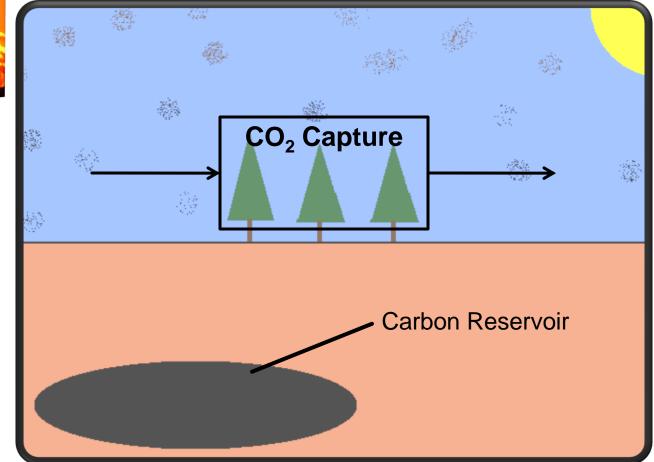
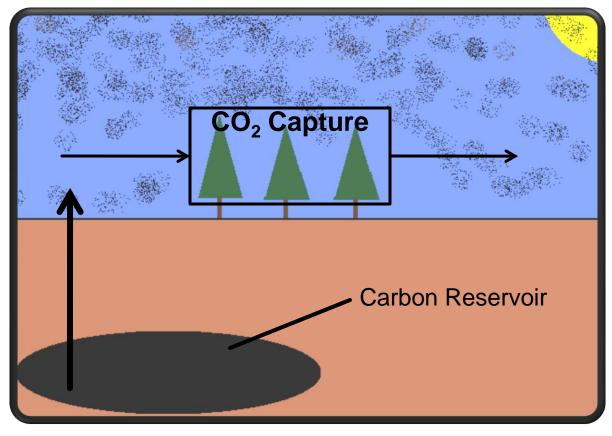
Atmospheric Carbon Dioxide Capture Technology

Joey Keith Parkerson jkparker@olemiss.edu

The Agenda


- The Twofold Situation
- Overview of Atmospheric CO₂ Capture Technology
- •What to do with all the CO₂?
- Final Comments and Conclusions



- •Constant levels of CO₂ in atmosphere
- •Maintains Temperature

Fixed Amount of Carbon in Process

Mass Balance Problem!

System can't handle the extra load; thus, Global Warming becomes an issue!

•Problem is two-fold:

•Must solve CO₂ emissions problem

•Must find viable future energy source

•Challenges to Reducing CO₂ emissions:

•Non CO₂ sources are unlikely to displace fossil fuels at substantial levels

 Coal and other fossil fuels will remain as major sources of energy regardless of the price issues
Coal is abundant

Coal is abundant

What if there was a system that solved <u>ALL</u> of these problems simultaneously?

Dilute state (CO₂ at 360 ppm) $P_0 = 3.6 \times 10^{-4}$ atm Concentrated state (CO₂ at > 90%) P = 1 atm

<u>**Lower limit**</u> necessary to separate CO_2 from air given by energy needed to overcome free energy of mixing:

$$\Delta G = RT \ln \left[\frac{P}{P_0}\right]$$

$$\Delta G = 20 \, kJ_{mol} = 1.7 \, GJ_{tC}$$

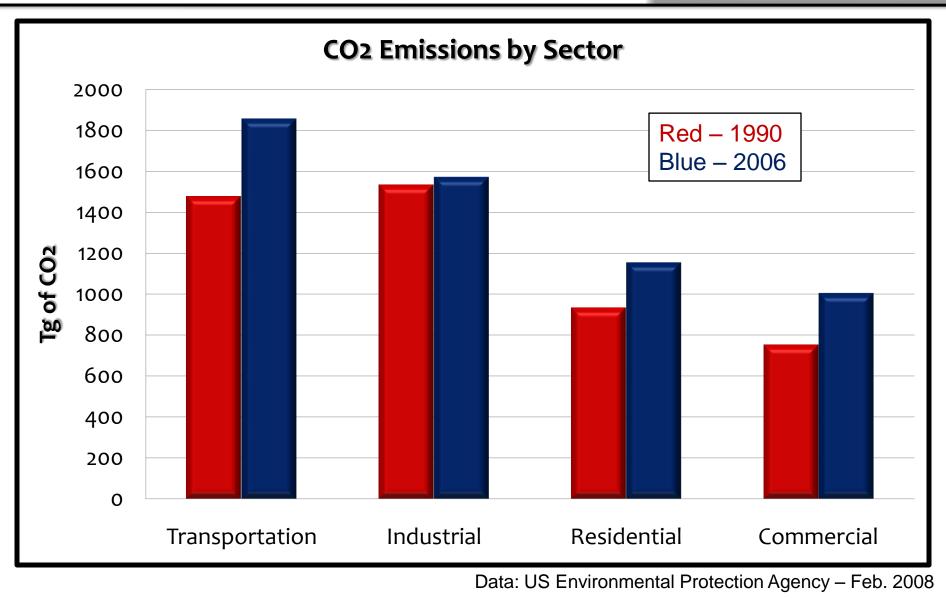
What is <u>Atmospheric</u> Carbon Dioxide Capture?
The process of separating CO₂ from air at atmospheric conditions and delivering a pure stream of CO₂.

Atmospheric Carbon Capture Methods

Sorbant Separation Methods

- Na/Ca Capture proven technology on small scale
- GRT has Proprietary Sorbant
- Ca(OH)₂
- Electrochemical Separation research in progress
- Biomass
- Metal-carbonate production

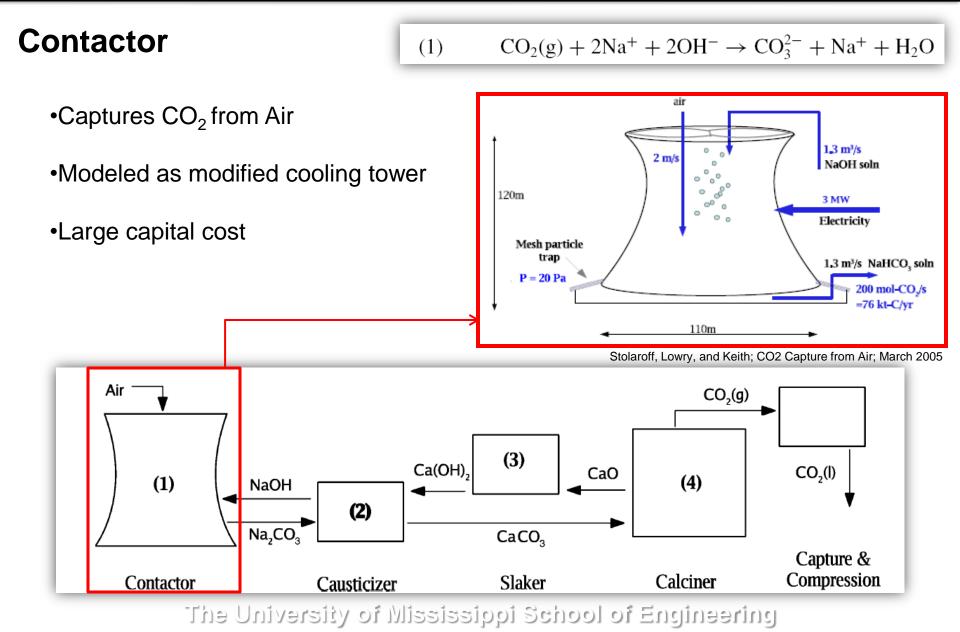
Advantages


•Can not only provide "zero emissions energy" but also begin to remove the current buildup of CO_2

 Does not immediately make existing energy and transportation infrastructure obsolete

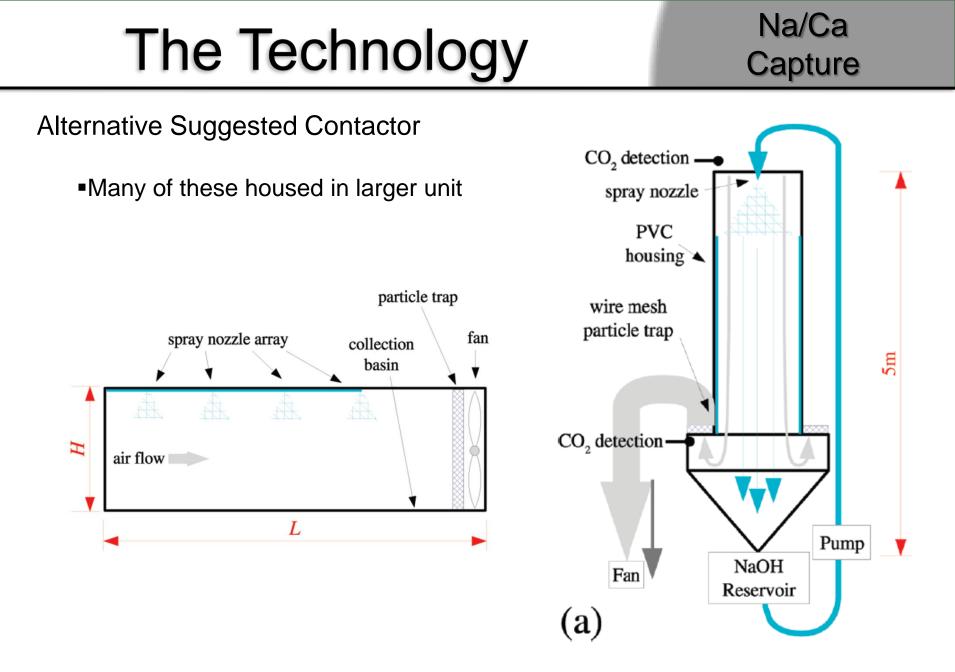
•No need for pipeline ~ atmosphere can serve as temporary storage and transport system

•Collects CO₂ after the fact from <u>ANY SOURCE</u>



Na/Ca Capture

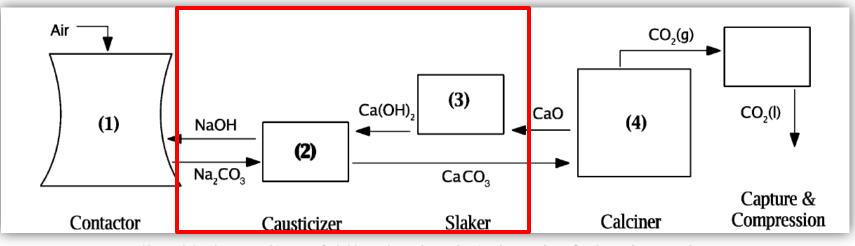
Chemistry of Na/Ca capture system


				Enthalpy of reaction ^a , ΔH°		
	Reaction			kJ/mol-C	GJ/tC	
(1)	$CO_2(g) + 2Na^+ + 2OH^- \rightarrow CO_3^{2-} + Na^+ + H_2O$			-110	_9	
(2)	$CO_3^{2-} + Ca^{2+} \rightarrow CaCO_3(s)$			12	1	
(3)	$CaO(s) + H_2O(l)$	\rightarrow Ca ²⁺ + 2 OF	-82	-7		
(4)	$CaCO_3(s) \rightarrow Ca$	$O(s) + CO_2(g)$	179	15		
^a Derived	d from Weast (200	Lower Bo	Lower Bound			
Air —	(1) NaOH	Ca(OF		CO ₂ (g)	CO ₂ (I)	
 Co	Na₂CO₃ ntactor	Causticizer	CaCO ₃	Calciner	Capture & Compression	

Na/Ca Capture

NaOH spray tower air capture unit: key parameters

Parameter	Value	Motivation	
Tower diameter	110 m	Equal to cooling tower	
Tower height	120 m	Equal to cooling tower	
Air velocity	2 m/s	Reasonable value ^a	
CO ₂ capture efficiency from air	50%	Reasonable value ^b	
Mean drop diameter	0.7 mm	Spray distribution from a hollow-cone spray nozzle	
NaOH concentration in solution	3–6 mol/l	Adjusted to minimize evaporative loss based on local climate.	
Carbonate captured per pass ^b	0.2 mol/l	Based on numerical model of falling drops	
Solution flow rate	1 m ³ /s	Fixed by above parameters	
Pressure drop accross tower ^b	22 Pa	Based on numerical model of falling drops; excludes wall friction.	
Electricity use	1.4 MW	Based on 75% fan and 85% pump efficiency	
Carbon capture rate	76000 tC/yr	Fixed by above parameters	
Capital cost ^c	\$12 million	(Cooling tower cost) $\times 1.5^{\circ}$	
Operation and maintenence cost	400,000 \$/yr	Conservative guess	


Causticizer and Slaker

Na/Ca Capture

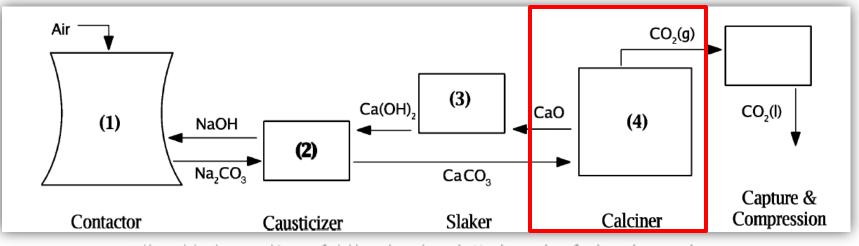
(2)
$$CO_3^{2-} + Ca^{2+} \rightarrow CaCO_3(s)$$

(3) $CaO(s) + H_2O(l) \rightarrow Ca^{2+} + 2 OH^2$

- Modeled as one unit: similar to Kraft Process
- •Part of Na/Ca chemical loop
- Causticizer

swaps Na with Ca on "bottom pass"Swaps Ca with Na on "top pass"

Na/Ca Capture


Calciner

(4) $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$

•Drives CO₂ out of mud

•Produces lime to return to chemical loop

•Requires a great deal of energy

The University of Mississippi School of Engineering

Example air capture system: estimated and analogous costs and energy requirements

System	Mechanical energy (GJ/tC)	Thermal energy (GJ/tC)	Cost [\$/tC] ^a
Calcination			
Calcination in lime production	0.3	17	230 ^b
Calcination in Kraft process	(small)	32	?
Calcination + caustization in Kraft Process	(small)	40	373°
CO ₂ capture and compression			
Amine capture	0.4 ^d	$14^{d,e}$	$49^{d,f}$
CO_2 compression	1.6 ^d	0	43 ^d
Contacting			
Spray tower	1.0	0	41^{f}
Packed tower	1.2 ^g	0	?

COSTS

BIOMASS CAPTURE	BIOMASS DRIVEN CAPTURE	METAL CARBONATE CAPTURE	INDUSTRIAL CAPTURE	PROPOSED CARBON TAX	Na/Ca SORBANT CAPTURE
0.1 - 28	160	30 - 32	160 - 260	26 - 58	240 - 550
Limited by space	One time capture only Impacts on agriculture	Can only capture < 1% of US emissions	Point Source Capture	Kyoto Protocol McCain-Liberman NCEP	Potential to capture 76kT/yr/unit

UNITS: \$ / tonne of Carbon

What to do with CO₂?

- Sequestration not proven
- Oilfield stimulation current use, but small
- •Use as Feedstock for Methanol Production

 CO_2 + 2 H2O → CH_3OH + 3/2 O_2

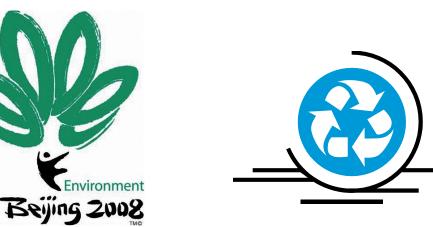
		YEAR (Hydrogen Storage R&D Targets)			
Storage Parameter	Units	2007	2010	2015	Methanol
Gravimetric Capacity	kWh/kg	1.5	2.0	3.0	6.3
	kg H ₂ /kg	4.5%	6.0%	9.0%	12.5%
Volumetric Capacity	kWh/L	1.2	1.5	2.7	4.98
	g H ₂ /L	36	45	81	98.9
Personal Communication with Dr. Scovazzo					

Conclusions*

 Using existing technologies, atmospheric CO₂ removal is feasible, but often not feasible economically

When targeting the transportation sector, atmospheric CO₂ removal is cheapest of proposed methods

Atmospheric CO₂ removal is not economically feasible as a replacement for point source recovery


•The research of this technology is worthwhile!

* If GRT has really done what they say, the conclusions could change

Comments

- •Atmospheric extraction is only one solution to the problem
- •The Global Warming industry is profitable for private environmental remediation organizations
- Population must be educated
- •Conservation must be instilled into upcoming generations
- •Will require global effort

References

•Keith, Ha-Duong, and Stolaroff; <u>Climate Strategy with CO₂ Capture</u> from the Air; Springer 2005

Lackner, Grimes, and Ziock; Capturing Carbon Dioxide from Air;
White Paper

•Stolaroff, Lowry, and Keith; <u>CO₂ Capture from the ambient air: An</u> <u>example system</u>; White Paper, Carnegie Mellon University

•Stolaroff, Keith, and Lowry; <u>Carbon Dioxide Capture from</u> <u>Atmospheric Air Using Sodium Hydroxide Spray</u>; Eviromental Science Technology; Feb. 2008

 Olah, Goeppert, and Prakash; <u>Beyond Oil and Gas: The Methanol</u> <u>Economy</u>; Feb. 2006

•www.grestech.com: Global Research Technologies website and press releases

•Personal communication with Dr. Paul Scovazzo

Questions?