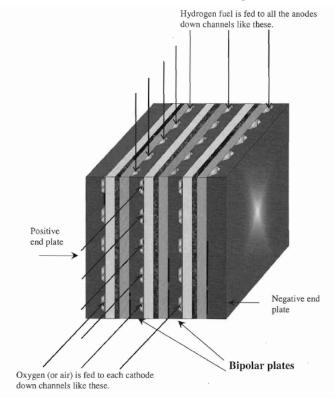

#### Amala Dass Department of Chemistry & Biochemistry

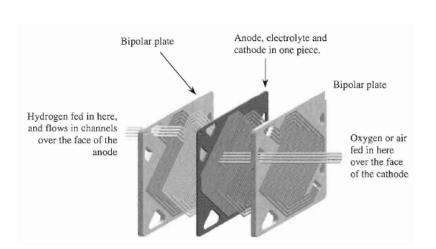
- 1. Fuel cell basics
- 2. Fuel cell stacks bipolar plates
- 3. Types of fuel cells
- 4. Proton Exchange Membrane fuel cells
- 5. Current status



## **Cell voltage: connecting cells in series**

Voltage of one fuel cell = 0.7 V For useful voltage  $\rightarrow$  collection of fuel cells needed  $\rightarrow$  'stack'





-current collection issues  $\rightarrow$  voltage drop

# **BIPOLAR plate**

-Better method for cell interconnection

-makes connection all over one cathode and the anode of the next cell and also Serves as a means of feeding O2 to cathode and fuel to the anode





-complex design; expensive to manufacture -made from graphite

# **Practical issues:**

- 1. Slower reaction rate  $\rightarrow$  low current & power
- 2. Availability of  $H_2$  as a fuel

# **Types of Fuel Cells**

Table 1.1. Data for different types of fuel cell.

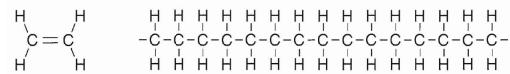
| Fuel Cell Type                    | Mobile                        | Operating     | Applications                                                                                   |  |  |
|-----------------------------------|-------------------------------|---------------|------------------------------------------------------------------------------------------------|--|--|
|                                   | Ion                           | Temp.         | and notes                                                                                      |  |  |
| Alkaline - AFC                    | OH                            | 50 - 200 °C   | Used in space vehicles, e.g. Apollo,<br>Shuttle.                                               |  |  |
| Proton exchange<br>membrane (PEM) | H⁺                            | 50 - 100 °C   | Especially suitable for vehicles and mobile applications, but also for lower power CHP systems |  |  |
| Phosphoric acid<br>PAFC           | $\mathrm{H}^{\star}$          | ~ 220 °C      | Large numbers of 200 kW CHP systems in use.                                                    |  |  |
| Molten carbonate<br>MCFC          | CO <sub>3</sub> <sup>2-</sup> | ~650 °C       | Suitable for medium to large scale CHF systems, up to MW capacity                              |  |  |
| Solid oxide<br>SOFC               | O <sup>2–</sup>               | 500 - 1000 °C | Suitable for all sizes of CHP systems, 2 kW to multi MW.                                       |  |  |

| Fuel Cell               | Electrolyte                                 | Catalyst           | Operating<br>Temperature | Fuel for Anode/Cathode                           |
|-------------------------|---------------------------------------------|--------------------|--------------------------|--------------------------------------------------|
| PEM                     | Solid polymer membrane                      | Platinum           | 80°C                     | Hydrogen/pure or<br>atmospheric oxygen           |
| Phosphoric Acid         | Liquid phosphoric acid                      | Platinum           | 200°C                    | Hydrogen/ atmospheric<br>oxygen                  |
| Direct Methanol (DMFC)  | Solid polymer membrane                      | Platinum           | 50⁰-100⁰C                | Methanol solution in<br>water/atmospheric oxygen |
| Alkaline (AFC)          | Solution of potassium<br>hydroxide in water | Nonprecious metals | 100°-250°C               | Hydrogen/pure oxygen                             |
| Molten Carbonate (MCFC) | Molten carbonate salt                       | Nonprecious metals | 650°C                    | Hydrogen, methane/<br>atmospheric oxygen         |
| Solid Oxide (SOFC)      | Ceramic oxide                               | Nonprecious metals | 800°-1,000°C             | Hydrogen, methane/<br>atmospheric oxygen         |

Sources: DOE HFC&IT Program (www.eere.energy.gov/hydrogenandfuelcells), Rocky Mountain Institute (www.rmi.org/sitepages/pid556.php), Fuel Cells 2000 (www.fuelcells.org/fctypes.htm)

# Proton Exchange Membrane(PEM) Fuel Cells

ion conduction polymer electrolyte (mobile ion =  $H^+$  ion or proton)


Anode-electrolyte-cathode 'all-in-one' assembly  $\rightarrow$  "membrance electrode assemblies"

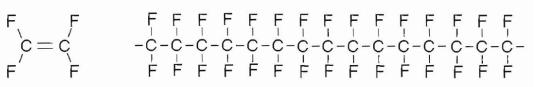
Low temperature operation  $\rightarrow$  can start quickly

Applications: -cars, buses, combined heat and power systems

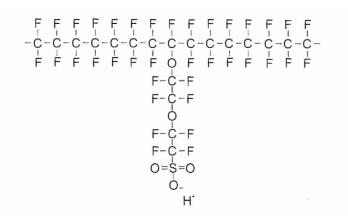
# How the polymer electrolyte works

Sulfonated fluoropolymers .... Nafion (Dupont)




Ethylene

Polyethylene (or polythene)

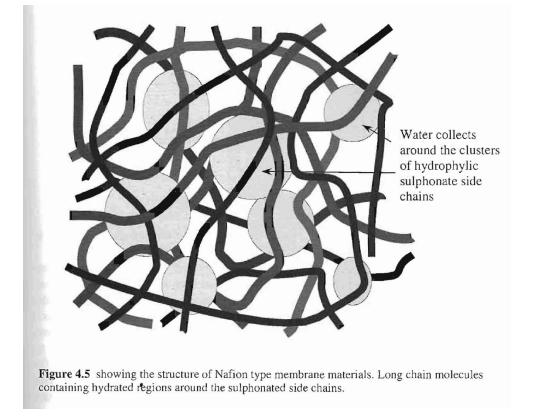

Figure 4.2 Structure of polyethylene

Strong C-F bonds resists chemical attacks





Tetrafluoroethylene Figure 4.3 Structure of PTFE Polytetrafluoroethylene (PTFE)

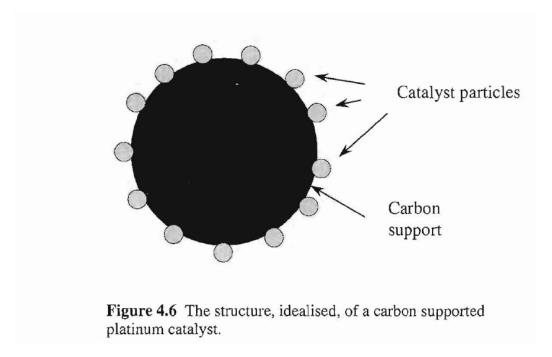



Polymer sulphonated with HSO3 to add an SO3- ion

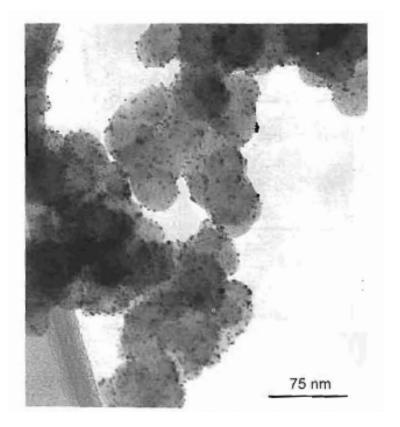
Polymer – hydrophobic SO3-  $\rightarrow$  hydrophilic

Figure 4.4 Example structure of a sulphonated fluoroethylene, (also called 'perfluorosulphonic acid PFTE copolymer')

This leads to interesting hydrophilic/hydrophobic "micro-phase separated morphology"




 $\rightarrow$  dilute acidic regions with a tough and strong hydrophobic structure


## **Electrodes and electrode structure**

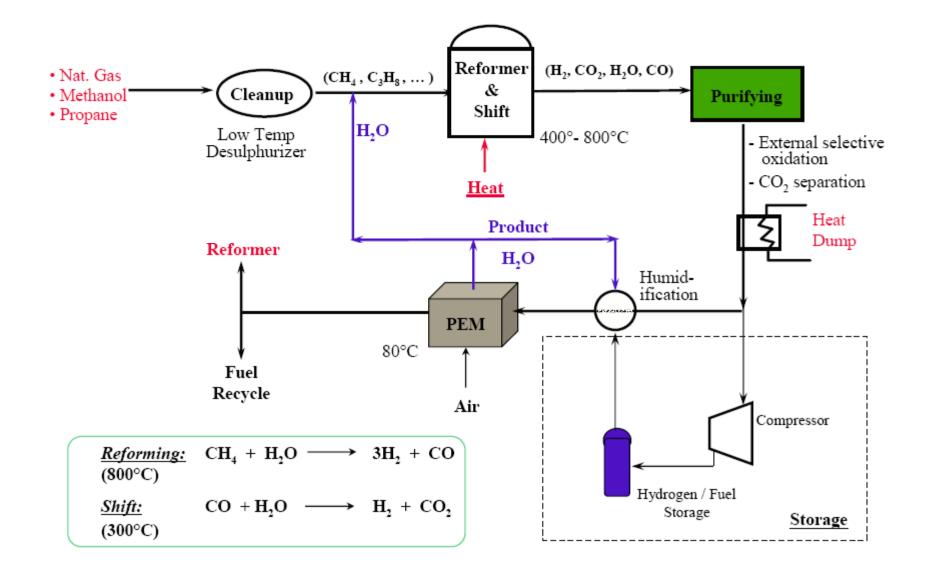
Pt catalyst  $\rightarrow$  cathode and anode

Few years ago, 28 mg per cm3 was used... Today, 0.2 mg/cm2 is used (use of nanoparticles, etc)



# **TEM image of fuel cell catalyst**




# **Fuelling fuel cells**

| Gas species                | PEM Fuel Cell   | AFC     | PAFC             | MCFC       | SOFC                 |
|----------------------------|-----------------|---------|------------------|------------|----------------------|
| H <sub>2</sub>             | Fuel            | Fuel    | Fuel             | Fuel       | Fuel                 |
| CO                         | Poison (>10ppm) | Poison  | Poison (>0.5%)   | Fuel "     | Fuel*                |
| CH <sub>4</sub>            | Diluent         | Diluent | Diluent          | Diluent    | Diluent <sup>b</sup> |
| CO, and H <sub>2</sub> O   | Diluent         | Poison  | Diluent          | Diluent    | Diluent              |
| S (as H <sub>2</sub> S and | Few studies, to | Unknown | Poison (>50 ppm) | Poison     | Poison               |
| COS)                       | date            |         |                  | (>0.5 ppm) | (>1.0 ppm)           |

Table 7.6 The fuel requirements for the principal types of fuel cell

H<sub>2</sub> produced from -Fossil fuels -Petroleum -Coal -Bio-fuels

### **Fuel Processing System for PEMs**



# Hydrogen storage

**Table 7.10** Potential hydrogen storage materials. The "volume to store 1 kg" of H, figure excludes the extra equipment needed to hold or process the compound, so it is not a practical figure. For example, all the alkali metal hydrides need large quantities of water, from which some of the hydrogen is also released. (See Section 7.7.6.)

| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Formula          | Percent<br>hydrogen | Specific<br>gravity | Vol. (L)<br>to store | Notes              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------|---------------------|----------------------|--------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                     |                     | lkg H <sub>2</sub>   |                    |
| Simple hydrides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                     |                     |                      |                    |
| Liquid H <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $H_2$            | 100                 | 0.07                | 14                   | Cold, -252°C       |
| Lithium hydride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LiH              | 12.68               | 0.82                | 6.5                  | Caustic            |
| Beryllium hydride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BeH <sub>2</sub> | 18.28               | 0.67                | 8.2                  | Very toxic         |
| Diborane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $B_2H_6$         | 21.86               | 0.417               | 11                   | Toxic              |
| Liquid methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CH,              | 25.13               | 0.415               | 9.6                  | Cold -175°C        |
| Ammonia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NH,              | 17.76               | 0.817               | 6.7                  | Toxic, 100 ppm     |
| Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H <sub>2</sub> O | 11.19               | 1.0                 | 8.9                  |                    |
| Sodium hydride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NaH              | 4.3                 | 0.92                | 25.9                 | Caustic, but cheap |
| Calcium hydride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CaH <sub>2</sub> | 5.0                 | 1.9                 | 11                   |                    |
| Aluminium hydride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AlH,             | 10.8                | 1.3                 | 7.1                  |                    |
| Silane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $SiH_4$          | 12.55               | 0.68                | 12                   | Toxic 0.1 ppm      |
| Potassium hydride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KH               | 2.51                | 1.47                | 27.1                 | Caustic            |
| Titanium hydride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ${\rm TiH}_2$    | 4.40                | 3.9                 | 5.8                  |                    |
| Complex hydrides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                     |                     |                      |                    |
| Lithium borohydride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LiBH,            | 18.51               | 0.666               | 8.1                  | Mild toxicity      |
| Aluminium borohydride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Al(BH_),         | 16.91               | 0.545               | 11                   | Mild toxicity      |
| Lithium aluminium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LiAlH,           | 10.62               | 0.917               | 10                   | -                  |
| hydride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                     |                     |                      |                    |
| Hydrazine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N,H,             | 12.58               | 1.011               | 7.8                  | Toxic 10 ppm       |
| Hydrogen absorbers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                     |                     |                      |                    |
| Palladium hydride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pd,H             | 0.471               | 10.78               | 20                   |                    |
| Titanium iron hydride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TiFeH,           | 1.87                | 5.47                | 9.8                  |                    |
| and the second se | -                |                     |                     |                      |                    |

-compressed gas cylinders
-cryogenic liquids
-reversible metal hydride
-metal hydride reactions with water

### Safety issues – Hindenburg disaster

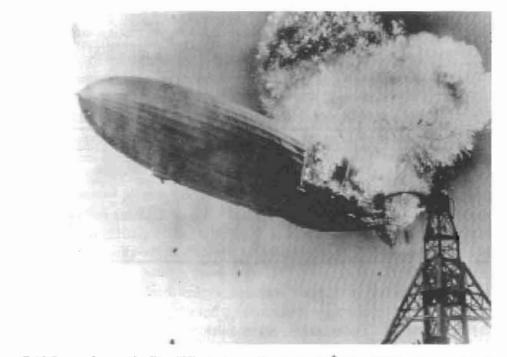



Figure 7.13 Icon of a myth. The "Hindenburg disaster" of  $6^{\circ}$  May 1937 put an end to the airship as a means of transport, and it has also been a major "public relations" problem for hydrogen, since this was the lifting gas used. The accident led to the widely held myth that hydrogen is a particularly dangerous substance. Although the accident was tragic for those involved, the number of casualties was 37, quite low for an aircraft crash. About 2/3 of those on board survived. Many of those who died were burnt by the diesel fuel for the propulsion system, and in any case the fire did not start with the hydrogen, but in the skin of the airship, which was made of a highly flammable compound. (Brain and VanVorst, 1999).

# **BIPOLAR** plate

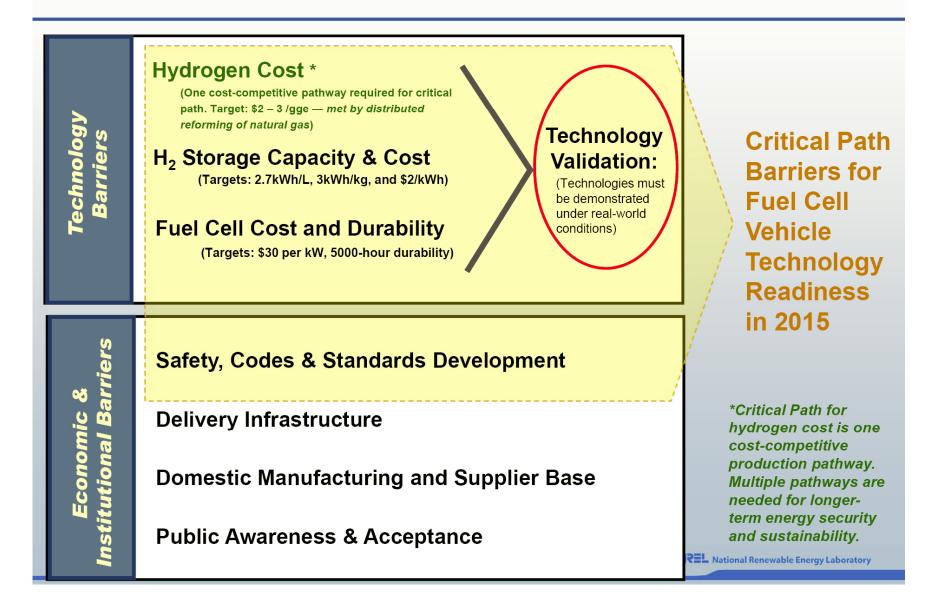
|                            | Chart 6: Overview of the Transition<br>to the Hydrogen Economy |                                                                            |                                |                                        |                                                                                                                      |                                               |  |
|----------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--|
|                            |                                                                | 2000                                                                       | 2010                           | 2020                                   | 2030                                                                                                                 | 2040                                          |  |
|                            | Public Policy<br>Framework                                     | <ul><li>Security</li><li>Climate</li><li>H2 Safety</li></ul>               |                                | each and<br>eptance                    | Public confidence<br>hydrogen as an e<br>carrier                                                                     |                                               |  |
|                            | Production<br>Processes                                        | Reforming of n                                                             | atural gas/biomas<br>Thermo-ch | Electrolysis using r                   | rtion of coal<br>enewable and nuclear Biop<br>water using nuclear                                                    | photocatalysis<br>Photolytics to split water  |  |
| gments                     | Delivery                                                       | <ul> <li>Pipelines</li> <li>Trucks, rail,<br/>barges</li> </ul>            |                                | Onsite "dist                           | ributed" facilities                                                                                                  | Integrated<br>Central-distributed<br>networks |  |
| Hydrogen Industry Segments | Storage<br>Technologies                                        | Pressurized to<br>(gases and li                                            |                                | Solid state<br>(hydrides)              | Mature technologies fo<br>Solid state (carbon, gla                                                                   |                                               |  |
| drogen In                  | Conversion<br>Technologies                                     | Combustion                                                                 |                                | Fuel cells<br>Advanced<br>Combustion } | Mature technologies for mas                                                                                          | ss production                                 |  |
| Hyc                        | End-Use<br>Energy<br>Markets                                   | <ul><li>Fuel refining</li><li>Space Shuttle</li><li>Portable pov</li></ul> | e powe<br>ver • Bus f          |                                        | <ul> <li>Commercial fleets</li> <li>Distributed CHP</li> <li>Market introduction<br/>of personal vehicles</li> </ul> | <ul> <li>Utility systems</li> </ul>           |  |

Source: U.S. Department of Energy, A National Vision for America's Transition to a Hydrogen Economy, iv

| Chart 14: Deployment Barriers Faced by Fuel Cell Vehicle |
|----------------------------------------------------------|
| Technologies                                             |

|                                      |             | Types of Barriers |          |            |                |
|--------------------------------------|-------------|-------------------|----------|------------|----------------|
| Technology Areas                     | Fundamental | Developmental     | Maturity | Experience | Infrastructure |
| Hydrogen PEM stack                   |             |                   |          |            |                |
| Ancillary devices                    |             |                   |          |            |                |
| Fuel processors (methanol, gasoline) |             |                   |          |            |                |
| Fuel storage (hydrogen)              |             |                   | •        |            |                |
| Fuel supply (hydrogen, methanol)     |             |                   |          |            |                |
| Electric drive components            |             |                   |          |            |                |

Types of Barriers: *Fundamental* barriers mean that basic laboratory research work is still needed. *Developmental* barriers require additional engineering R&D to develop practical designs. *Maturity* barriers remain if suitable designs exist, but the likelihood of further improvement renders mass-production commitments premature. *Experience* barriers exist if costs are still higher than the long-run potential because of a lack of production learning. *Infrastructural* barriers limit deployment because of a lack of appropriate fuel or service facilities.


Source: John M. Decicco, Fuel Cell Vehicles: Technology, Market, and Policy Issues, SAE Research Report, 2001,  $\mathbf x$ 

# **BIPOLAR** plate

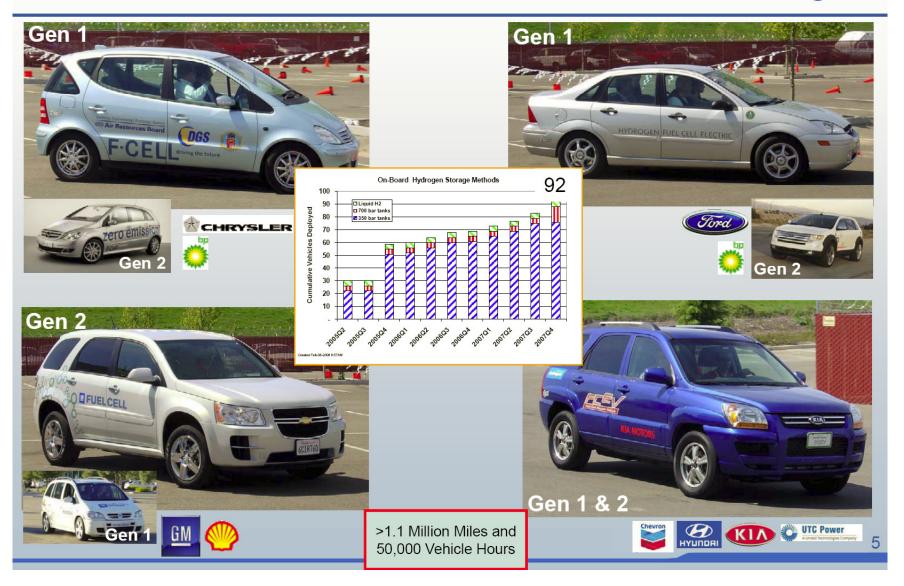
DOE's Hydrogen Fuel Cell Activities: Developing Technology and Validating it through Real-World Evaluation

Alternative Fuels & Vehicles Conference Las Vegas, NV May 12, 2008

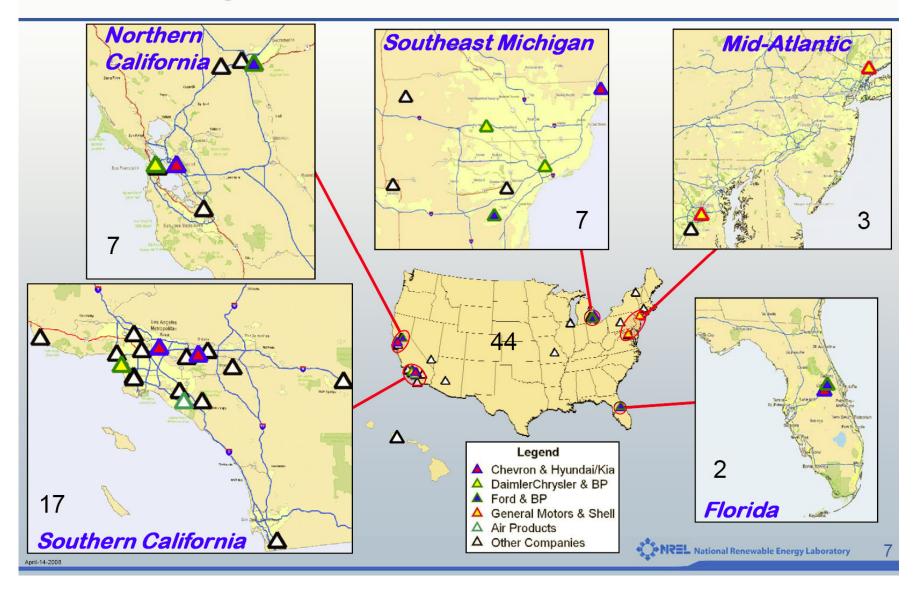
## **Vehicular Hydrogen Challenges and Barriers**



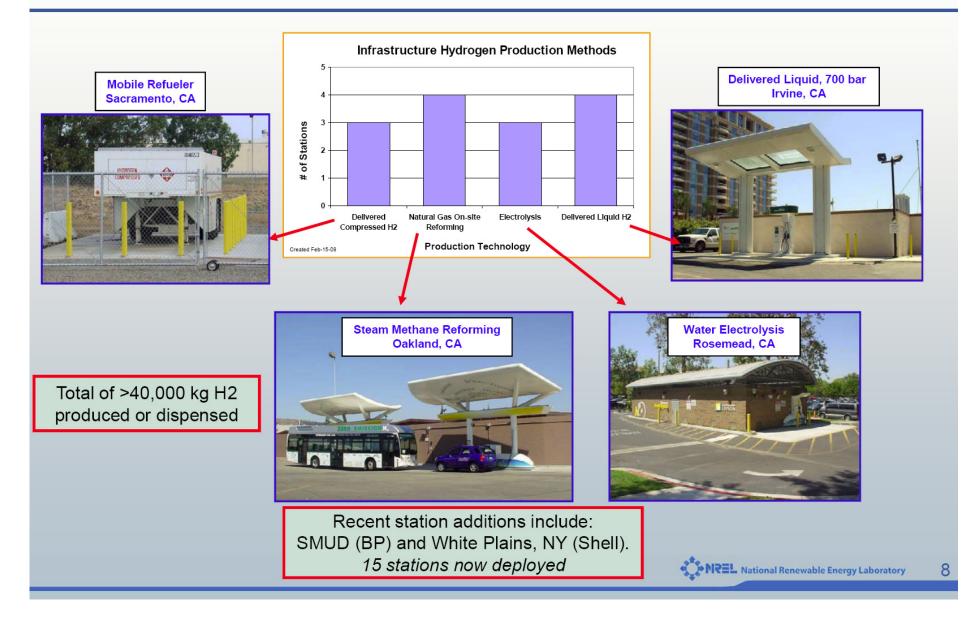
### Fuel Cell Vehicle Learning Demonstration Seeks to Validate Real-World Progress


- Objectives
  - Validate H<sub>2</sub> FC Vehicles and Infrastructure in Parallel
  - Identify Current Status and Evolution of the Technology
    - Assess Progress Toward Technology Readiness
    - Provide Feedback to H<sub>2</sub> Research and Development

| Key Targets                   |            |            |  |  |  |  |
|-------------------------------|------------|------------|--|--|--|--|
| Performance Measure 2009 2015 |            |            |  |  |  |  |
| Fuel Cell Stack Durability    | 2000 hours | 5000 hours |  |  |  |  |
| Vehicle Range                 | 250+ miles | 300+ miles |  |  |  |  |
| Hydrogen Cost at Station      | \$3/gge    | \$2-3/gge  |  |  |  |  |
|                               |            |            |  |  |  |  |

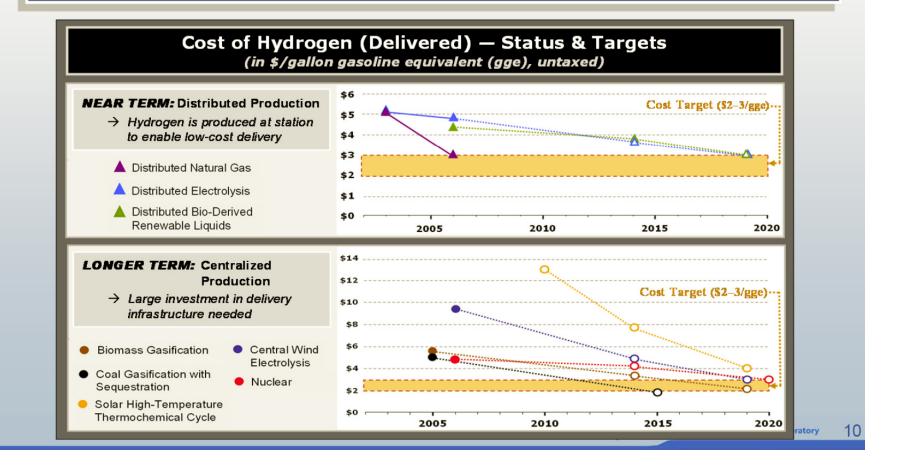



PNREL National Renewable Energy Laboratory


#### Industry Partners: 4 Automaker/Energy-Supplier Teams; Rollout: 2<sup>nd</sup> Generation FC Introduction in 2008 Has Begun



#### Refueling Stations Test Performance in Various Climates; Learning Demo Comprises ~1/3 of all US Stations




#### Majority of Project's Fixed Infrastructure to Refuel Vehicles Has Been Installed – Examples of 4 Types



#### **Hydrogen Production Progress**

**GOAL:** Diverse cost-competitive domestic pathways to hydrogen production **PROGRESS:** Significant cost reductions have been achieved

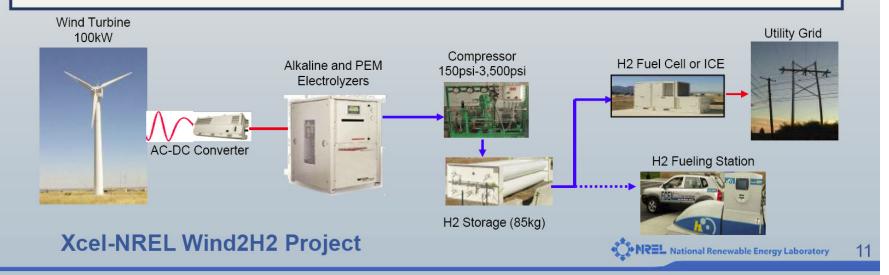


# **Examples of Renewable Pathways for Electricity and Vehicular Fuel Demonstrated**

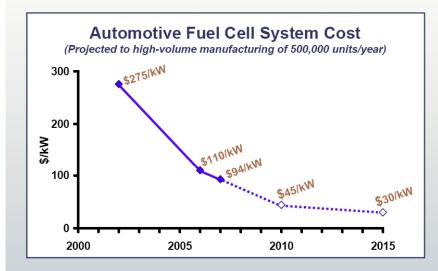
#### Four Renewable Fuel/Power Demonstration Projects

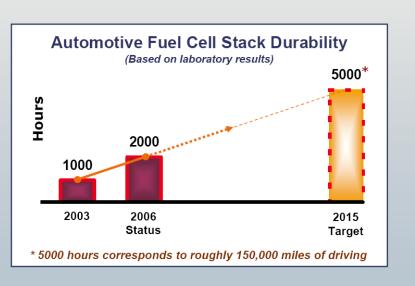
#### Hydrogen for Vehicles from On-Site Solar and Water Electrolysis (ongoing)

DTE: Southfield, Michigan


SMUD: Sacramento, CA

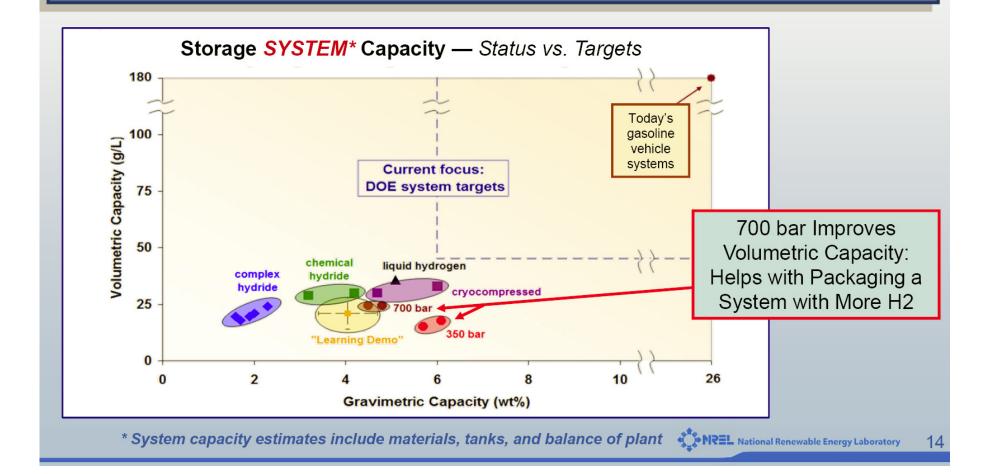
#### Xcel/NREL Wind/Hydrogen Project (ongoing, shown below)


Integrates electrolyzers and wind turbines to understand the benefits and impacts of adding hydrogen production facilities to the electric power grid (NREL wind site at Golden, Colorado)


#### Hawaii (planned)

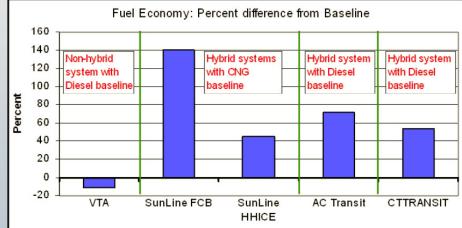
Hydrogen production using curtailed wind and geothermal energy to generate electricity and to fuel hydrogen buses at national parks




#### Automotive Fuel Cells Progress: Projected Cost (at Volume) and Laboratory Durability






# Hydrogen Storage Progress: Current Products and Advanced Technology

**GOAL:** On board storage with > 300-mile driving range (meeting req. for safety, cost, performance) **PROGRESS:** The Program has identified materials with > 50% improvement in capacity since 2004



## Evaluation of Hydrogen and Fuel Cell Buses in Five Fleets

Santa Clara VTA, San Jose, CA SunLine, Thousand Palms, CA AC Transit, Oakland, CA CTTRANSIT, Hartford, CT Hickam AFB, Honolulu, HI



Fuel economy is highly dependent on duty-cycle and hybridization, but shows improvement approaching 2X

