
Photocatalytic Reduction of CO₂ and Water Splitting, I

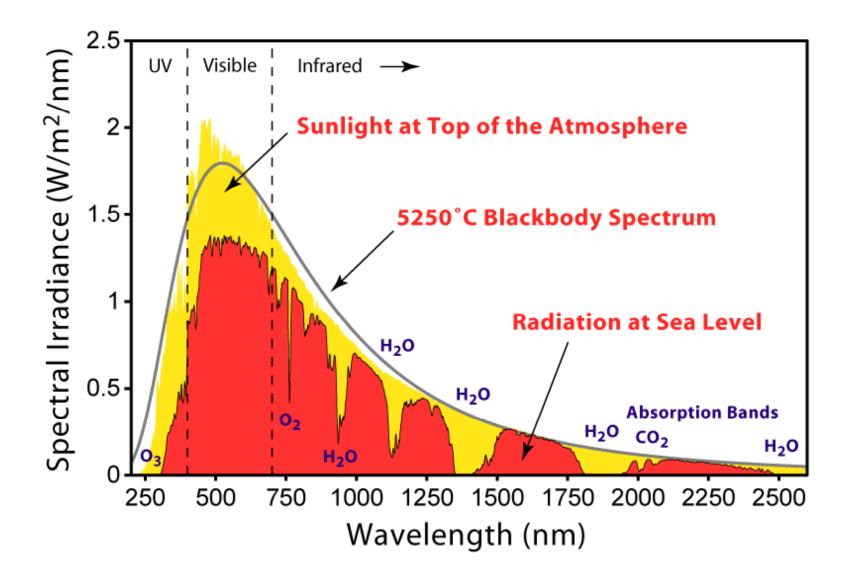
Nathan I. Hammer Department of Chemistry & Biochemistry University of Mississippi

Solar Radiation

1000 W/m²

Photocatalytic Reduction of CO₂ and Water Splitting

 $2CO_2 + 4H_2O \rightarrow 2HCOOH + O_2$ $CO_2 + H_2O \rightarrow HCHO + O_2$ $CO_2 + H_2O \rightarrow CO + 2OH$ $2H_2O \rightarrow O_2 + 2H_2O$


Need for Hydrogen – the Fuel of the Future

- The use of fossil fuels might be partially responsible for climate change.
- Deposits of fossil fuels are limited.
- The price of the fossil fuels is increasing.
- There is a need for a fuel generated from the raw materials which are abundantly available.
- There is a need for a fuel that is environmentally safe.

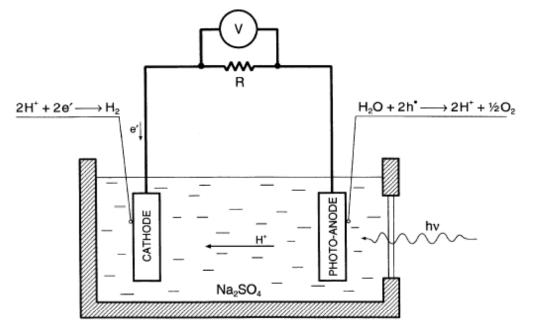
$2H_2O \rightarrow O_2 + 2H_2$

T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, "Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects," *International Journal of Hydrogen Energy* **2002**, *27*, 991-1022

Solar Spectrum

Energy Levels of Water

						TAB	LE 62 (c	ontinue	1)			
State	Point Group	T_{0}	Vibrational Frequence $\nu_1 \qquad \nu_2 \qquad \nu_3$	ies A_0	Rotat B_0		onstants r_0 (Å)	α	Electron Configuration	Observed Transitions	References	Remarks
	PH_2											
à ² A₁		18276.6	951.3	20.340	5.606	4.311	1.403	123.1°	$(\dots (b_2)^2 (a_1) (b_1)^2)$	$\widetilde{A} \leftrightarrow \widetilde{X} $ 8520– ^a 3600 Å	(1042)(452) (286b)	Widely spaced bands with cor plicated fine
$\tilde{X} {}^{2}B_{1}$	C_{2v}	0	1101.9	9.120	8.087	4.225	1.428	91.5°	$\dots (b_2)^2 (a_1)^2 (b_1)$		(1571)	ŝtructure
]	H_2O		12.61 ₈ eV; D(H—O				138)					
Ĩ Ř									Progressions of diffuse bands			
$\widetilde{\widetilde{D}}^{(1}B_1)$ $\widetilde{\widetilde{D}}^{(1}A_1$	$egin{array}{ccc} G_{2v} \ G_{2v} \ G_{2v} \ G_{2v} \end{array}$	Two mer 89680 88660 82038	ging weaker Rydberg 3268 1636 (3335	series joini	ng on to	\tilde{C} and	$\tilde{D}; \nu = 1$		$\begin{array}{l} -R/(n-0.7)^2; \ n=3, \ 4, \\ (\ldots(3a_1)^2(1b_1)(3d) \\ (\ldots(3a_1)^2(1b_1)(4sa_1) \\ (\ldots(3a_1)^2(1b_1)(4sb_1) \end{array}$	$ \begin{array}{c} \tilde{F} \leftarrow \tilde{X} \ 1115 \text{ \AA} \\ \tilde{E} \leftarrow \tilde{X} \ 1128 \text{ \AA} \\ \tilde{D} \leftarrow \tilde{X} \ 1219- \end{array} $	(1015) (1015)(631) (1015)(631) (1015)(105a)	Single band Single band Diffuse bands
$\tilde{J}^{1}B_{1}$	C_{2v}	80624.8	3170 (1422) ^a (3224	a 25.67	12.5_5	8.5_5	1.01_{6}	106.9°	$\dots (3a_1)^2 (1b_1) (3pa_1)$	$\tilde{C} \leftarrow \tilde{X} \begin{array}{c} 1172 \text{ \AA} \\ 1241- \\ 1194 \text{ \AA} \end{array}$	(1015)(631) (1278)(105a)	See Fig. 112. Lines of highe
$\check{\beta}({}^{1}A_{1})$	(D_{wh})	70870 ^b	(800)						$\dots (3a_1)(1b_1)^2(3sa_1)$	$\begin{array}{c} \tilde{B} \leftarrow \tilde{X} \hspace{0.1 cm} 1411 - \\ 1256 \hspace{0.1 cm} \mathrm{\AA} \end{array}$	(1278)	J are diffuse Progression of very diffuse
$\tilde{4}({}^{1}B_{1})$	C_{2v}	(53800)	continuous absor	ption with	broad r	naximur	n at 165	5Åď	$(\dots (1b_2)^2 (3a_1)^2 (1b_1) (3sa_1))$	$\tilde{A} \leftarrow \tilde{X}$ 1860–	(1302)	$bands^{c}$ $k_{max} = 124cm$
$\tilde{K}^{1}A_{1}$	C_{2v}	0	$3657.0_5 \ 1594.7_8 \ 3755$	7,9 27.877	14.512	9.285	0.956f	105.2°f	$\dots (1b_2)^2 (3a_1)^2 (1b_1)^2$	1450 Å infrared sp.	(1278) (107)(265)	
]	H_2S	I.P. =	10.47 ₂ eV ^a ; D(H—S	(H) = 3.26	eVb	More r	ecent wo	ork on R	ydberg series (1575)–(157'	7)		
Rydberg series joining on to \tilde{A} : $\nu = 84420 - R/(n - 1.04)^2$; $n = 4, 5,, 13$ Rydberg series of three members joining on to \tilde{F} and \tilde{G} for which no formula is given Rydberg series joining on to \tilde{D} : $\nu = 84520 - R/(n - 1.57)^2$; $n = 4, 5,, 10$ (1015) (1015) (1015)(1024) (1015)(1024)								No vibrationa structure				


 $\frac{c_0}{c_1} \frac{1}{PH_2} = \frac{a \ln absorption 5500-3600 \text{ Å, in emission } 8520-4540 \text{ Å. Improved constants in (1571)(1572).}}{H_2O; a Estimated from <math>\nu'_2 = 1038._4$ for D₂O assuming valence force system (631). (105a) gives $\nu_1 = 3179$, $\nu_2 = 1407$, $\nu_3 = (3238)_{calc}$.

b Wave number of first diffuse band; origin of band system may be much lower. • Overlapped by continuum. d(1302) give three maxima at 1718, 1648 and 1608 Å, but these are not observed in the photoelectric work of (1278) [see also (629)].

 $e \alpha_1^A = 0.74_7, \alpha_2^A = -3.32_3, \alpha_3^A = 1.241; \alpha_1^B = 0.22_2, \alpha_2^B = -0.16_7, \alpha_3^B = 0.11_2; \alpha_1^C = 0.18_0, \alpha_2^C = 0.13_5, \alpha_3^C = 0.12_9 \text{ cm}^{-1}.$ Slightly different A_0, B_0, C_0 and α_i values are given by (106a). See also (1573)

These are r_0 and α values. The equilibrium values, given by (106a), are 0.957₂ Å and 104.5₂°.

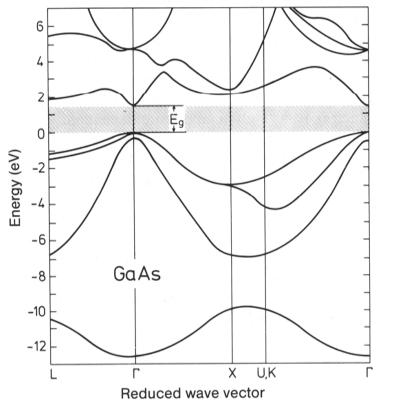
Water Splitting

$$TiO_2 + 2 hv \rightarrow 2 e^- + 2 p^+$$
(1)
(excitation of TiO₂ by light)

$$2 p^+ + H_2O \rightarrow \frac{1}{2}O_2 + 2 H^+$$
(2)
(at the TiO₂ electrode)

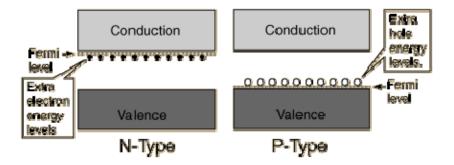
$$2 e^{-} + 2 H^{+} \rightarrow H_{2}$$
(3)
(at the platinum electrode)

The overall reaction is

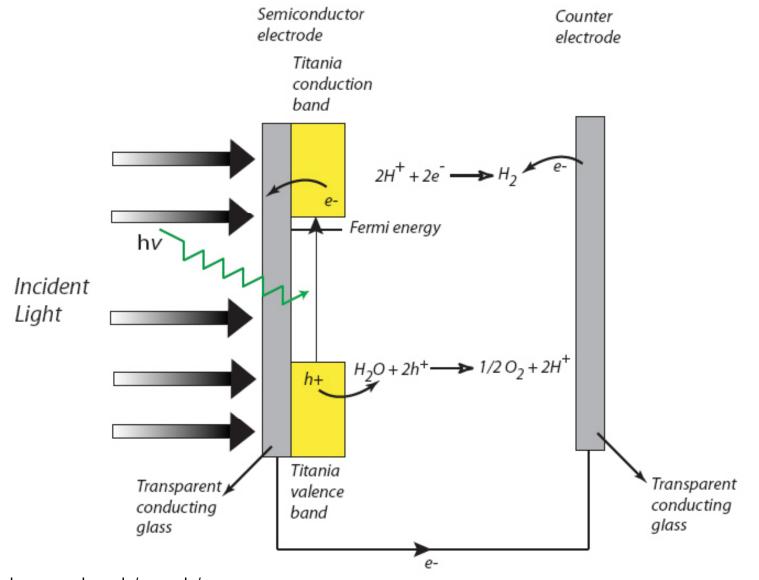

$$H_2O + 2 hv \rightarrow \frac{1}{2}O_2 + H_2 \tag{4}$$

A. Fujishima and K. Honda, "Electrochemical photolysis of water at a semiconductor electrode," Nature 1972, 238, 37-41

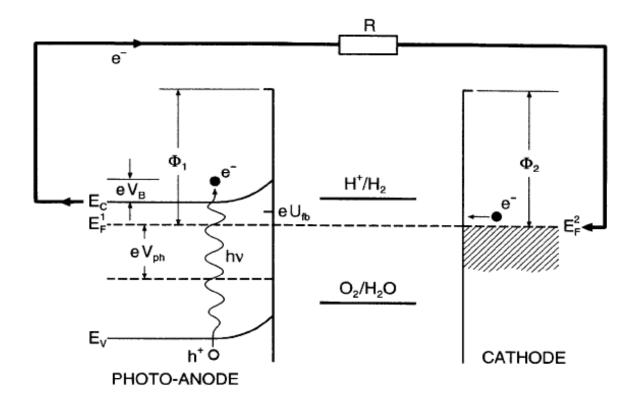
Water Splitting


- Photogeneration of charge carriers (electron and hole pairs) in some material occurs.
- In TiO₂, light with energy larger than the band gap is absorbed and electrons and holes are generated in the conduction and valence bands, respectively.
- Charge separation occurs.
- Holes migrate to the interface between the semiconductor and the electrolyte and electrons migrate to the counter electrode through the external circuit.
- The photogenerated electrons and holes cause redox reactions.
- Water molecules are reduced by the electrons to form H₂ and oxidized by the holes to form O₂, leading to overall water splitting. Actually, oxidation of water forms H⁺ and O₂ at the anode and reduction of H⁺ ions to H₂ by electrons occurs at the cathode.

Band Gaps of Materials

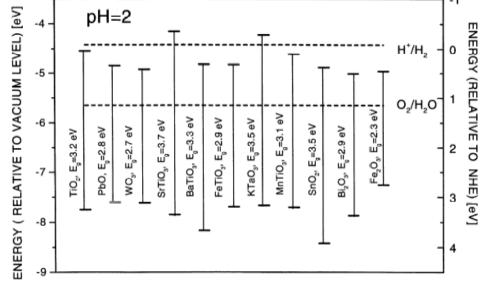

Conduction Band

Valence Band


H. Ibach and H. Lüth, "Solid-State Physics. An Introduction to Principles of Materials Science", Springer, 2003. http://hyperphysics.phy-astr.gsu.edu/hbase/solids/dope.html

Water Splitting

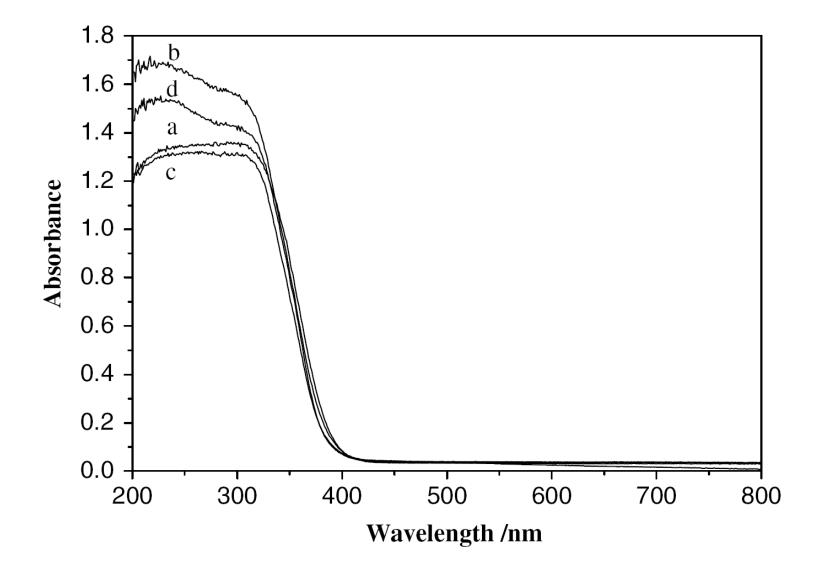
http://cobweb.ecn.purdue.edu/~vurade/


Water Splitting

T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, "Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects," *International Journal of Hydrogen Energy* **2002**, *27*, 991-1022

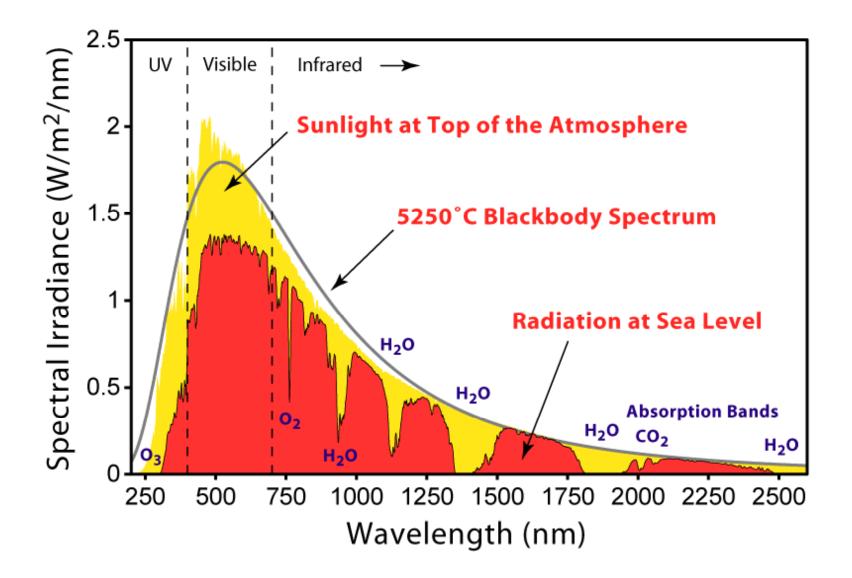
Water Splitting – Photocatalyst Properties

- The width of the band gap and the potentials of the conduction and valence bands are important.
- The conduction and valence band positions should satisfy the energy requirements set by the reduction and oxidation potentials for H_2O .
- The bottom level of the conduction band has to be more negative than the reduction potential of H⁺/H₂ (0 V vs NHE), while the top level of the valence band has to be more positive than the oxidation potential of O₂/H₂O (1.23 V).
- Band gap of a visible-light-driven photocatalyst should be narrower than 3.0 eV (> 420 nm).


A. Kudo, H. Kato and I. Tsuji, "Strategies for the Development of Visible-light-driven Photocatalysts for Water Splitting," Chemistry Letters 2004, 33, 1534-1539.

T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, "Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects," *International Journal of Hydrogen Energy* **2002**, *27*, 991-1022

Water Splitting – Photocatalyst Properties


- Charge carrier separation, migration, and lifetimes of photogenerated carriers are affected by the crystal structure and the crystallinity of the photocatalyst.
- The higher the crystalline quality, the smaller is the amount of defects. The defects operate as trapping and recombination centers between photogenerated electrons and holes, resulting in a decrease in the activity.
- Surface chemical reactions and surface properties such as surface states, surface chemical groups, surface area, and active reaction sites are also important.
- The water-splitting process affects the local pH environment and surface structures of the electrode.
- Most contain titanium oxides.
- Cocatalysts such as Pt and NiO and/or additives in the water such as NaOH and Na₂CO₃ are indispensable for the water splitting on many photocatalysts. Such cocatalysts introduce active sites for H₂ evolution.
- Most models require UV radiation.
- Materials need to absorb visible light to overlap with solar spectrum.

Water Splitting

J. Zhu, J. Zhang, F. Chen, K. lino, and M. Anpo, Topics in Catalysis 2005, 35, 261-268.

Water Splitting

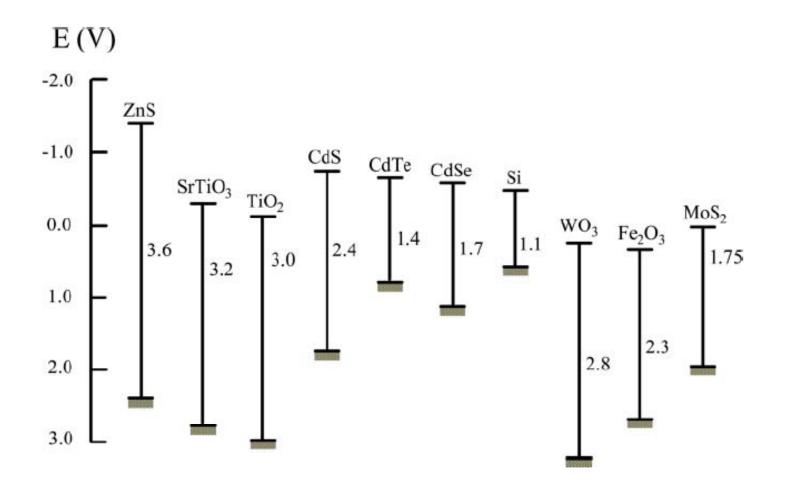
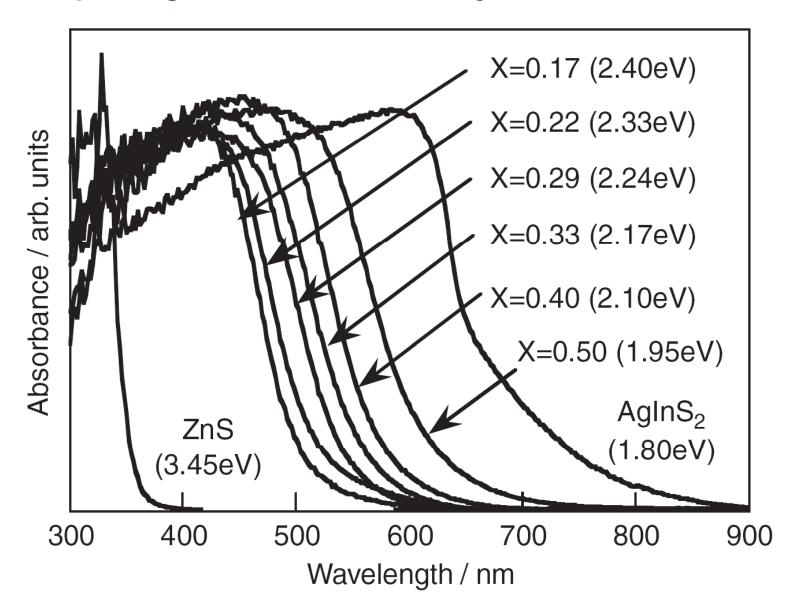



Fig. 2 Band gaps and redox potentials (vs. NHE) at pH = 1.

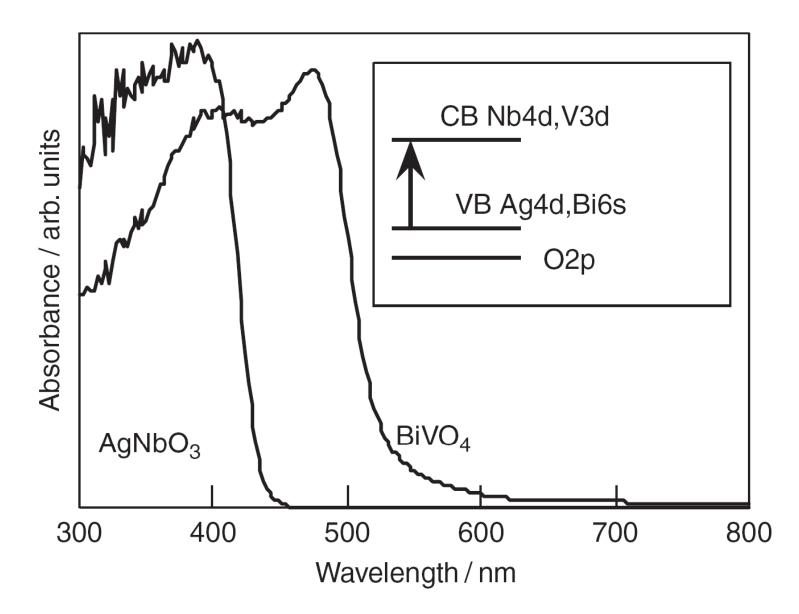
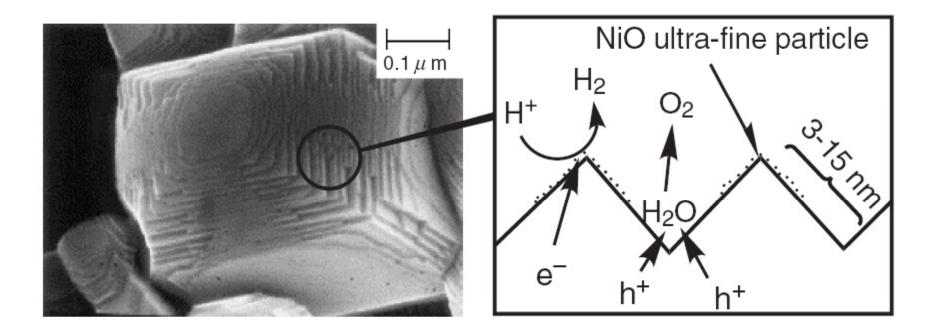

G. Palmisano, V. Augugliaro, M. Pagliarob, and L. Palmisano, "Photocatalysis: a promising route for 21st century organic chemistry," *Chemical Communications*, **2007**, 3425–3437

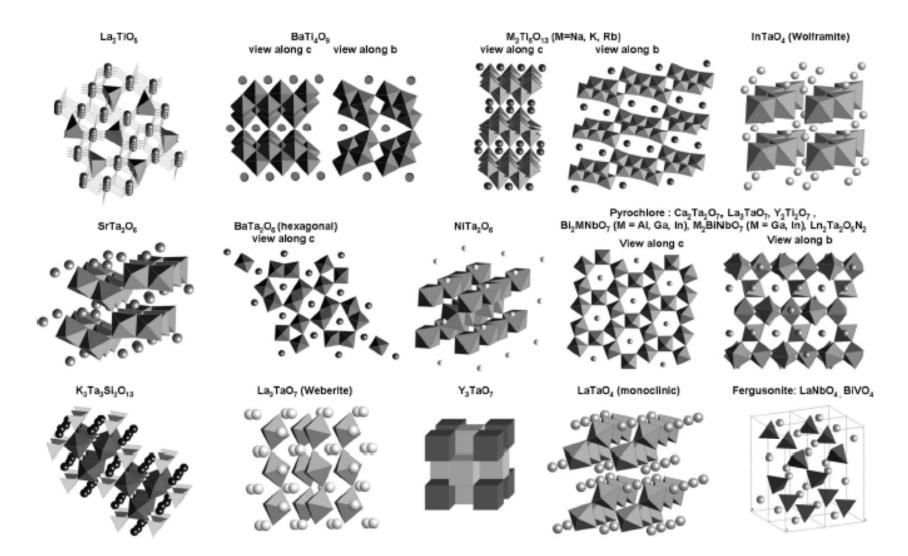
			Table 1. Continued	
no.	material	cocatalyst	irradiation conditions	reaction details and refs
124d	CdS	variable	variable	micelles, ^{223–225} CdS composites with (TiO ₂ , ²²⁶ ZnS, ^{228,226} CdSe ²³⁰) different cocats. (Pt, Pd, Rh, Ru, Ir, Fe, Ni, Co), ^{231,232} hollow CdS microparticles, ²³³ Cu-doped CdS, ^{234,235} effect of preparation ^{236,237}
125a	ZnS		125 W Hg at > 290 nm	0.5 mL of H ₂ /h (22 μmol) per 12 mg of cat. from THF(aq) ²³⁸
125ь	ZnS	Pt	200 W Hg at >300 nm	295 mL/h (13 mmol/h) of H ₂ from 0.4 g of cat., QE = 90%; ¹³ from aqueous S ²⁻ , SO ₃ ²⁻ , S ²⁻ /HPO ₂ ⁻ , or S ₂ O ₃ ²⁻ solution
125c	M:ZnS (M = Ni, Pb, Cu)		300 W Xe at >420 nm	$M = Ni$, 280 μ mol/h/g (QE = 1.3%) of H ₂ from aqueous K ₂ SO ₃ and Na ₂ S; ²⁴⁰ M = Pb, 15 μ mol/h/g from aqueous SO ₃ ²⁻ ; ²⁴¹ M = Cu, 450 μ mol/h/g of H ₂ were evolved (QE = 3.7%) from Na ₂ SO ₃ (aq) ²³⁹
125d	ZnS, doped with AgInS ₂ or CuInS ₂	Pt or Ru	300 W Xe at >420 nm	for Ru-modified (CuAg) _{0.15} In _{0.3} Zn _{1.4} S ₂ , H ₂ at up to 2.3 mmol/h/0.3 g from aqueous Na ₂ S and Ka ₂ SO ₃ with QE = 7.5%; ²⁴³ Pt-loaded (AgIn) _{0.22} Zn _{1.56} S ₂ has QE = 20% ²⁴⁵
126–128	Na ₁₄ In ₁₇ Cu ₃ S ₃₅ , (AEP) ₆ In ₁₀ S ₁₈ , Na ₅ In ₇ S ₁₃		300 W Xe at ≥420 nm	9 μ mol/h/0.5 g of H ₂ from Na ₂ S(aq) with QE = 3.7% (QE = 0.37% for SO ₃ ²⁻ (aq)); (AEP) ₆ In ₁₀ S ₁₈ evolved 20 μ mol/h/0.5 g; ²⁴⁷ AEP = protonated 1-(2-aminoethyl)piperazine; Na ₅ In ₇ S ₁₃ produced 2.4 μ mol/h/0.25 g from Na ₂ SO ₃ (aq) ²⁴⁶
129a/b	[In(OH) _y S _z] with or without Zn doping		300 W Xe at >420 nm	0.9–1.8 μmol/h/0.3 g from aqueous Na ₂ S/Na ₂ SO ₃ ; for Pt/In(OH) _y S ₂ :Zn, activity up to 67 μmol/h/0.3 g (QE = 0.59%) under similar condions ²⁴⁸
130–132	$\begin{array}{l} MInS_2 \ (M = Cu, \ Na, \\ CuIn_5S_8) \end{array}$		UV, 400 W Xe	CuInS ₂ (0.006 mL/h/0.5 g of cat.) and CuIn ₃ S ₈ (0.04 mL/h/0.5 g of cat.) from Na ₂ SO ₃ (aq); ²⁴⁹ NaInS ₂ -Pt produces H ₂ (470 μmol/h/0.7 g) from K ₂ SO _{3(aq)} ; ²⁵⁰ under vis light (>420 nm, 300 W Xe).
133	WS ₂		1000 W Xe at >435 nm	0.05 mL of H ₂ /h/10 mg of cat. from EDTA(aq) with fluoresceine as the sensitizer and SiO ₂ as the support ²⁵¹
134	Bi ₂ S ₃		500 W halogen lamp, vis	H ₂ at 0.011 mL/h/0.001 g from aqueous sulfide; platinization improves the activity by 25% ²⁵²

F. E. Osterloh, "Inorganic Materials as Catalysts for Photochemical Splitting of Water," Chemistry of Materials, 2008, 20, 35-54.

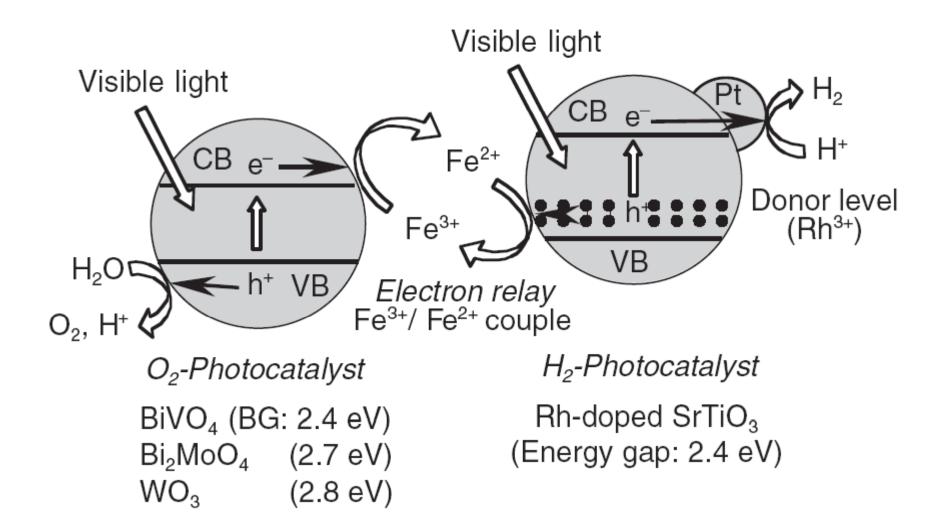


A. Kudo, "Development of photocatalyst materials forwater splitting," International Journal of Hydrogen Energy 2006, 31, 197-202.

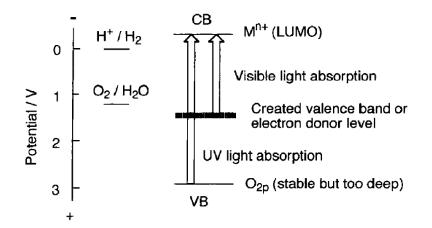
A. Kudo, "Development of photocatalyst materials forwater splitting," International Journal of Hydrogen Energy 2006, 31, 197-202.


Water Splitting – Photocatalytic

- UV Radiation required...
- Need to Develop Visible-Light-Driven Photocatalysts
- Band Engineering
- Two Photon Processes


A. Kudo, H. Kato and I. Tsuji, "Strategies for the Development of Visible-light-driven Photocatalysts for Water Splitting," *Chemistry Letters* **2004**, *33*, 1534 – 1539.

Water Splitting – Photocatalytic


F. E. Osterloh, "Inorganic Materials as Catalysts for Photochemical Splitting of Water," Chemistry of Materials, 2008, 20, 35-54.

Water Splitting – Visible Light

A. Kudo, H. Kato and I. Tsuji, "Strategies for the Development of Visible-light-driven Photocatalysts for Water Splitting," *Chemistry Letters* **2004**, *33*, 1534 – 1539.

Water Splitting – Visible Light

Figure 81. Strategy of the development of photocatalysts with a visible light response. Reprinted Figure 6 from Kudo, A. *Catal. Surv. Asia* **2003**, *7*, 31, Copyright 2003, with kind permission of Springer Science and Business Media.

- Forming a donor level above a valence band by doping some element into conventional photocatalysts with wide band gaps such as TiO₂.
- Creating a new valence band employing some element.
- Controlling the band structure by making a solid solution.

Carbon Dioxide Reduction

- Solution for shortage of fossil fuels Fix CO₂ into useful chemicals.
- May help prevent global warming.
- But... low energy conversion efficiencies so far.
- The shape and size of the photocatalyst are very important.
- The products depend upon the photocatalyst and environment.

 $2CO_2 + 4H_2O \rightarrow 2HCOOH + O_2$

 $CO_2 + H_2O \rightarrow HCHO + O_2$

 $CO_2 + H_2O \rightarrow CO + 2OH$

Carbon Dioxide Reduction

- TiO₂ suspensions including metals such as Pd, Rh, Pt, Au, Cu, or Ru.
- Reduction can also take place with other metals such as Hg, Cd, Pb, Tl, In, Sn, Pt, Ni, Fe, Ti, Au, Ag, and Zn.
- Other catalysts such as ZnS and CdS work well.
- Researchers have also used zeolites and solid-gas systems.
- More recently, transition metal complexes such as ruthenium(II) polypyridine carbonyl complex, cobalt(II) trisbipyridine, cobalt(III) macrocycles, and rhenium-(I) bipyridine (bpy) complexes have been employed with much success.

Carbon Dioxide Equilibria

 $CO_2 + H_2O \rightleftharpoons (H_2CO_3) \rightleftharpoons H^+ + HCO_3^- pK_a = 6.4$ $HCO_3^- \rightleftharpoons H^+ + CO_3^{2-} pK_a = 10.3$

 $CO_{2(aq)} + H_2O \rightleftharpoons H_2CO_3$ $k_f = 6.2 \times 10^{-2} \text{ s}^{-1}$

M. Gattrell, N. Gupta, and A. Co, "A review of the aqueous electrochemical reduction of CO₂ to hydrocarbons at copper," *Journal of Electroanalytical Chemistry* **2006**, *594* 1–19.

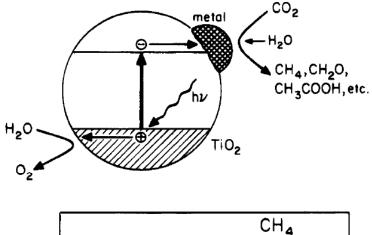
Carbon Dioxide Reduction

$$TiO_{2} \xrightarrow{hv} e_{cb}^{-} + h_{vb}^{+}$$

$$- \text{ oxidation } : h_{vb}^{+} + (CH_{3})_{2}CHOH \rightarrow 2H^{+} + (CH_{3})_{2}CO$$

$$- \text{ reduction } : e_{cb}^{-} + CO_{2} \rightarrow ^{\bullet}CO_{2}^{-} \xrightarrow{H^{+} + e^{-}} CO + OH^{-}$$

$$CO + OH^{-} \xrightarrow{2H^{+} + 2e^{-}} ^{\bullet}C + H_{2}O \xrightarrow{2H^{+} + 2e^{-}} ^{\bullet}CH_{2}$$


$$^{\bullet}CH_{2} \xrightarrow{2H^{+} + 2e^{-}} CH_{4}$$

$$^{\bullet}CH_{2} \xrightarrow{2H^{+} + 2e^{-}} CH_{4}$$

$$^{\bullet}D_{a} \xrightarrow{CO_{2}} \xrightarrow{O} : Co(bpy)_{3}^{2+}} \xrightarrow{VULight} \xrightarrow{UVLight} CO_{a} \xrightarrow{UVLight} CO_{a} \xrightarrow{UVLight} CO_{a} \xrightarrow{UVLight} CO_{a} \xrightarrow{O} : Co(bpy)_{3}^{2+}} \xrightarrow{VUULight} CO_{a} \xrightarrow{O} : Co(bpy)_{3}^{2+}} \xrightarrow{VUULight} CO_{a} \xrightarrow{O} : CO_{a} \xrightarrow{O} : Ru(bpy)_{3}^{2+}} \xrightarrow{VUULight} CO_{a} \xrightarrow{O} : Ru(bpy)_{3}^{2+} \xrightarrow{O} : Ru(bpy)_{3}^{2+}} \xrightarrow{O} : Ru(bpy)_{3}^{2+} \xrightarrow$$

G. Palmisano, V. Augugliaro, M. Pagliarob, and L. Palmisano, "Photocatalysis: a promising route for 21st century organic chemistry," Chemical Communications, **2007**, 3425–3437

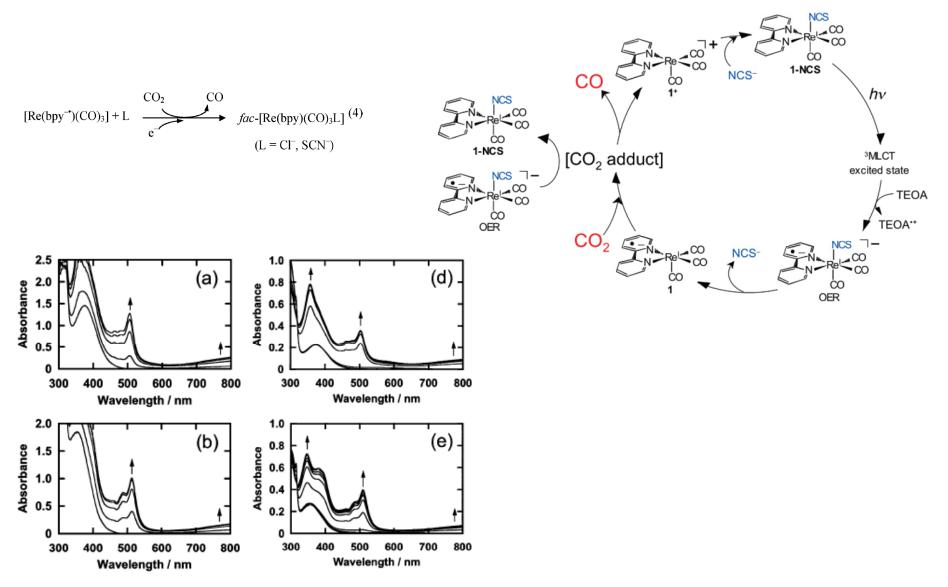
Carbon Dioxide Reduction

$$CO_{2} + H_{2}O \xrightarrow{h\nu} CH_{2}O \\ H_{2}O \xrightarrow{M-TiO_{2}} CH_{3}COOH \\ CH_{3}COOH \\ etc.$$

 $2H^{+} + 2e^{-} \rightleftharpoons H_{2} \quad E_{0} = 0.0 \text{ V vs. SHE}$ (1) $2CO_{2} + 12H^{+} + 12e^{-} \rightleftharpoons C_{2}H_{4} + 4H_{2}O \quad E_{0} = 0.079 \text{ V vs. SHE}$ (2)

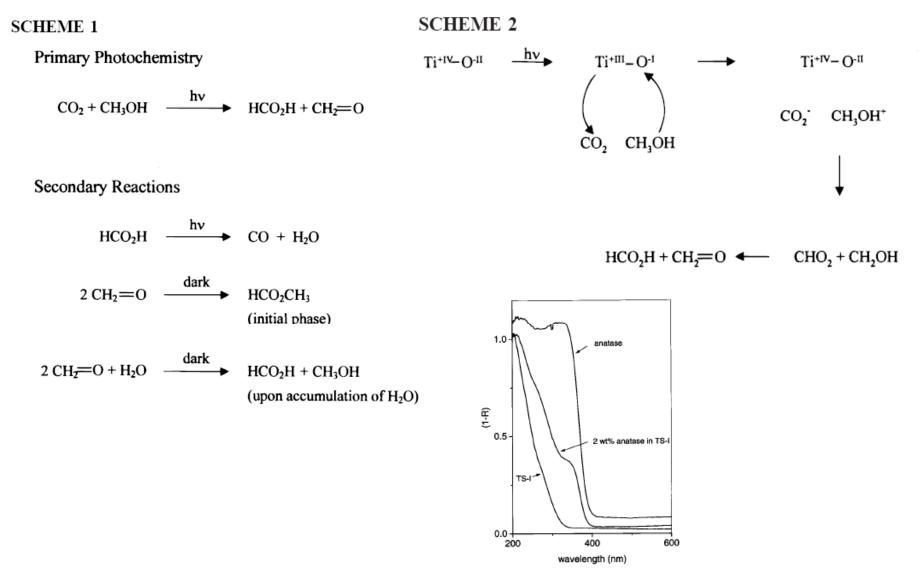
 $CO_2 + 8H^+ + 8e^- \rightleftharpoons CH_4 + 2H_2O_- E_0 = 0.169 V \text{ vs. SHE}$ (3)

 $CO_2 + 2H^+ + 2e^- \rightleftharpoons CO + H_2O$ $E_0 = -0.103 V \text{ vs. SHE}$


(4)

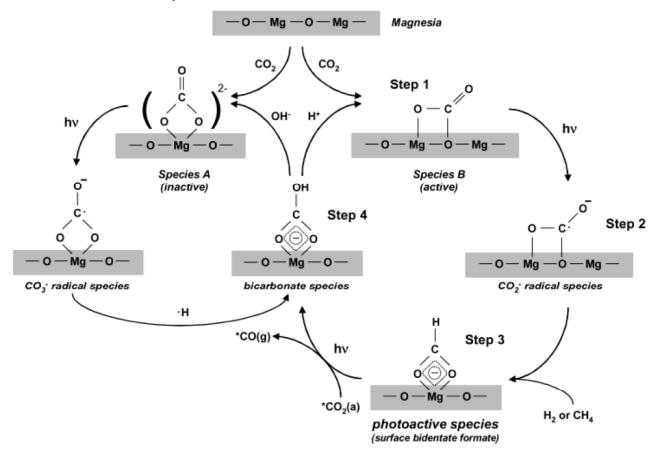
$$\operatorname{CO}_2 + \operatorname{H}^+ + 2e^- \rightleftharpoons \operatorname{HCOO}^- E_0 = -0.225 \,\mathrm{V} \,\mathrm{vs.} \,\mathrm{SHE}$$
 (5)

A. Linsebigler, G. Lu, and J. T. Yates, Jr., "Photocatalysis on TiO_n Surfaces: Principles, Mechanisms, and Selected Results," *Chemical Reviews* **1995**, *95*, 735-758.


H. Takeda, K. Koike, H. Inoue, and O. Ishitani, "Development of an Efficient Photocatalytic System for CO₂ Reduction Using Rhenium(I) Complexes Based on Mechanistic Studies," Journal of the American Chemical Society **2008**, *130*, 2023-2031.

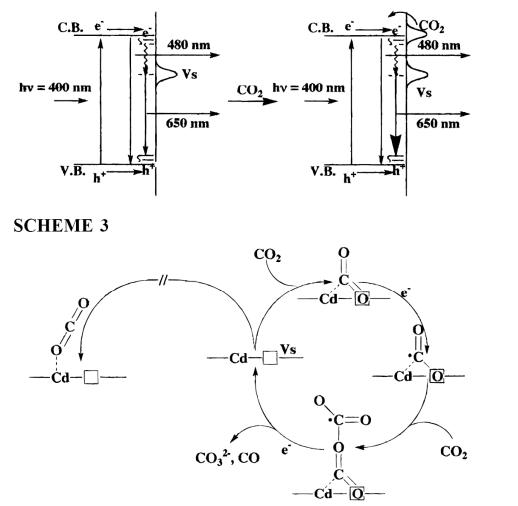
Carbon Dioxide Reduction – Transition Metal Complexes

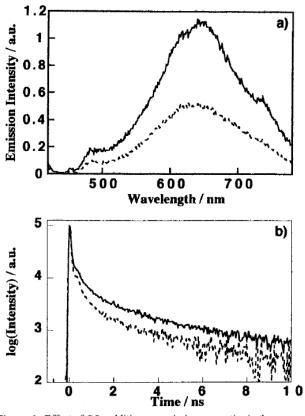
H. Takeda, K. Koike, H. Inoue, and O. Ishitani, "Development of an Efficient Photocatalytic System for CO₂ Reduction Using Rhenium(I) Complexes Based on Mechanistic Studies," Journal of the American Chemical Society **2008**, *130*, 2023-2031.


Carbon Dioxide Reduction – Competing Processes

N. Ulagappan and H. Frei, "Mechanistic Study of CO₂ Photoreduction in Ti Silicalite Molecular Sieve by FT-IR Spectroscopy" *Journal of Physical Chemistry A* **2000**, *104*, 7834-7839.

Carbon Dioxide Reduction – MgO


SCHEME 1. Mechanism of Photocatalytic Reduction of CO₂ in the Presence of H₂ or CH₄



K. Teramura, T. Tanaka, H. Ishikawa, Y. Kohno, and T. Funabiki, "Photocatalytic Reduction of CO_2 to CO in the Presence of H₂ or CH₄ as a Reductant over MgO," *Journal of Physical Chemistry B* **2004**, **108**, 346-354.

Carbon Dioxide Reduction – CdS

SCHEME 2

Figure 6. Effect of CO₂ addition on emission properties in the presence of TEA: (a) emission and (b) emission lifetime monitored at $\lambda = 480$ nm.; in the absence (- - -) and the presence (-) of CO₂.

H. Fujiwara, H. Hosokawa, K. Murakoshi, Y. Wada, S. Yanagida, T. Okada, and H. Kobayashi, "Effect of Surface Structures on Photocatalytic CO₂ Reduction Using Quantized CdS Nanocrystallites," *Journal of Physical Chemistry B* **1997**, *101*, 8270-8278.