Effects of Climate Change on Water Resources

Cristiane Queiroz Surbeck, P.E., Ph.D. Assistant Professor Department of Civil Engineering The University of Mississippi

> Global Warming course February 18, 2009

Outline

- The Global Perspective
- The Watershed Perspective
- The Water Budget
- Rainfall Analysis

- Thermohaline circulation
- Water is chilled in the North Atlantic, gets saltier (more dense), sinks
- Deep water moves south then splits towards the Indian Ocean and the western Pacific
- The two branches warm and rise, then return to North Atlantic
- Deep sea currents: base of food chain

Effect of Global Warming on Ocean Conveyor Belt

Warmer, less dense water, won't sink

Change in currents
Decreased salinity
Ecosystem

Rise in sea levels

Distribution of Earth's Water

The Hydrologic Cycle

Effects of Climate Change on Water Resources

- An increase in net solar radiation or temperature speeds up the processes within the hydrologic cycle
- More evaporation (loss of water), droughts
- Earlier snowmelt, more streamflow, earlier peak discharges
- Lower dissolved oxygen levels (effect on aquatic life)
- Different climate effects throughout globe

Effect of Climate Change on Water Quality

- Reduced dissolved oxygen levels
- Less dilution of pollutants during droughts
- Increased pollution and sedimentation during increased rainfall
- Increased salinity in coastal water bodies

Effects of Climate Change on North America

- Alaska, Yukon, and Coastal British Columbia
 - Increased flooding
 - Increased stress on salmon
- Southeast, Gulf, and Mid-Atlantic
 - Risk of extreme precipitation events, hurricanes
 - Possible longer droughts
 - River flow variability
- Varying effects in other regions
- http://www.epa.gov/climatechange/effects/water/north america.html

The Kankakee River Basin above Davis, IN. The dashed lines divide the watershed

(a) Schematic diagram of a hydrologic system, (b) mass balance diagram of a hydrologic subsystem

Hydrologic Water Budget

Rainfall Analysis

Intensity (rainfall depth/time)
Duration (time)
Frequency (1/time) or return period (time)

Intensity-duration-frequency curves

Possible climate change effect on annual rainfall distribution

Total annual rainfall in both cases: 13.8 inches

1975 Flood at East Lansing, MI Return Period (T) = 40 years

Return Period (T)

- T = 1/P
- P = exceedence probability
- Return period: the average length of time between events that have the same depth and duration
- Exceedence probability: the probability that an event having a specified depth and duration will be exceeded in one time period (usually one year).

