Global Warming Lecture 3-31-08 Dr. Steven Davis

Department of Chemistry and Biochemistry University of Mississippi

Calculation of Potential Energy Surfaces using ab initio Quantum Chemistry Techniques

Potential Energy Surfaces

Plots of Energy vs Nuclear Coordinates

Cartesian Coordinates = 3N Internal Coordinates = 3N-6 or 3N-5 3 translations 2-3 rotations

ernal Coordinates are bond lengths and ang

mal Vibrational Modes Expressed in Terms

[[* , [I - e]], [*, -V.2, V.2]

- quadratic (harmonic oscillator)
- ed Morse potential (atomic interactions)

$$H\Psi = E\Psi$$

$$\mathcal{H} = T + V = \sum_{i=1}^{n} \frac{p_i^2}{2m_e} - \sum_N \sum_i \frac{Z_N e^2}{r_{iN}} + \sum_{M>N} \frac{Z_M Z_N e^2}{R_{MN}} + \sum_{i>j} \frac{e^2}{r_{ij}}$$
$$\Psi = \begin{vmatrix} \chi_1(1) & \chi_2(1) & \cdots & \chi_n(1) \\ \chi_1(2) & \chi_2(2) & \cdots & \chi_n(2) \\ \vdots \\ \chi_1(n) & \chi_2(n) & \cdots & \chi_n(n) \end{vmatrix}$$

The Variation Theorem States:

$$\begin{split} E' &= \frac{\int \Phi^* \mathcal{H} \Phi d\tau}{\int \Phi^* \Phi d\tau} > E \qquad \text{where } \Phi \text{ is a trial wavefunction and } \Phi_k = \sum_i c_{ki} \phi_i \\ &\qquad \frac{\partial E'}{\partial c_{ki}} = 0 \text{ leads to the Roothan-Hall equations} \\ &\qquad \sum_{\nu=1}^n (F_{u\nu} - \epsilon_i S_{u\nu}) c_{\nu i} = 0 \qquad u = 1, 2, \dots n \end{split}$$

Configuration Interaction

- -

$$\Phi >= c_0 |\Psi_0> + \left(\frac{1}{1!}\right)^2 \sum_{ar} c_a^r |\Psi_a^r> + \left(\frac{1}{2!}\right)^2 \sum_{abrs} c_{ab}^{rs} |\Psi_{ab}^{rs}> + \left(\frac{1}{3!}\right)^2 \sum_{abcrst} c_{abc}^{rst} |\Psi_{abc}^{rst}> + \cdot$$

Moller-Plessett Perturbation Theory

$$\begin{split} E_0^{(0)} &= \sum_a \epsilon_a \qquad E_0^{(1)} = < \Psi_0 | V | \Psi_0 > \qquad E_0^{(0)} + E_0^{(1)} = \mathrm{HF} \ \mathrm{Energy} \\ \\ E_0^{(2)} &= \sum_{a < b} \frac{\left| < \Psi_0 | \sum_{i < j} \frac{1}{r_{ij}} | \Psi_{ab}^{rs} \right|^2}{\epsilon_a + \epsilon_b + \epsilon_r + \epsilon_s} \end{split}$$

Tricyclo[3.1.0.0^{2,0}]hexane (TC6) Isomerization

Allowed Pathway

Activation Energies in kcal/mol (including ZPE)

MCSCF	MCQDPT2	CCSD(T)	MP2	B3LYP

Plot of Bond Distance vs. Reaction Coordinate

at the MP2 and MCSCF Levels

Forbidden Pathway

ccupied Molecular Orbitals and Natural Orbital Occupation Numbers

Tricyclo[4.1.0.0^{2,7}]heptane Isomerization

Qin, C. and Davis, S. R. J. Org. Chem. 2003, 68, 9081

Reaction Summary

Views of Chemistry

Every attempt to employ nathematical methods in the tudy of chemical questions nust be considered profoundly rational and contrary to the pirit of chemistry. If nathematical analysis should ver hold a prominent place in hemistry – an aberration hich is happily almost npossible – it would occasion rapid and widespread egeneration of that science."

Compte Philosophie Positive 1830.

"The more progress physica sciences make, the more th tend to enter the domain of mathematics, which is a kine center to which they all converge. We may even jud the degree of perfection to which a science has arrived the facility with which it may submitted to calculation."

A. Quetelet, *Instructions Populaires sur le C des Probabilites*, Tarlier, Brussels, **1828**.

CO₂ photocatalytic reduction

Venkata Pradeep Indrakanti, J.D.Kubicki, M.M. Maroto-Valer, H.H. Schobert July 11, 2007 CHEMRAWN-XVII and ICCDU-IX conference on greenhouse gases

Objectives

entify the intermediate species formed during CO_2 photoreduction deling the excited-state chemistry of CO_2 species adsorbed on rious low index surface planes of TiO₂.

st the hypothesis of dopant-induced charge carrier trapping ecting photoactivity by performing photoreactions with various ncentrations of La, Sm and Gd-doped TiO₂ as photocatalysts.

udy the intermediates of this photoreduction through spectroscop aracterizations and use computational methods to rroborate/complement spectroscopic data.

Venkata Pradeep Indrakanti, J.D.Kubicki, M.M. Maroto-Valer, H.H. Schobert July 11, 2007

Venkata Pradeep Indrakanti, J.D.Kubicki, M.M. Maroto-Valer, H.H. Schobert July 11, 2007

CO₃ species (triplet-singlet ^{TM}q) = -0.29 e⁻ Bond lengths in Å, angles in degrees

Venkata Pradeep Indrakanti, J.D.Kubicki, M.M. Maroto-Valer, H.H. Schobert July 11. 2007