University of Mississippi Chemical Engineering Climate Change Course April 15-16, 2009

IGCC and **CO₂** Capture Research at the PSDF

Bob Dahlin, Carl Landham, Robert Strange, Pannalal Vimalchand, WanWang Peng, Alex Bonsu, Xiaofeng Guan

Coal: America's Most Abundant Fuel and Strategically Important

U.S. has a well-known, readily available supply of coal

- 250+ years of coal reserves
 Limited natural gas availability
- Need to utilize coal reserves more efficiently

Courtesy of Robert Wayland, PhD, EPA OAR

IGCC Simplified Flowsheet

Taken from: "Critical Technology Needs for IGCC" presented by Ron Schoff at the CURC-EPRI Annual Meeting, April 10, 2008.

IGCC and Gasification Background

- Coal gasification first used for streetlights in 1792.
- Late 1800's widely used for lighting and industrial applications in Europe and US.
- By the 1920's there were over 1200 gas plants operating in the US. Post WW II discoveries of natural gas led to demise of these plants.
- Widespread use in South Africa during apartheid for liquid fuel production.
- Renewed interest and development in the 70's due to oil embargo and concerns over natural gas reserves.
- Today's high natural gas prices and stringent environmental regulations focused interest on IGCC.

From: "Tampa Electric's IGCC Plant" presented by B.T. Burrows at the 11th Annual FDEP Central District Power Generation Conference, July 26, 2007

Gasification Worldwide

•	117 operating plants, 385 gasifiers					
•	Feedstocks:	Coal		49	%	
		Oil		37	%	
		Nat Gas, Pet	Coke, Biomass	, waste 14	%	
•	Products:	Chemicals	37%			
		Liquid fuels	36%			
		Power	19%			
		Gas fuels	8%			
•	Over 20 Combus	20 Combustion turbines firing syngas				
•	Solids IGCC's	Nuon Power,	Netherlands,	253 MW	1993	
		Wabash Rive	r, Indiana,	262 MW	1995	
		Polk, Mulberry FL Puertollano, Spain		250 MW	1996	
				330 MW	1997	

From: "Tampa Electric's IGCC Plant" presented by B.T. Burrows at the 11th Annual FDEP Central District Power Generation Conference, July 26, 2007

From: "Tampa Electric's IGCC Plant" presented by B.T. Burrows at the 11th Annual FDEP Central District Power Generation Conference, July 26, 2007

Comparison of IGCC to Conventional Power Plant

- Gasification cleans the coal before it is burned.
- High pressure & low volume provide favorable economics of pollutant removal
- The IGCC Cleaner Coal option increases fuel diversity, reduces emissions, and increases siting and permitting flexibility.

Pulverized Coal

- Pollutants are removed after the coal is burned.
- The gas volume treated is 100 times the gas volume of an IGCC plant.
- Criteria & HAPS emissions are higher than an average IGCC plant
- Combustion produces large quantities of waste and consumes more water than IGCC

Taken from: "IGCC Cleaner Coal – Ready for Carbon Capture" presented by GE Energy at the UBS 2007 Climate Change Conference, May 14, 2007.

HERN RESEARCH

PolyGen: IGCC with Chemicals Production

Courtesy: DOE/NETL

IGCC Generates More Electricity per Ton of Coal

- IGCC plants use two power cycles, generating electricity more efficiently
 - Coal is heated in a specialized process to release syngas which is used to generate electricity in a turbine
 - Then exhaust gas from the turbine is used to heat water, which produces steam to generate additional electricity
- With two power cycles, the amount of electricity generated from a ton of coal is increased

Two Options for IGCC: Oxygen vs Air-Blown

- Coal gas is produced with O₂ in some IGCC plants
- O₂ plants:
 - Are expensive to build
 - Require high levels of electricity to operate
 - Reduce electricity available for sale to consumers
- Southern Company's air-blown IGCC system uses O₂ from the air to produce syngas, increasing the overall efficiency of the plant

- Process does not require a costly O₂ plant

Benefits Presentation: Southern Company CCP1.2 - D. Revey Madden, 321, 05/2007

Economics of Oxygen vs Air-Blown IGCC

Emissions Comparison: Oxygen vs Air-Blown

IGCC Demo Plant – Kemper County, Mississippi

- Location
 - Kemper County, MS,
 - ~ 20 miles North of Meridian
 - 1600 Acre Plant Site
- In-Service Date
 - November 2013
- Over \$2 billion capital investment
- 513 MW capacity, 65 °F, 75% RH
- 11,225 btu/kwh HHV with 50% CO₂ capture
 - 2x1 Integrated Gasification Combined Cycle (IGCC) using TRIG[™]
 - Fuel
 - Primary: Mine Mouth Lignite (31,000 Acres Life of Mine)
 - Backup: Natural Gas

IGCC Research at the Power Systems Development Facility Wilsonville, Alabama

Hot-Gas Filter for Particulate Control

Particulate Removal by Hot-Gas Filtration

Analysis and solution of HGF performance problems (high ΔP , bridging, tar deposition, filter element damage, etc)

Development and validation of HGF design procedures

HTHP In-Situ Particulate Sampling System

Close-up view of isolation valves with nitrogen purge and vent lines

Sampling nozzle, filter holder and alkali getter

Sampling probe inserted through gland seal

Development of HGF Drag Correlations for System Design

RAPTOR system for measuring dust flow resistance

Tar Cracking and Gas Cleanup Testing Area

Medium-Temperature Reactors (Used for low-temp tar cracking, desulfurization)

Mini-Reactor Operating Parameters for G117RR and G-31

Gasifier operation Coal type	Air Blown PRB	Air Blown PRB
Reactor	RX301	RX301
Reactor size	1.5"ID x4' Ht	1.5"ID x4' Ht
Reactor material	310SS	310SS
Sorbent manufacturer	Sud-Chemie	Sud-Chemie
Sorbent	G-117RR	G-31
Sorbent mass, Ib	0.3	0.3-0.5
Sorbent bed height, in	5	5
Syngas flow, scfh	10-12	15-20
Pressure, psig,	2-10	2-10
Temperature, °F	1650	1650-1750
Space velocity, hr ⁻¹	2155	1950-3430
Ammonia inlet, ppm	2040	2250
Ammonia outlet, ppm	86	6
Benzene inlet, ppm	860	825
Benzene outlet, ppm	210	20
Operating time, hr	290	13 / 300

Desulfurization Sorbents Developed by DOE and Tested at PSDF

Air / O2 Blown	O2 Blown	
Powder River Basin	Powder River Basin	
RX700A	RX700B	
5.187"ID x5' Ht	5.187"ID x5' Ht	
RVS-1	RVSLT-1	
2	2	
2.3	2.3	
45 - 3	12	
210 - 130	135	
550 - 700	650	
24,000 - 1,700	6700	
160 - 620	580	
	Air / O2 Blown Powder River Basin RX700A 5.187"ID x5' Ht RVS-1 2 2.3 45 - 3 210 - 130 550 - 700 24,000 - 1,700 160 - 620	

CO₂ Capture with IGCC and Conventional PC Plants

	IGCC Plant	PC Plant*
CO ₂ capture (%)	91	90
Unit output derating (%)	14	29
Efficiency Decrease (%)	16.5	40
Capital cost increase (%)	47	73

Source: Environmental Footprints and Costs of Coal-Based Integrated Gasification Combine Cycle and Pulverized Coal Technologies, U.S. Environmental Protection Agency, EPA-430/R-06/006, July 2006

*High-Pressure CO*₂ *Capture Reactor*

Approach

Begin screening tests with simple lab CO₂ Analyzer J system. Identify most promising Flowmeters Υ Data Acquisition systems. Ą Regulators Thermocouple -Abs rate & capacity. and flow metering valves Energy requirements. Fritted Solvent Bubbler Corrosion. For CO₂ Absorption Solvent stability. Span Gas CO. N_2 **Open-Tube** H₂SO₄ Bubbler Maintain steady dialog • For NH₃ with other researchers Absorption Constant Temperature to identify new materials Bath with Circulator that should be addressed.

Photograph of Initial Absorber Setup

Some Candidate Solvents and Additives

Initially, all of the primary solvents are being compared at a concentration of 1 M, but tests will also be done at other concentrations, including those used commercially. A tentative list of the solvents and additives to be tested is given below. Various combinations of solvents and additives are being tested as appropriate. The lists of solvents and additives are continually updated based in input from other researchers and developers.

.

<u>Solvents</u>	Solvents (continued)	<u>Additives</u>	Additives (continued)
Monoethanolamine	N-acetylmorpholine	Piperazine	Methyl Diethanolamine
Diethanolamine	Sodium Glycinate	Guanadine Hydrochloride	Triethanolamine
Methyl-Diethanolamine	Potassium Glycinate	Monoethanolamine	Diaza-Bicyclo-Undecene
Triethanolamine	Potassium Taurate	Ammonium Chloride	Other Sterically-Hindered Amines
Diglycolamine	Potassium Sarcosinate	Sodium Chlorides	Sodium Glycinate
Diisopropanolamine	Diaza-Bicyclo-Undecene	Other Chloride Salts	Potassium Glycinate
Methyl-Monoethanolamine	Other Sterically-Hindered Amines	Chloroform	Potassium Taurate
Morpholine	Other Amino Acid Salts	Carbon Tetrachloride	Potassium Sarcosinate
Ammonium Hydroxide	Other Nitrogen-Containing Solvents	Dimethyl Sulfoxide	Other Amino Acid Salts
Dimethyl Ether Polyethylene Glycol	Other Nitrogen-Free Solvents	Isopropanol	Other Chlorinated Hydrocarbons
Sodium Hydroxide	Diaza-Bicyclo-Undecene-1-Hexanol	Acetone	N-formylmorpholine
Piperazine	Other Amidine-Alcohol Systems	Ammonium Sulfate	N-acetylmorpholine
Potassium Carbonate	Guanadine-Alcohol Systems	Ammonium Bisulfate	Hexanol
N-formylmorpholine	Perfluoro-Perhydro-Benzyltetralin	Diethanolamine	Other Alcohols

Derived from literature and discussions with other researchers and process developers. Primary purpose of additives to enhance reaction rate. Some additives selected to simulate effects of dual capture of CO_2 and SO_2 . List is being updated continually based on input from many sources.

~ .

Example 1 - CO₂ Removal Results Obtained with "Standard" Materials

Note: These initial results were obtained with low-concentration (1-M) solvents for comparison of absorption rate and capacity with gas residence time of ~1 sec. These measurements were made before the constant-temperature bath was available, so an ice-bath was used as a convenient means of providing a constant temperature (0°C). Future tests will be done at various temperatures representative of scrubber operation. Note that over time interval studied absorption curves show asymptotic approach to saturation for all solvents except NH_4OH .