Lemma 2.9. Let B ⊂ G be a Bohr-(k, η) set and ϕ : G → G be a continuous homomor-

phism. Then ϕ−1(B) is also a Bohr-(k, η) set.

Proof. If B = {x ∈ G : |γi(x)−1| < η for i = 1, . . . , k} is a Bohr-(k, η) set, then ϕ−1(B) =

{x ∈ G : |γi ◦ ϕ(x)− 1| < η for i = 1, . . . , k} is also a Bohr-(k, η)-set. □

The next lemma is more surprising.

Lemma 2.10 (cf. Griesmer [18, Lemma 1.7]). Let B ⊂ G be a Bohr-(k, η) set and

ϕ : G → G be a continuous homomorphism such that [G : ϕ(G)] = m < ∞. Then ϕ(B)

contains a Bohr-(k′, η′) set, where k′, η′ depend on k, η and m.

Proof. Suppose B = {x ∈ G : |γi(x)− 1| < η for 1 ≤ i ≤ k} where γi ∈ Γ. Then

A = {x ∈ G : |γi(x)− 1| < η/4 for 1 ≤ i ≤ k}

satis�es A − A + A − A ⊆ B. The bound (5) implies that µ(A) ≥ (C0η/4)
k for some

absolute constant C0 > 0.

In view of Lemma 2.8, µ(ϕ(A)) ≥ µ(A)/m ≥ (C0η)k

4km
. Therefore, by Lemma 2.3, the

set ϕ(B) ⊇ ϕ(A) − ϕ(A) + ϕ(A) − ϕ(A) is a Bohr-(k′, η′) set where k′, η′ depend only on

µ(ϕ(A)), which is bounded below by (C0η)k

4km
. □

2.5. Counting lemmas.

Lemma 2.11 (cf. [8, Lemma 2]). Let ϕ, ψ : G → G be continuous homomorphisms such

that ϕ(G), ψ(G) have �nite indices in G. Then for f1, f2, f3 ∈ L∞(G) and K ∈ L1(G)

such that K̂ ∈ L1(Γ), we have∣∣∣∣∫∫
G2

f1(x)f2(x+ ϕ(y))f3(x+ ψ(y))K(y) dµ(x)dµ(y)

∣∣∣∣≪ ∥f̂1∥∞∥f2∥2∥f3∥2∥K̂∥1 (8)

where the implied constant depends only on the indices of ϕ(G) and ψ(G) in G.

Proof. Since linear combinations of characters are dense in L2(G), without loss of gener-

ality, we can assume f1, f2, f3 and K are equal to their Fourier series. For x ∈ G, write

g(x) =
∫
G f2(x+ ϕ(y))f3(x+ ψ(y))K(y) dµ(y).

By Plancherel's formula,∣∣∣∣∫
G
f1(x)g(x) dµ(x)

∣∣∣∣ =
∣∣∣∣∣∣
∑
γ∈Γ

f̂1(γ)ĝ(γ)

∣∣∣∣∣∣ ≤ ∥f̂1∥∞ · ∥ĝ∥1.
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Thus

g(x) =

∫
G
f2(x+ ϕ(y))f3(x+ ψ(y))K(y) dµ(y)

=

∫
G

 ∑
γ2,γ3,γ0∈Γ

f̂2(γ2)γ2(x+ ϕ(y))f̂3(γ3)γ3(x+ ψ(y))K̂(γ0)γ0(y)

 dµ(y)

=

∫
G

 ∑
γ2,γ3,γ0∈Γ

f̂2(γ2)f̂3(γ3)K̂(γ0)(γ2 + γ3)(x)(γ2 ◦ ϕ+ γ3 ◦ ψ + γ0)(y)

 dµ(y)

=
∑

γ2,γ3,γ0∈Γ,
γ2◦ϕ+γ3◦ψ+γ0=0

f̂2(γ2)f̂3(γ3)K̂(γ0)(γ2 + γ3)(x)

Consequently,

ĝ(γ) =
∑

γ2,γ3,γ0∈Γ,
γ2◦ϕ+γ3◦ψ+γ0=0,

γ2+γ3=γ

f̂2(γ2)f̂3(γ3)K̂(γ0)

and

∥ĝ∥1 ≤
∑

γ2,γ3,γ0∈Γ,
γ2◦ϕ+γ3◦ψ+γ0=0

|f̂2(γ2)| · |f̂3(γ3)| · |K̂(γ0)|.

Therefore, it su�ces to show that for each γ0 ∈ Γ, we have∑
γ2,γ3∈Γ,

γ2◦ϕ+γ3◦ψ+γ0=0

|f̂2(γ2)| · |f̂3(γ3)| ≪ ∥f2∥2 · ∥f3∥2.

By the Cauchy-Schwarz inequality and the Plancherel's formula, the left hand side is at

most

∥f2∥2 ·

∑
γ2

 ∑
γ3◦ψ=−γ0−γ2◦ϕ

|f̂3(γ3)|

21/2

≪ ∥f2∥2 ·

∑
γ2

∑
γ3◦ψ=−γ0−γ2◦ϕ

|f̂3(γ3)|2
1/2

(9)

≪ ∥f2∥2 ·

(∑
γ3

|f̂3(γ3)|2
)1/2

(10)

= ∥f2∥2 · ∥f3∥2.

In (9), we use the fact that for each ξ ∈ Γ, there are at most [G : ψ(G)] values of γ3 such

that γ3 ◦ ψ = ξ. Likewise, in (10), we use the fact that for each ξ ∈ Γ, there are at most

[G : ϕ(G)] values of γ2 such that γ2◦ϕ = ξ. Both of these facts follow from Lemma 2.5. □

Remark 4. Lemma 2.11 is not true without the assumption on �nite indices. As a coun-

terexample, we let ϕ(x) = x, ψ(x) = 2x and G = Fk2 for some large k. Let n = |G| = 2k.

For each i = 1, . . . , n, de�ne

• f̂1(γi) = f̂3(γi) = 1, so f1(x) = f3(x) = n · 1x=0.
13



• f̂2(γi) = ai, where ai ≥ 0.

• K̂(γi) = bi, where bi ≥ 0.

Then (8) says that

n(a1b1 + · · ·+ anbn)
2 ≪ (a21 + · · ·+ a2n)(b1 + · · ·+ bn)

2.

This is false by taking a1 = b1 = 1 and ai = bi = 0 for i ̸= 1.

While the previous lemma involves the con�guration x, x+ϕ(y), x+ψ(y), the next one is

concerned with x, x+ϕ(y) and ψ(y). Its proof is almost identical and so we only highlight

the di�erences.

Lemma 2.12. Let ϕ, ψ : G→ G be continuous homomorphism such that ϕ(G), ψ(G) have

�nite indices in G. Then for f1, f2, f3 ∈ L∞(G), we have∣∣∣∣∫∫
G2

f1(x)f2(x+ ϕ(y))f3(ψ(y)) dµ(x)dµ(y)

∣∣∣∣≪ ∥f̂1∥∞∥f2∥2∥f3∥2 (11)

where the implicit constant depends only on the indices of ϕ(G) and ψ(G) in G.

Proof. Similar to the proof of Lemma 2.11, without loss of generality, we can assume

f1, f2, f3 are equal to their Fourier series. For x ∈ G, write g(x) =
∫
G f2(x+ϕ(y))f3(ψ(y)) dµ(y)

and then by Plancherel's formula,

∣∣∣∣∫
G
f1(x)g(x) dµ(x)

∣∣∣∣ =
∣∣∣∣∣∣
∑
γ∈Γ

f̂1(γ)ĝ(γ)

∣∣∣∣∣∣ ≤ ∥f̂1∥∞ · ∥ĝ∥1.

Moreover, we also have

g(x) =

∫
G

 ∑
γ2,γ3∈Γ

f̂2(γ2)γ2(x+ ϕ(y))f̂3(γ3)γ3(ψ(y))

 dµ(y)

=
∑

γ2,γ3∈Γ,
γ2◦ϕ+γ3◦ψ=0

f̂2(γ2)f̂3(γ3)γ2(x).

As a consequence,

ĝ(γ) =
∑

γ2,γ3∈Γ,
γ2◦ϕ+γ3◦ψ=0,

γ2=γ

f̂2(γ2)f̂3(γ3) = f̂2(γ)
∑
γ3∈Γ,

γ◦ϕ+γ3◦ψ=0

f̂3(γ3)

and so

∥ĝ∥1 ≤
∑

γ2,γ3∈Γ,
γ2◦ϕ+γ3◦ψ=0

∣∣∣f̂2(γ2)∣∣∣ ∣∣∣f̂3(γ3)∣∣∣ .
14



On the other hand, we have

∑
γ2,γ3∈Γ,

γ2◦ϕ+γ3◦ψ=0

∣∣∣f̂2(γ2)∣∣∣ ∣∣∣f̂3(γ3)∣∣∣ =
∑
γ2∈Γ

∣∣∣f̂2(γ2)∣∣∣ ∑
γ3∈Γ,

γ3◦ψ=−γ2◦ϕ

∣∣∣f̂3(γ3)∣∣∣


≤

∑
γ2∈Γ

∣∣∣f̂2(γ2)∣∣∣2
1/2

∑
γ2∈Γ

 ∑
γ3∈Γ,

γ3◦ψ=−γ2◦ϕ

∣∣∣f̂3(γ3)∣∣∣


2
1/2

≪ ∥f2∥2

∑
γ2∈Γ

∑
γ3∈Γ,

γ3◦ψ=−γ2◦ϕ

∣∣∣f̂3(γ3)∣∣∣2


1/2

(12)

≪ ∥f2∥2

∑
γ3∈Γ

∣∣∣f̂3(γ3)∣∣∣2
1/2

(13)

= ∥f2∥2∥f3∥2.

In (12), we use the fact that for each ξ ∈ Γ, there are ≤ [G : ψ(G)] values of γ3 such that

γ3 ◦ ψ = ξ while (13) follows from the fact that there are ≤ [G : ϕ(G)] values of γ2 such

that γ2 ◦ ϕ = ξ. □

3. Bohr sets and partitions

3.1. Monochromatic con�gurations. We make some preparations before the proof of

Theorem 1.11. In this section, we only need G to be a commutative semigroup with neutral

element. Fix k + 1 commuting (semigroup) homomorphisms ψ, ϕ1, . . . , ϕk : G → G. We

write

Φm = {ψi0 ◦ ϕi11 ◦ · · · ◦ ϕik1 : 0 ≤ i0, i1, . . . , ik ≤ m} ∪ {0}

(where ϕi is the i-th composition of ϕ).

For formal variables x1, . . . , xn, we write

Sm(x1, . . . , xn) =

{
n∑
i=1

ξi(xi) : ξi ∈ Φm

}
and we refer to Sm(x1, . . . , xn) as the Sm,n-set with generators x1, . . . , xn.

For an element x =
∑n

i=1 ξi(xi) ∈ Sm(x1, . . . , xn), by the support of x we mean the set

{i ∈ [n] : ξi ̸= 0}. The goal of this section is to prove the following:

Theorem 3.1. For any r > 0, there exist n and m such that under any r-coloring of

Sm(x1, . . . , xn), there is a monochromatic con�guration

{ψ(y), x, x+ ϕ1(y), . . . , x+ ϕk(y)},

where x, y have nonempty and disjoint supports.

The fact that the supports of x and y are nonempty and disjoint will be crucial in our

applications (Theorem 1.11 and Proposition 5.1). Theorem 3.1 follows from Proposition 3.3
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below whose proof requires the multidimensional Hales-Jewett theorem (for a reference,

see [16, Theorem 7, p.40]). We recall the theorem here for reader's convenience.

The set [t]N = {(x1, . . . , xN ) : xi ∈ [t]} is called a cube of dimension N over t elements.

Let [N ] = A0 ∪ A1 . . . Am be any disjoint partition of [N ], where Ai ̸= ∅ for i ̸= 0 (A0

may be empty), and f : A0 → [t] be any map. De�ne a map g : [t]m → [t]N by assigning

to each (y1, . . . , ym) ∈ [t]m the element (x1, . . . , xN ) ∈ [t]N , where

xi =

f(i), if i ∈ A0

yj , if i ∈ Aj for j ∈ [m].
(14)

A combinatorial space of dimension m is the image of g for some choice of A0, A1, . . . , Am

and f . We can now state:

Theorem 3.2 (Multidimensional Hales-Jewett). For any r, t,m, there exists a number

N = HJ(t,m; r) such that whenever [t]N is r-colored, there must be a monochromatic

combinatorial space of dimension m.

Using this, we can prove the following proposition:

Proposition 3.3. For any r > 0 and ℓ > 0, there exist n = n(k, ℓ, r) and m = m(k, ℓ, r)

such that under any r-coloring of Sm(x1, . . . , xn), there are elements y1, . . . , yℓ ∈ Sm(x1, . . . , xn)

with nonempty and disjoint supports, such that for each i ∈ [ℓ], the elements

ψ(yi) +
∑

1≤j≤i−1

ξj(yj) where ξj ∈ {0, ψ, ϕ1, . . . , ϕk}

have the same color (i.e. their color depends only on i).

Proof. The number of colors r will be �xed throughout. We will proceed by induction on

ℓ. When ℓ = 1 the statement is obvious. Suppose the statement is true for ℓ, we will prove

it is true for ℓ+ 1.

Write n′ = n(k, ℓ, r),m′ = m(k, ℓ, r). We de�ne m = m(k, ℓ, r) := |Φm′+1| + 1, N :=

HJ(|Φm′+1|, n′; r) and n = n(k, ℓ+ 1, r) := 1 +N .

Consider an arbitrary r-coloring of Sm(x1, . . . , xn). An r-coloring of Sm(x1, . . . , xn)

induces an r-coloring of ΦNm′+1 by assigning to (a1, . . . , aN ) ∈ (Φm′+1)
N the color of

ψ(xn) +

N∑
i=1

ϕ ◦ ai(xi).

Since N = HJ(|Φm′+1|, n′; r), there is a disjoint partition

[N ] = A0 ∪A1 · · · ∪An′ , Ai ̸= ∅∀i ̸= 0

and functions fi ∈ Φm′+1 for i ∈ A0 such that when ξ1, ξ2, . . . , ξn′ range over Φm′+1, all

the elements

ψ(xn) +

N∑
i=1

ϕ ◦ ai(xi),
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with

ai =

fi, if i ∈ A0

ζj , if i ∈ Aj for j ∈ [n′]

have the same color.

Write zj =
∑

i∈Aj ϕ(xi) for 1 ≤ j ≤ n′, and zn′+1 = xn+1 +
∑

i∈A0
fi(xi). Then all the

zj have nonempty and disjoint supports, and all elements of the form

ψ(zn′+1) +

n′∑
j=1

ζj(zj), ζj ∈ Φm′+1,

have the same color.

By the inductive hypothesis, there exists a sequence y1, . . . , yℓ ∈ Sm′(z1, . . . , z
′
n) having

nonempty and disjoint supports such that for each i = 1, . . . , ℓ, the elements

ψ(yi) +
∑

1≤j≤i−1

ξj(yj) where ξj ∈ {0, ψ, ϕ1, . . . , ϕk}

have the same color. We now set yℓ+1 = zn′+1. Clearly the elements

ϕ(yℓ+1) +
∑

1≤j≤ℓ
ξj(yj) where ξj ∈ {0, ψ, ϕ1, . . . , ϕk}

are of the form

ϕ(zn′+1) +
n′∑
j=1

ζj(zj), ζj ∈ Φm′+1,

and so they have the same color. Thus Proposition 3.3 is proved. □

Proof of Theorem 3.1. Applying Proposition 3.3 with ℓ = r + 1, we can �nd a sequence

y1, . . . , yr+1 satisfying the conclusion of that proposition. Let c(i) be the color of

ψ(yi) +
∑

1≤j≤i−1

ξj(yj) where ξj ∈ {0, ψ, ϕ1, . . . , ϕk}.

Then there exist 1 ≤ u < v ≤ r + 1 such that c(u) = c(v). Hence the elements

ψ(yu), ψ(yv), ψ(yv) + ϕ1(yu), . . . , ψ(yv) + ϕk(yu),

have the same color, and we are done (with x = ψ(yv), y = yu). □

3.2. Proofs of Theorem 1.11 and Theorem 1.5. Using Theorem 3.1 we can now prove

Theorem 1.11, which we recall for convenience:

Theorem. Suppose ϕ, ψ1, . . . , ψk : G→ G are continuous homomorphisms satisfying:

(1) ψ(G), ϕ1(G), . . . , ϕk(G) have �nite indices in G, and

(2) ψ, ϕ1, . . . , ϕk are commuting.

Suppose G =
⋃r
i=1Ai is a partition of G into measurable sets. Then

r∑
i=1

∫∫
G2

1Ai(ψ(t))1Ai(x)1Ai(x+ ϕ1(t)) · · · 1Ai(x+ ϕk(t)) dµ(x)dµ(t) ≥ c3

for some positive constant c3 depending only on r, k and the aforementioned indices.
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Proof. Consider the set Sm(x1, . . . , xn) given by Theorem 3.1, where we now let x1, . . . , xn

vary over G. Note that for any ψ ∈ Φm, we have [G : ψ(G)] <∞ by Lemma 2.6. Let R be

the set of all pairs (z, t) where z, t ∈ Sm(x1, . . . , xn) have nonempty and disjoint supports.

Suppose G =
⋃r
i=1Ai. For i ∈ [r], we de�ne

Ti :=

∫
G2

1Ai(ψ(y))1Ai(x)1Ai(x+ ϕ1(y)) · · · 1Ai(x+ ϕk(y)) dµ(x)dµ(y).

Let (z, t) ∈ R be arbitrary, and suppose

z =
∑
u∈U

ζu(xu) and t =
∑
v∈V

ξv(xv)

where U, V ⊂ [n] are nonempty and disjoint and ζu, ξv ∈ Φm \ {0}. We have∫
Gm

1Ai(ψ(t))1Ai(z)1Ai(z + ϕ1(t)) · · · 1Ai(z + ϕk(t)) dµ(x1) · · · dµ(xm)

=

∫
Gm

1Ai

(∑
v∈V

ψ(ξv(xv))

)
1Ai

(∑
u∈U

ζu(xu)

)
1Ai

(∑
u∈U

ζu(xu) + ϕ1

(∑
v∈V

ξv(xv)

))
· · ·

1Ai

(∑
u∈U

ζu(xu) + ϕk

(∑
v∈V

ξv(xv)

))
dµ(x1) · · · dµ(xm)

≪
∫
Gm

1Ai

(∑
v∈V

ψ(xv)

)
1Ai

(∑
u∈U

xu

)
1Ai

(∑
u∈U

xu + ϕ1

(∑
v∈V

xv

))
· · ·

1Ai

(∑
u∈U

xu + ϕk

(∑
v∈V

xv

))
dµ(x1) · · · dµ(xm)

=

∫
G2

1Ai(ψ(y))1Ai(x+ ϕ1(y)) · · · 1Ai(x+ ϕk(y)) dµ(x) dµ(y)

= Ti,

by |U |+ |V | applications of Lemma 2.8.

Now Theorem 3.1 implies that

1 ≤
∫
Gm

r∑
i=1

∑
(z,t)∈R

1Ai(ψ(t))1Ai(z)1Ai(z + ϕ1(t)) · · · 1Ai(z + ϕk(t)) dµ(x1) · · · dµ(xm)

≤
r∑
i=1

∫
Gm

∑
(z,t)∈R

1Ai(ψ(t))1Ai(z)1Ai(z + ϕ1(t)) · · · 1Ai(z + ϕk(t)) dµ(x1) · · · dµ(xm)

≪
r∑
i=1

Ti,

thus �nishing the proof. □

To prove Theorem 1.5, we will need the following proposition. With an eye to potential

applications, we state and prove a slightly stronger version than what is needed.

Proposition 3.4. Let ϕ, ψ : G → G be commuting continuous homomorphisms with im-

ages having �nite indices. Suppose f1, . . . , fr : G → [0, 1] are measurable functions such
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that
∑r

i=1 fi ≥ 1 pointwise. For w ∈ G, de�ne

Ri(w) =

∫∫
fi(ψ(y))fi(x+ w)fi(x+ ϕ(y)) dµ(x)dµ(y).

Then there are c, k, η > 0 depending only on r and the indices above such that for some

i ∈ [r], the set {w ∈ G : Ri(w) > c} contains a Bohr-(k, η) set.

Proof. For i ∈ [r], let Ai = {x ∈ G : fi(x) ≥ 1/r}. Since
∑r

i=1 fi ≥ 1 pointwise,

G =
⋃r
i=1Ai. In light of Theorem 1.11, there exists a constant c depending only on r and

the indices and an i ∈ [r] such that∫∫
G2

1Ai(x)1Ai(x+ ϕ(y))1Ai(ψ(y)) dµ(x)dµ(y) > c.

It then follows that

Ri(0) ≥
c

r3
.

On the other hand, by Lemma 2.12, for every w ∈ G,

|Ri(w)−Ri(0)| ≪ ∥f̂ − f̂w∥∞,

where the implicit constant depends only on the indices of ϕ(G), ψ(G), (ϕ − ψ)(G) in G.

Hence, there exists a constant c′ such that Ri(w) ≥ c
2r3

if

∥f̂i − f̂i,w∥∞ < c′.

By Lemma 2.1, the set of such w contains a Bohr-(k, η) set, where k and η depend only

on c′. □

Theorem 1.5 is now a special case of the next theorem with ψ1 = ϕ2 and ψ2 = ϕ1.

Theorem 3.5. Let G =
⋃r
i=1Ai be a partition into measurable sets. Let ϕ1, ϕ2, ψ1, ψ2 :

G→ G be continuous homomorphisms satisfying the followings:

(1) ϕ2 ◦ ψ2 = ϕ1 ◦ ψ1,

(2) ψ1 ◦ ψ2 = ψ2 ◦ ψ1,

(3) ϕ1(G), ψ1(G), ψ2(G) have �nite indices in G.

Then for some 1 ≤ i ≤ r, the set ϕ1(Ai) − ϕ1(Ai) + ϕ2(Ai) contains a Bohr-(k, η) set,

where k and η depend only on r and the indices of ϕ1(G), ψ1(G), ψ2(G) in G.

Proof. Suppose G =
⋃r
i=1Ai. We apply Proposition 3.4 with fi = 1Ai and (ψ1, ψ2) in

place of (ψ, ϕ). Then for some i, the set {w ∈ G : Ri(w) > c} contains a Bohr-(k, η) set

B. This means that for w ∈ B, there exist x, y ∈ G such that

x+ w,ψ2(y), x+ ψ1(y) ∈ Ai.

Since

ϕ1(x+ w) + ϕ2(ψ2(y))− ϕ1(x+ ψ1(y)) = ϕ1(w),

we conclude that ϕ1(B) ⊂ ϕ1(Ai) + ϕ2(Ai) − ϕ1(Ai). Our theorem now follows from

Lemma 2.10. □
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Remark 5. If ϕ1 is an automorphism and [G : ϕ2] <∞ then the hypothesis of Theorem 3.5

is also satis�ed. Indeed, we let ψ1 = ϕ−1
1 ◦ ϕ2 and ψ2 = Id. Then the �rst two conditions

of Theorem 3.5 are satis�ed. As for the third condition, we have ψ1(G) = ϕ−1
1 ◦ ϕ2(G),

which has �nite index in G by Lemma 2.6. Similarly, we see that if ϕ2 is an automorphism

and [G : ϕ1] <∞, then the conditions of Theorem 3.5 is also satis�ed.

4. Bohr sets and sets of positive measure

4.1. A regularity lemma. The goal of this section is to prove Proposition 4.2. As men-

tioned in the introduction, this argument has its genesis in Bourgain [8]. Bourgain's ideas

were elaborated by Tao [31], who proved Roth's theorem in compact abelian groups that

are 2-divisible; and by Bergelson-Host-McCutcheon-Parreau [2, Theorem 4.1], who proved

Roth's theorem for dilations on the torus R/Z. We streamline and generalize Bergelson-

Host-McCutcheon-Parreau's argument to deal with homomorphisms on arbitrary compact

abelian groups. This generalization requires non-trivial modi�cations; especially, we will

make use of Lemma 2.1 and Lemma 2.4.

Lemma 4.1 (cf. [2, Lemma 4.2]). Let ϕ, ψ : G → G be continuous homomorphisms such

that ϕ(G), ψ(G) and (ϕ− ψ)(G) have �nite indices in G. For f ∈ L∞(G), de�ne

J(f) =

∫∫
G2

f(x)f(x+ ϕ(y))f(x+ ψ(y)) dµ(x)dµ(y).

Then for any measurable functions f, g : G→ [0, 1],

|J(f)− J(g)| ≪ ∥f̂ − ĝ∥∞,

where the implicit constant depends only on the aforementioned indices.

Proof. We have

J(f)− J(g) =

∫∫
G2

(f − g)(x) · f(x+ ϕ(y)) · f(x+ ψ(y)) dµ(x)dµ(y)

+

∫∫
G2

g(x) · (f − g)(x+ ϕ(y)) · f(x+ ψ(y)) dµ(x)dµ(y)

+

∫∫
G2

g(x) · g(x+ ϕ(y)) · (f − g)(x+ ψ(y)) dµ(x)dµ(y).

The lemma now follows from Lemma 2.11 and the assumptions on ϕ and ψ. □

Proposition 4.2 (Regularity Lemma). Let f : G → [0, 1] be a measurable function with∫
G f dµ = δ > 0. Let ϕ, ψ : G → G be continuous homomorphisms such that ϕ(G), ψ(G)

and (ϕ−ψ)(G) have �nite indices in G. Then for every ϵ > 0, there exist a constant C that

depends only on δ, ϵ and the indices above, a kernel K : G → R≥0, and a decomposition

f = fst + fer + fun such that

(1) ∥K∥∞ < C,

(2) ∥fst∥∞ ≤ 1, ∥fer∥∞ ≤ 2 and ∥fun∥∞ ≤ 2,

(3) J ′(fst) :=

∫∫
G2

fst(x)fst(x+ ϕ(t))fst(x+ ψ(t))K(t) dµ(x)dµ(t) > δ3 − ϵ,

(4) ∥fer∥2 < ϵ,
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(5) ∥f̂un∥∞∥K̂∥1 < ϵ.

Proof. For t ∈ G, let

d(t) := max
(
∥f̂ − f̂t∥∞, ∥f̂ − f̂ϕ(t)∥∞, ∥f̂ − f̂ψ(t)∥∞

)
.

Fixing ϵ > 0, we de�ne sequences ηn ∈ (0, 1/2], κn ∈ (0,∞) and �nite sets Λn ⊆ Γ

recursively as follows:

First set η0 = 1/2. For n ≥ 0, Lemma 2.1 implies that there exists a set Λn ∈ Γ with

|Λn| ≤ 12/η2n such that D(ηn) := {t ∈ G : d(t) ≤ ηn} contains a Bohr set B(Λn; ηn). For

η ∈ (0, 1/2], de�ne ν(η) = (C0η)
12/η2 where C0 is the constant found in Lemma 2.4; in

particular, ν(ηn) = (C0ηn)
12/η2n ≤ (C0ηn)

|Λn|. Put

κn = ν(ηn)
−1/2 and ηn+1 = min

{
ηn,

ϵ2

4κ2n
, ϵν

(
ϵ

2κn

)}
.

In view of Lemma 2.4, for n ≥ 0, there is a kernel Kn : G→ [0,∞) such that

K̂n ≥ 0, ∥K̂n∥1 = ∥Kn∥∞ ≤ 1/ν(ηn)

and Kn is supported on B(Λn; ηn) ⊆ D(ηn). We de�ne

fn = f ∗Kn.

Claim 1:

∥f̂ − f̂n∥∞ = sup
γ∈Γ

∣∣∣f̂(γ)(1− K̂n(γ))
∣∣∣ ≤ ηn.

Indeed, by construction,Kn is supported onD(ηn); and every t ∈ D(ηn) satis�es
∣∣∣f̂(γ)(1− γ(t))

∣∣∣ ≤
ηn for all γ ∈ Γ. Therefore, for all γ ∈ Γ,

∣∣∣f̂(γ)∣∣∣ ∣∣∣1− K̂n(γ)
∣∣∣ ≤

∣∣∣f̂(γ)∣∣∣ ∫
G
Kn(x)

∣∣∣1− γ(x)
∣∣∣ dµ(x)

=
∣∣∣f̂(γ)∣∣∣ ∫

D(ηn)
Kn(x)

∣∣∣1− γ(x)
∣∣∣ dµ(x)

=

∫
D(ηn)

Kn(x)
∣∣∣f̂(γ)∣∣∣ ∣∣∣1− γ(x)

∣∣∣ dµ(x)
≤ ηn

∫
D(ηn)

Kn(x) dµ(x) ≤ ηn.

Claim 2:

∥fn+1 − fn∥22 ≤ ∥fn+1∥22 − ∥fn∥22 + 2ηn+1κ
2
n.
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Indeed, we have

∥fn+1 − fn∥22 = ∥f̂n+1 − f̂n∥22

= ∥f̂n+1∥22 − ∥f̂n∥22 −
∑
γ∈Γ

(
−f̂n+1(γ)f̂n(γ) + f̂n+1(γ)f̂n(γ)

)
= ∥f̂n+1∥22 − ∥f̂n∥22 + 2

∑
γ∈Γ

∣∣∣f̂(γ)∣∣∣2
2
K̂n(γ)

(
K̂n(γ)− K̂n+1(γ)

)
≤ ∥f̂n+1∥22 − ∥f̂n∥22 + 2

∑
γ∈Γ

∣∣∣f̂(γ)∣∣∣2 K̂n(γ)
(
1− K̂n+1(γ)

)
≤ ∥f̂n+1∥22 − ∥f̂n∥22 + 2 sup

γ∈Γ
|f̂(γ)|

(
1− K̂n+1(γ)

)
· ∥K̂n∥1

≤ ∥f̂n+1∥22 − ∥f̂n∥22 + 2ηn+1κ
2
n

and the claim is proved.

Since ηn+1 ≤ ϵ2/(4κ2n), we have

∥fn+1 − fn∥22 ≤ ∥fn+1∥22 − ∥fn∥22 + ϵ2/2.

Let M be the smallest integer such that M ≥ 2/ϵ2. Then

M−1∑
n=0

∥fn+1 − fn∥22 ≤ ∥fM∥22 − ∥f0∥22 +Mϵ2/2 ≤ 1 +Mϵ2/2 ≤Mϵ2.

Therefore there exists 0 ≤ n ≤M − 1 such that

∥fn+1 − fn∥2 ≤ ϵ.

From now on, we �x this n. Next consider the expression

In(t) =

∫
G
fn(x)fn(x+ ϕ(t))fn(x+ ψ(t)) dµ(x) for t ∈ G.

We have

|In(0)− In(t)| ≤ ∥fn − (fn)ϕ(t)∥1 + ∥fn − (fn)ψ(t)∥1.

Note that

∥fn − (fn)ϕ(t)∥21 ≤ ∥fn − (fn)ϕ(t)∥22 = ∥(f − fϕ(t)) ∗Kn∥22

=
∑
γ∈Γ

∣∣∣K̂n(γ)
∣∣∣2 ∣∣∣f̂(γ)∣∣∣2 |1− γ(ϕ(t))|2

≤ ∥K̂n∥1d(t)2 ≤ κ2nd(t)
2.

The same estimate holds for ∥fn − (fn)ψ(t)∥21. Hence |In(0) − In(t)| ≤ 2κnd(t) for any

t ∈ G.

Since In(0) = ∥fn∥31 = ∥f∥31 ≥ δ3, it follows that

In(t) ≥ δ3 − 2κnd(t) for all t ∈ G.

Note that d(t) ≤ ϵ/(2κn) for t in the set D(ϵ/(2κn)) and so In(t) ≥ δ3 − ϵ in this set.
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Let η = ϵ/(2κn). In view of Lemma 2.4, there exists a kernel K supported on D(η) such

that ∥K∥∞ ≤ 1/ν(η). We then have

J ′(fn) :=

∫
G
In(t)K(t) dµ(t) ≥ (δ3 − ϵ)

∫
B(ϵ/(2κn))

K(t) dµ(t) ≥ δ3 − ϵ.

Letting fst = fn, fer = fn+1 − fn and fun = f − fn+1, we obtain

(1) ∥K∥∞ ≤ 1/ν(ϵ/(2κn)) ≤ 1/ν(ϵ/(2κM )),

(2) ∥fer∥2 = ∥fn+1 − fn∥2 < ϵ,

(3) ∥f̂un∥∞∥K∥∞ = ∥f̂ − f̂n+1∥∞∥K∥∞ < ηn+1/ν(η) < ϵ because ηn+1 ≤ ϵν(ϵ/(2κn)) =

ϵν(η).

(4) J ′(fst) = J ′(fn) ≥ δ3 − ϵ.

Our proof �nishes. □

4.2. Proof of density results. The goal of this section is to prove Theorem 1.6 and

Theorem 1.9. First we recall Theorem 1.9 for the reader's convenience.

Theorem (Khintchine-Roth theorem for compact abelian groups). Let f : G → [0, 1] be

a mensurable function with
∫
G f dµ > δ. Let ϕ, ψ : G → G be continuous homomorphisms

such that [G : ϕ(G)], [G : ψ(G)] and [G : (ϕ− ψ)G] are �nite. Then for every ϵ > 0, there

exists a constant c1 that depends only on δ, ϵ and the indices above such that the set

B =

{
t ∈ G :

∫
G
f(x)f(x+ ϕ(t))f(x+ ψ(t)) dµ(x)dµ(t) > δ3 − ϵ

}
has measure greater than c1. As a consequence, there exists a constant c2 that depends only

on δ and indices of ϕ(G), ψ(G) such that

J(f) :=

∫∫
G2

f(x)f(x+ ϕ(t))f(x+ ψ(t))dµ(x)dµ(t) > c2.

Proof. Fix ϵ > 0 and let constant C, kernel K and the decomposition f = fst + fer + fun

be as found in Proposition 4.2. De�ne

J ′(f) :=

∫∫
G2

f(x)f(x+ ϕ(t))f(x+ ψ(t))K(t) dµ(x)dµ(t)

and

J ′(fst) :=

∫∫
G2

fst(x)fst(x+ ϕ(t))fst(x+ ψ(t))K(t) dµ(x)dµ(t).

Applying the decomposition f = fst + fer + fun and expanding J ′(f), we see that the

di�erence J ′(f)− J ′(fst) will have 26 terms. The terms that contain fer can be bounded

by 4ϵ since for f1, f2, f3 ∈ L∞(G),∫∫
G2

f1(x)f2(x+ ϕ(t))f3(x+ ψ(t))K(t) dµ(x)dµ(t) ≤ max
i

∥fi∥2∞max
i

∥fi∥1∥K∥1.

On the other hand, in view of Lemma 2.11, the terms containing fun are bounded by

O(∥f̂un∥∞∥K̂∥1) which is O(ϵ) thanks to the properties of the decomposition. Therefore,

J ′(f) > J ′(fst)−O(ϵ) > δ3 − c0ϵ (15)

where the constant c0 depends only on the indices of ϕ(G), ψ(G) and (ϕ− ψ)(G) in G.
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De�ne

If (t) =

∫
G
f(x)f(x+ ϕ(t))f(x+ ψ(t)) dµ(x)

and

B = {t ∈ G : If (t) > δ3 − 2c0ϵ}.

We then have

J ′(f) =

∫
G
If (t)K(t) dµ(t) =

∫
B
If (t)K(t) dµ(t) +

∫
G\B

If (t)K(t) dµ(t) ≤∫
B
K(t) dµ(t) + (δ3 − 2c0ϵ)

∫
G\B

K(t) dµ(t) ≤ ∥K∥∞µ(B) + (δ3 − 2c0ϵ). (16)

Combining (15) and (16), we deduce that

µ(B) > c0ϵ/∥K∥∞.

Letting c1 = c0ϵ/∥K∥∞, we obtain the �rst part of the theorem.

Now we have

J(f) =

∫
G
If (t) dµ(t) > (δ3 − 2c0ϵ)c1.

Letting c2 = c1(δ
3 − 2c0ϵ), we obtain the second part of the theorem. □

In order to prove Theorem 1.6, we need the following proposition. For our future appli-

cations, we will state and prove a slightly more general version than what is necessary.

Proposition 4.3. Suppose ϕ, ψ : G → G are continuous homomorphisms such that

ϕ(G), ψ(G), (ϕ − ψ)(G) have �nite indices in G. Let f : G → [0, 1] such that
∫
G f dµ =

δ > 0. For w ∈ G, de�ne

R(w) =

∫∫
G2

f(x+ w)f(x+ ϕ(y))f(x+ ψ(y)) dµ(x)dµ(y)

Then there are c, k, η > 0 depending only on δ and the indices above such that the set

{w ∈ G : R(w) > c} contains a Bohr-(k, η) set.

Proof. By Lemma 2.11, we have

|R(w)−R(0)| ≪ ∥f̂ − f̂w∥∞

where implicit constant depends only on the indices of ϕ(G), ψ(G), (ϕ − ψ)(G) in G. By

Theorem 1.9, we know that R(0) > c for some constant c > 0 depending on these indices

and δ. It follows that there exists a constant c′ such that R(w) > c/2 if

∥f̂ − f̂w∥∞ < c′. (17)

Lemma 2.1 implies that the set of such w contains a Bohr-(k, η) set, where k and η depend

only on c′. □

We can now formulate and prove our main theorem for sets of positive measure.

Theorem 4.4. Let ϕ1, ϕ2, ϕ3, ψ1, ψ2 : G → G be continuous homomorphisms satisfying

the following

(1) ϕ1 + ϕ2 + ϕ3 = 0,
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(2) ϕ1 ◦ ψ1 = ϕ2 ◦ ψ2,

(3) ϕ3(G), ψ1(G), ψ2(G), (ψ1 + ψ2)(G) have �nite indices in G.

The for any measurable set A ⊂ G, µ(A) = δ > 0, the set ϕ1(A) +ϕ2(A) +ϕ3(A) contains

a Bohr-(k, η) set, where k and η depend only on δ and the indices above.

Proof. Applying Proposition 4.3 for f = 1A and ψ1, ψ2 in place of ϕ and ψ, we see that

there exists a Bohr-(k, η) set B such that for all w ∈ B, there are x, y ∈ G such that

x+ w, x+ ψ1(y) and x− ψ2(y) ∈ A.

Note that

ϕ3(x+ w) + ϕ1(x+ ψ1(y)) + ϕ2(x− ψ2(y)) = ϕ3(w)

and so that ϕ1(A)+ϕ2(A)+ϕ3(A) ⊇ ϕ3(B). Our theorem then follows from Lemma 2.10.

□

Theorem 1.6 is now a special case of Theorem 4.4 when ψ1 = ϕ2 and ψ2 = ϕ1.

Remark 6. If ϕ1 is an automorphism and [G : ϕ2(G)], [G : ϕ3(G)] <∞ then the hypothesis

of Theorem 4.4 is also satis�ed. Indeed, we let ψ1 = ϕ−1
1 ◦ ϕ2 and ψ2 = Id. Then the

�rst two conditions of Theorem 4.4 are satis�ed. As for the third condition, we have

ψ1(G) = ϕ−1
1 ◦ ϕ2(G) and (ψ1 + ψ2)(G) = ϕ−1

1 ◦ (ϕ2 + ϕ1)(G). Both of these have �nite

indices in G by Lemma 2.6.

5. Bohr sets in sumsets in number fields and function fields

In this section we prove Theorems 1.4, 1.7 and 1.8 using a strategy similar to Bergelson

and Ruzsa's proof of Theorem 1.2. To prove Theorem 1.2, one could embed A ∩ [N ] nat-

urally in ZN , and invoke the counting result (for example, Theorem 1.9) in ZN . However,
one has to deal with the �wraparound e�ect�: A solution to s1x + s2y + s3z = 0 in ZN
does not necessarily correspond to a solution in Z. To overcome this issue, Bergelson and

Ruzsa embedded A ∩ [N ] in ZN ′ for some N ′ ≫ N . Then A ∩ [N ] remains dense in ZN ′

and a solution in ZN ′ found in A ∩ [N ] is now a solution in Z.
For partitions, the corresponding counting result would be Theorem 1.11. However,

if this theorem were applied directly, we would have a partition of the whole group ZN ′

which again causes the wrap-around e�ect. To avoid this problem, we need to modify

Theorem 1.11 so that it allows for partitions of a subset [−N,N ] ⊂ ZN ′ instead of the

whole group.

Proposition 5.1. For any k, ℓ, r > 0, there is a constant c(k, ℓ, r) > 0 such that the

following holds: For su�ciently large N , if [−N,N ] =
⋃r
i=1Ai, then for some 1 ≤ i ≤ r,

we have ∑
|x|,|y|≤N

1Ai(ℓy)1Ai(x)1Ai(x+ y) · · · 1Ai(x+ ky) ≥ c(k, ℓ, r)N2.

Remark 7. Proposition 5.1 also follows from Frankl-Graham-Rödl [12, Theorem 1], but our

proof shows that it is directly in line with Theorem 1.11. Furthermore, our proof easily

generalizes to other rings such as Z[i] and Fq[t].
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Proof. We applying Theorem 3.1 with ψ(y) = ℓy and ϕj(y) = jy for 1 ≤ j ≤ k. Then there

exist m and n depending only on r and k such that for any r-coloring of Sm(x1, . . . , xn),

there are x and y of nonempty and disjoint support such that the con�guration

{ℓy, x, x+ y, . . . , x+ ky}

is monochromatic.

Note that elements of Sm(x1, . . . , xn) are all linear forms in x1, . . . , xn with bounded

integer coe�cients. We now let x1, . . . , xn vary over [−cN, cN ] where c is a small con-

stant. Then Sm(x1, . . . , xn) ⊂ [−N,N ]. Under the partition [−N,N ] =
⋃r
i=1Ai, each set

Sm(x1, . . . , xn) contains a monochromatic con�guration {ℓy, x, x + y, . . . , x + ky}. There

are≫ Nn monochromatic con�gurations arising in this way. However, a con�guration may

come from many di�erent sets Sm(x1, . . . , xn). We will show that the number of tuples

(x1, . . . , xn) giving rise to the same con�guration {ℓy, x, x+ y, . . . , x+ ky} is ≪ Nn−2.

Indeed, let I, J be disjoint nonempty subsets of [n] such that x and y are linear combi-

nations with bounded coe�cients of (xi)i∈I and (xj)j∈J , respectively. For �xed I and J ,

the number of choices for (xi)i∈I is ≪ N |I|−1, since any choice of (|I| − 1) of the xi's gives

at most one value for the remaining xi. For the same reason, the number of choices for

(xj)j∈J is ≪ N |J |−1. Since there are �nitely many pairs (I, J), we see that the number of

(x1, . . . , xn) that give rise to {ℓy, x, x + y, . . . , x + ky} is ≪ Nn−2. Hence the number of

monochromatic con�gurations in [N ] is ≫ N2, and we are done. □

Our next statement is essentially a diagonalization argument.

Proposition 5.2. Let P denote an arbitrary partition Z =
⋃r
i=1Ai. Then there exists

some 1 ≤ i ≤ r with the following property: For every ℓ ≥ 0, there is a constant c(ℓ,P)

such that ∑
|x|,|y|≤N

1Ai(y)1Ai(x)1Ai(x+ ℓy) ≥ c(ℓ,P)N2

for in�nitely many N ∈ N.

Proof. Invoking Proposition 5.1, for each k ∈ N, there is i = f(k) such that for in�nitely

many N , we have∑
|x|,|y|≤N

1Ai(y)1Ai(x)1Ai(x+ y) · · · 1Ai(x+ ky) ≥ c(k, 1, r)N2.

Hence there exist an i ∈ {1, . . . , r} and an in�nite set K such that f(k) = i for all k ∈ K.

Let ℓ be arbitrary and pick k ∈ K, k ≥ ℓ. We have, for in�nitely many N ,∑
|x|,|y|≤N

1Ai(y)1Ai(x)1Ai(x+ ℓy)

≥
∑

|x|,|y|≤N

1Ai(y)1Ai(x)1Ai(x+ y) · · · 1Ai(x+ ky) ≥ c(k, 1, r)N2,

thus proving the desired claim. □
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Remark 8. In the proof above, we do not have any control on c(k, 1, r) since we do not

have control on k. As a result, the constant c(ℓ,P) above depends on the partition. It is

interesting to see if this dependence is indeed necessary.

We can now prove Theorem 1.4.

Proof of Theorem 1.4(a). Let Z =
⋃r
i=1Ai be an arbitrary partition and s1, s2 ∈ Z \ {0}.

Without loss of generality, we assume s1, s2 > 0. For a set A ⊂ Z and N > 0, we write

A(N) to denote A ∩ [−N,N ].

By Proposition 5.1, there exist i ∈ [r] and an in�nite set N such that∑
|x|,|y|≤N

1
A

(N)
i

(s1y)1A(N)
i

(x)1
A

(N)
i

(x+ s2y) ≥ cN2 (18)

for any N ∈ N , where c > 0 is a constant independent of N .

Let N ′ be the smallest odd integer greater than (2s1 + s2 + 1)N . We identify ZN ′ with

[−N ′−1
2 , N

′−1
2 ]. Then (18) implies that

∑
x,y∈ZN′

1
A

(N)
i

(s1y)1A(N)
i

(x)1
A

(N)
i

(x+ s2y) ≥ c′N ′2 (19)

for some constant c′ > 0 independent of N . De�ne

R(w) =
∑

x,y∈ZN′

1
A

(N)
i

(s1y)1A(N)
i

(x+ w)1
A

(N)
i

(x+ s2y).

Then by the same argument as the proof of Proposition 3.4, the set {w ∈ ZN ′ : R(w) > 0}
contains a Bohr-(k, η) set in ZN ′ , where k and η are independent ofN . Note that R(w) > 0,

implies there are a, a′, a′′ ∈ A
(N)
i and x, y ∈ ZN ′ such that

s1y ≡ a, x+ w ≡ a′, and x+ s2y ≡ a′′ (mod N ′).

Therefore,

s1w = s1(x+ w)− s1(x+ s2y) + s2(s1y) ≡ s1a
′ − s1a

′′ + s2a (mod N ′).

If |w| ≤ N then this congruence is an equality in Z thanks to the way we choose N ′ and

the fact that |a|, |a′|, |a′′| ≤ N . We have thus proved that, for each N ∈ N , there exist

x1, . . . , xk ∈ [−N ′−1
2 , N

′−1
2 ] such that

(s1Ai − s1Ai + s2Ai)/s1 ⊃ [−N,N ] ∩
{
w ∈ Z :

∣∣∣e(xjw
N ′

)
− 1
∣∣∣ < η ∀j = 1, . . . , k

}
.

Here we are using the notation A/c de�ned in (2).

As N ∈ N , N → ∞ and by passing to a subsequence if necessary, the sequence

( x1N ′ , . . . ,
xk
N ′ ) converges to a point (α1, . . . , αk) in (R/Z)k. Hence,

(s1Ai − s1Ai + s2Ai)/s1 ⊃
{
w ∈ Z : |e (αjw)− 1| < η

2
∀j = 1, . . . , k

}
.

This implies that

s1Ai − s1Ai + s2Ai ⊃
{
n ∈ Z :

∣∣∣∣e(αjns1
)
− 1

∣∣∣∣ < η

2
∀j = 1, . . . , k

}
∩ s1Z.
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Since s1Z is a Bohr set and the intersection of two Bohr sets is a Bohr set, our proof

�nishes. □

Proof of Theorem 1.4(b). We proceed similarly to part (a), using Proposition 5.2 instead

of Proposition 5.1. Let P be an arbitrary partition Z =
⋃r
i=1Ai. Let i be given by

Proposition 5.2. Let s ∈ N be arbitrary. Then there is an in�nite set Ns ⊂ N such that

for any N ∈ Ns, we have∑
|x|,|y|≤N

1
A

(N)
i

(y)1
A

(N)
i

(x)1
A

(N)
i

(x+ sy) ≥ c(s,P)N2. (20)

for some constant c(s,P) > 0 independent of N . Note that

w = (w + x)− (w + sy) + sy.

The rest is identical to part (a). □

5.1. Sumsets in Z[i]. Even though the corresponding tori in the cases of Z[i] and Fq[t]
are slightly di�erent from Z, the general approaches are very similar. Therefore, we will

be brief and highlight only the di�erences.

The following proposition is needed for the proof of Theorem 1.7(b,c). We omit its proof

since it is identical to the ones of Propositions 5.1 and 5.2.

Proposition 5.3.

(a) Let b, a1, . . . , ak ∈ Z[i] and r > 0. There is a constant c = c(b, a1, . . . , ak, r) > 0 such

that the following holds: For N su�ciently large, if [−N,N ]2 =
⋃r
j=1Aj, then for

some 1 ≤ j ≤ r, we have∑
x,y∈[−N,N ]2

1Aj (by)1Aj (x)1Aj (x+ a1y) · · · 1Ai(x+ aky) ≥ cN4.

(b) Let P denote an arbitrary partition Z[i] =
⋃r
j=1Aj. Then there exists some 1 ≤ j ≤ r

with the following property: For each ℓ ∈ Z[i], there is a constant c(ℓ,P) such that∑
x,y∈[N ]2

1Aj (y)1Aj (x)1Aj (x+ ℓy) ≥ c(ℓ,P)N4.

for in�nitely many N ∈ N.

Proof of Theorem 1.7 (a). Suppose A ⊂ Z[i] has d(A) = δ > 0. Then for in�nitely many

N , we have |A(N)| ≥ δN2, where A(N) = A ∩ [−N,N ]2.

Let N ′ = 2(|s1| + |s2| + |s3|)N + 1. We identify [−N ′−1
2 , N

′−1
2 ]2 with ZN ′ × ZN ′ . By

Theorem 1.6, the set s1A + s2A + s3A contains a Bohr set in ZN ′ × ZN ′ , which is of the

form {
(w, v) ∈ ZN ′ × ZN ′ :

∣∣∣∣e(wxj + vyj
N ′

)
− 1

∣∣∣∣ < η ∀j = 1, . . . , k

}
for some x1, . . . , xk, y1, . . . , yk ∈ [−N ′−1

2 , N
′−1
2 ], where k and η depend only on δ and

s1, s2, s3.

If (w, v) is in the Bohr set above and |w|, |v| ≤ N , then there exist a, a′, a′′ ∈ A(N) such

that

(w, v) = s1a+ s2a
′ + s3a

′′,
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where the equality is in Z[i] and not just in ZN ′ × ZN ′ . Hence,

s1A+s2A+s3A ⊃ [−N,N ]2∩
{
(w, v) ∈ Z[i] :

∣∣∣∣e(wxj + vyj
N ′

)
− 1

∣∣∣∣ < η ∀j = 1, . . . , k

}
.

Letting N go to in�nity along some subsequence, we have that

s1A+ s2A+ s3A ⊃
{
(w, v) ∈ Z[i] : |e (wαj + vβj)− 1| < η

2
∀j = 1, . . . , k

}
,

where (α1, . . . , αk, β1, . . . , βk) is a limit point of ( x1N ′ , . . . ,
xk
N ′ ,

y1
N ′ , . . . ,

yk
N ′ ), and we are done.

□

Proof of Theorem 1.7(b). Using Proposition 5.3(a) and arguing similarly to the proof of

Theorem 1.4(a), we see that for some 1 ≤ j ≤ r, for in�nitely many N , we have

(s1Aj−s1Aj+s2Aj)/s1 ⊃ [−N,N ]2∩
{
(w, v) ∈ Z[i] :

∣∣∣∣e(wxj + vyj
N ′

)
− 1

∣∣∣∣ < η ∀j = 1, . . . , k

}
Letting N go to in�nity, we have

(s1Aj − s1Aj + s2Aj)/s1 ⊃
{
(w, v) ∈ Z[i] : |e (wαj + vβj)− 1| < η

2
∀j = 1, . . . , k

}
,

where (α1, . . . , αk, β1, . . . , βk) is a limit point of ( x1N ′ , . . . ,
xk
N ′ ,

y1
N ′ , . . . ,

yk
N ′ ). Note that

wαj + vβj = ℜ((w + iv)(αj − iβj))

and hence,

s1A− s1A+ s2A ⊃
{
z ∈ Z[i] :

∣∣∣∣e(ℜ(zαj − iβj
s1

))
− 1

∣∣∣∣ < η

2
∀j = 1, . . . , k

}
∩ s1Z[i],

which is a Bohr set by Lemma 2.2. □

The proof of Theorem 1.7(c) is similar to part (b), using Proposition 5.3(b) instead of

Proposition 5.3(a).

5.2. Sumsets in Fq[t]. Let p be a prime and q be a power of p. First, let us introduce

some standard facts about Fq[t]. Let K = Fq(t) be the �eld of fractions of Fq[t]. For

f/g ∈ K we de�ne |f/g| = qdeg(f)−deg(g) and |0| = 0. The completion of K with respect to

| · | is K∞ = Fq((1t )) =
{∑n

i=−∞ ait
i : ai ∈ Fq, n ∈ Z

}
. Let Tq =

{∑−1
i=−∞ ait

i : ai ∈ Fq
}
.

Then Fq[t],K,K∞,Tq are the analogs of Z,Q,R and R/Z, respectively.
For x ∈ Fq, we write eq(x) = e

(
Tr(x)
p

)
, where Tr : Fq → Fp is the trace map.4 It can be

checked that x 7→ eq(ax) (where a ∈ Fq) are all the additive characters of Fq.
If α =

∑n
i=−∞ ait

i ∈ K∞, we write (α)−1 = a−1 and E(α) = eq(a−1). It can be checked

that f 7→ E(fα), where α ∈ Tq, are all the continuous characters of Fq[t]. This also shows

that Tq is the dual of Fq[t].
Any Bohr set B in Fq[t] is of the form

B = {f ∈ Fq[t] : |E(fαi)− 1| < η for i = 1, . . . , k} ,

where α1, . . . , αk ∈ Tq. If η < |e(1/p)− 1| then

B = {f ∈ Fq[t] : Tr((fαi)−1) = 0 for i = 1, . . . , k} .
4That is, Tr(x) is the trace of the Fp-linear map y 7→ xy from Fq to Fq, when Fq is viewed as a Fp-vector

space. In particular, Tr(x) ∈ Fp.
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This is an Fp-subspace and not necessarily an Fq-subspace. However, it contains the Fq-
subspace

{f ∈ Fq[t] : (fαi)−1 = 0 for i = 1, . . . , k} .

We write GN = {f ∈ Fq[t] : deg(f) < N}. For a set A ⊂ Fq[t], we write A(N) for A ∩GN .
Moreover, for each N , we �x a polynomial PN ∈ Fq[t] of degree N . Then GN ∼= Fq[t]/(PN ).
While GN is already a group, we work with Fq[t]/(PN ) since the multiplication f 7→ sf is

a homomorphism on the latter.

Using the same arguments as in Propositions 5.1 and 5.2, we can prove the following:

Proposition 5.4.

(a) Let b, a1, . . . , ak ∈ Fq[t] and r > 0. There is a number c = c(q, b, a1, . . . , ak, r) > 0

such that the following holds. For N su�ciently large, if GN =
⋃r
j=1Ai, then for

some 1 ≤ i ≤ r, we have∑
x,y∈GN

1Ai(by)1Ai(x)1Ai(x+ a1y) · · · 1Ai(x+ aky) ≥ cq2N .

(b) Let P denote an arbitrary partition Fq[t] =
⋃r
i=1Ai. Then there exists some 1 ≤ i ≤ r

with the following property: For each ℓ ∈ Fq[t], there is a constant c(ℓ,P) such that∑
x,y∈Fq [t]

1Ai(y)1Ai(x)1Ai(x+ ℓy) ≥ c(ℓ,P)q2N

for in�nitely many N ∈ N.

Proof of Theorem 1.8. We will sketch the proof of Theorem 1.8(b). Parts (a) and (c) can

be proved along the same lines.

Let Fq[t] =
⋃r
i=1Ai be an arbitrary partition and s1, s2 ∈ Fq[t] \ {0}. By Proposition

5.4(a), we know that there exist 1 ≤ i ≤ r and an in�nite set N such that∑
x,y∈GN

1
A

(N)
i

(s1y)1A(N)
i

(x)1
A

(N)
i

(x+ s2y) ≫ q2N (21)

for each N ∈ N .

Let N ′ = max(deg s1,deg s2)+N . We identify GN ′ with Fq[t]/(PN ′). Arguing similarly

to the proof of Theorem 1.4(a) and using (21), we �nd that

(s1Ai − s1Ai + s2Ai)/s1 ⊃ GN ∩
{
w ∈ Fq[t] : (w

xi
PN ′

)−1 = 0 ∀j = 1 . . . , k

}
,

for some x1, . . . , xk ∈ GN ′ .

Letting N → ∞ and using compactness of Tq, we have

(s1Ai − s1Ai + s2Ai)/s1 ⊃ {w ∈ Fq[t] : (wαi)−1 = 0 ∀j = 1, . . . , k}

for some α1, . . . , αk ∈ Tq. Therefore,

s1Ai − s1Ai + s2Ai ⊃
{
f ∈ Fq[t] : (f

αi
s1

)−1 = 0 ∀j = 1, . . . , k

}
∩ s1Fq[t],

which is clearly an Fq-subspace of bounded codimension. □
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6. Open questions

Theorem 1.4(b) says that in any partition Z =
⋃r
i=1Ai, there exists an i ∈ {1, . . . , r}

such that Ai −Ai + sAi contains a Bohr set for every s ∈ Z \ {0}. Inspired by Katznelson

and Ruzsa's question, Theorem 1.4(b) naturally gives rise to the following question.

Question 6.1. Suppose A ⊆ Z does not contain a Bohr set and B ⊆ Z such that B + sA

contains a Bohr set for every s ∈ Z \ {0}. Must it be true that B contains a Bohr set?

An positive answer to Question 6.1 would lead to a resolution of Katznelson-Ruzsa's

question. However, it is likely that the answer to Question 6.1 is negative.

As mentioned in the introduction, we do not know whether the commuting conditions in

Theorem 1.5 and Theorem 1.6 can be removed entirely or not. It is interesting to answer

the following.

Question 6.2. Can the commuting conditions in Theorem 1.5 and Theorem 1.6 be re-

moved?
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