Fuel Efficiency In Transportation Systems

Dr. John M. Seiner National Center for Physical Acoustics Professor of Mechanical Engineering The University of Mississippi

Outline of Lecture

- The Issue Global Warming, Motivation for Transportation Efficiency
- Carbon Emissions by Light Duty Vehicles
- Alternate Engine Concepts
- Alternate Fuels
- Alternate Power Sources
- Role of Aerodynamic Efficiency

The Issue

Milankovitch cycles

Caused by gravitational attraction between planets of the solar system and Earth due to changes in the eccentricity of the Earth's orbit, obliquity of the Earth's axis and precession of the Earth's axis of rotation.

•Wobble Cycles 19,000 & 23,000 Yrs. •Tilt Cycle 41,000 Yrs.

•Earth Orbit 100,000 & 400,000 Yrs.

Below a chart showing CO₂ & temperature Of Antarctica Ice Surface by year.

National Geographic, September, 2004

Greenhouse Gas Emissions

Note: Pre-Industrial Levels 260-280 ppm CO₂ eq.

Fossil Fuel Combustion Sources of CO₂ (% contributions for 2000–2004)

- •Solid fuels (e.g. coal): 35%
- •Liquid fuels (e.g. gasoline): 36%
- •Gaseous fuels (e.g. natural gas): 20%
- •Flaring gas industrially and at wells: <1%
- •Cement production: 3%
- •Non-fuel hydrocarbons: <1%
- •Shipping and air transport: 4%

IPCC AR4, 2007

Source: Wikipedia, Global Fossil Fuel Emissions

Artic Sea Ice Extent & Thickness

Arctic Sea Ice Extent (Area of ocean with at least 15% sea ice) Sea Ice Thickness (10-year average) 1950's 2050's 14 Extent (millions of square kilometers) 12 10 8 6 1979-2000 Average 100% of 1955 volume 2 (cm) 54% of 1955 volume Aug May Jun Jul Sep 100 200 300 400 500

In a typical year, the daily rate of ice loss starts to slow in August as the Arctic begins to cool. By contrast, in August 2008, the daily decline rate remained steadily downward and strong.

Source: National Snow & Ice Data Center

NOAA Projected Artic Changes

Quote From Tim Flannery:

"The Weather Makers: How Man Is Changing the Climate And What It Means for Life On Earth"

"To stay below the threshold for melting of the ice sheets in Greenland and West Antarctica, we need to reduce CO_2 emissions by 80% and achieve a diet of no more than 30 pounds of CO_2 per person per day."

Carbon Emissions by Light Duty Vehicles

US Dept. of Energy, June 2008)

Transport Mode	Average Passengers Per Vehicle		Efficiency Per Passenger		
Vanpool	6.1	1322 BTU/mi	2.7 L/100 km (87 MPGe _{US})		
Motorcycles	1.2	1855 BTU/mi	3.8 L/100 km (62 MPGe _{US})		
Rail (Amtrak)	20.5	2650 BTU/mi	5.4 L/100 km (43 MPGe _{US})		
Rail (Transit Light & Heavy)	22.5	2784 BTU/mi	5.7 L/100 km (41 MPGe _{US})		
Rail (Commuter)	31.3	2996 BTU/mi	6.1 L/100 km (38 MPGe _{US})		
Air	96.2	3261 BTU/mi	6.7 L/100 km (35 MPGe _{US})		
Cars	1.57	3512 BTU/mi	7.2 L/100 km (33 MPGe _{US})		
Personal Trucks	1.72	3944 BTU/mi	8.1 L/100 km (29 MPGe _{US})		
Buses (Transit)	8.8	4235 BTU/mi	8.7 L/100 km (27 MPGe _{US})		

Passenger Miles Per Gallon (PMPG)

Bicycling - 653 PMPGCruise Ship -17 PMPGWalking -235 PMPGGulfstream G550 - 16 PMPG

Global Fossil Carbon Emissions by Economic Sector

^b Light duty vehicle emission shares by region are estimates for 2000 from WBCSD (2004).

^c Other sectors include commercial, public services, agriculture and energy industries other than electricity and heat production.

Source: DeCicco et. al., Global Warming on the Road

US Crude Oil Imports Per Day 25 Thousand Barrels in FY 2006

Sources of US Oil Imports Product Distribution From Note: US Produces 4 Million per Day a Barrel of Oil NOR. 1% other 0.3 gal. kerosene 0.2 gal. NETH. 1.4% lubricants 0.5 gal. RUSSIA - 3% U.K. - 1.7% CANADA feedstocks* 1.2 gai. asphalt/road oil 1.3 gal. petroleum coke 1.8 gal. still gas 1.9 gal. 58% FROM TOP 5 what's IRAQ - 5% liquefied gases 1.9 gal. 87% FROM TOP 18 residual fuel oil 2.3 gal. in a ALGERIA 4.7 barrel MEXICO - 10.3% jet fuel 4.1 gallons LIBYA 1% of oil CHAD 1% VENEZUELA - 9% SAUDI distillate fuel oil 9.2 gallons ARABIA COLOMBIA 1.3% NIGERIA -9% 10.5% ECUADOR 1.3% BRAZIL - 1.7% KUWAIT ANGOLA - 4.5% gasoline Source: API. 19.5 gallons Totals more than 44 gals. SOURCES OF U.S. OIL IMPORTS, APRIL 2008 because of DATA FROM EIA, MAP BY R.I. GIBSON "processing gain"

Source: Gibson Consulting

Note: 42 gallons of crude oil per barrel

Consumption of Petro Products (Thousand Barrels Per Day)

	2003	2004	2005	2006	
North America	24207.13	25045.96	25220.97	25070.75	
Central & South America	5195.683	5349.07	5481.752	5691.713	
Eurasia	3910.225	4040.797	4158.806	4197.5	
Middle East	5286.231	5539.414	5808.184	6065.3	
Africa	2715.094	2819.461	2972.248	2984.93	
Asia & Oceania	22158.91	23353.17	23940.05	24526.12	
World	79660.39	82407.67	84004.87	84979.39	

Energy Information Administration

Factors Determining Auto Sector CO₂ Emissions

- Travel Demand (2.6 x 10¹² miles/year)
- Fuel Use Rate (51 gallons/1000 miles)
- Fuel Carbon Content (5.3 pounds of carbon/gallon)

Note: FY 2004 US Auto Sector Results Where 314 MMTc Were Emitted

Source: DeCicco et. al., Global Warming on the Road

Amount of CO₂ Emitted Per Gallon

Code of Federal Regulations (40 CFR 600.113): Gasoline carbon content per gallon: 2,421 grams Diesel carbon content per gallon: 2,778 grams

To calculate CO_2 emissions from a gallon of fuel, carbon emissions are multiplied by the ratio of the molecular weight of CO_2 (m.w. 44) to the molecular weight of carbon (m.w.): 44/12.

CO₂ emissions from a gallon of gasoline = 2,421 grams X 0.99 X (44/12)= 8,788 grams = 8.8 kg/gallon = 19.4 pounds/gallon.

CO₂ emissions from a gallon of diesel = 2,778 grams X 0.99 X (44/12)= 10084 grams = 10.1 kg/gallon = 22.2 pounds/gallon.

Conventional Automotive Engine Cycles

4-Stroke Engine Concept

The four-stroke engine was first patented by **Eugenio Barsanti and** Felice Matteucci in 1854. The two-stroke cycle was Patented by Dugald Clerk In 1878.

Idealized Thermo Cycle **4-Stroke SI Engine**

Idealized Thermo Cycle **4-Stroke CI Engine**

P: pressure

 W_{out}

sent upic

v: specific volume

Otto Cycle Pv Diagram, Nicolaus Otto, 1876

Diesel Cycle Pv Diagram, Rudolph Diesel, 1892

Obert, Internal Combustion Engines, 1970 Cycle Pad Design Library

0

W_{in}¢

15 V3

Ideal Otto Cycle

Stoichiometric Combustion of Gasoline with AIR

$$\begin{split} C_8 H_{18} + 12^{\frac{1}{2}} O_2 + 47 N_2 &\to 8CO_2 + 9H_2O + 47N_2 \\ Q_{Arev} &= c_v (T_3 - T_2) \\ Q_{Rrev} &= c_v (T_1 - T_4) \end{split} \qquad \eta_t = \frac{Q_A + Q_R}{Q_A} = 1 - \frac{T_1}{T_2} = 1 - \frac{1}{r_v^{\gamma - 1}} \end{split}$$

Note: r_v is the engine compression ratio

Example: r = 8, Ta = 540°R, Pa = 14.7 psia

$$\eta_t = 1 - \frac{1}{r_v^{\gamma - 1}} = 1 - \frac{1}{8^{0.4}} = 0.565$$
 or 56.5%

Factoring in transmission & drive train overall gas power auto efficiency 17%

Obert, Internal Combustion Engines, 1970

Ideal Diesel Cycle

 $r = 25, \eta_t = 0.264$

A diesel engine takes in just air, compresses it and then injects fuel into the compressed air. The heat of the compressed air lights the fuel spontaneously.

Note1: 147000 BTU/gal of Diesel 125000 BTU/gal of Gasoline

Note2: Diesel is 30 to 35 % more efficient than gas powered vehicles, but strongly dependent on vehicle load.

Obert, Internal Combustion Engines, 1970

Fuel Economy of Gasoline & Diesel

Crown's Diesel Repair Manuel

Note:

Rudoff Diesel Originally Envisioned Running His Engine on Vegetable Oil

Source: From the fryer to the fuel tank By Joshua Tickel, ISBN 0-9707227-0-2, 2003

The Volkswagen Jetta with 1.9 liter turbo direct injection Diesel engine gets 50 mpg on the highway.

Alternate Engine Concepts

Turbine Powered Auto's

1963 Chrysler Turbine

1959 Plymouth Turbine

1964 Chrysler Turbine Car Specifications

- 130 horsepower at 3,600 rpm; 425 lb-ft of torque at zero rpm!
- Weight: 410 lb 25 inches long, 25.5 inches wide, 27.5 inches tall.
- Fuel requirements: diesel, unleaded gas, kerosene, JP-4, others. No adjustments needed to switch from one to the other.
- Compressor: centrifugal, single-stage compressor with 4:1 pressure ratio, 80% efficiency, 2.2 lb/sec air flow.
- First stage turbine: axial, single-stage, 87% efficiency, inlet temperature 1,700 degrees F.
- Second-stage turbine: axial, single-stage, 84% efficiency, max speed 45,700 rpm.
- Exhaust temperature at full power: 500 °F.
- A 400 ⁰F increase in inlet temperature would mean a 40 per cent increase in specific output improve fuel economy over 20 per cent.

Advantages of Automotive Gas Turbines

- Maintenance is considerably reduced
- Engine life-expectancy is much longer
- The number of parts is reduced 80%
- Tuning-up is almost eliminated
- Low-temperature starting difficulties are eliminated
- No warm-up period is necessary
- Antifreeze is not needed
- Instant heat is available in the winter
- The engine will not stall with sudden overloading
- Engine operation is vibration-free
- Operates on wide variety of fuels
- Oil consumption is negligible
- Engine weight is reduced
- Exhaust gases are hot but clean
- Can be used as a gas generator for electric hybrid.

Issues Associated With Gas Turbines

- High fuel consumption at idle due to high RPM.
- Throttle lag from idle as engine spools up.
- High temperature exhaust gas.
- Very high noise source.
- Expensive parts to replace.

Pistonless Rotary Wankel Engine

Wankel Engine in Deutsches Museum in Munich, Germany

Mazada RX-8 Powered by a Wankel Engine

The Good News:

•Wankel has higher power output / unit weight.

- Better fuel/air mixing.
- More even combustion.

The Bad News:

- Rotating seals reduces engine compression ratio.
- Larger fraction of unburned fuel lowers efficiency.
- Excess noise due to rotating seals.

Source: Kevin Reed, Why Wankel Engine is not Famous

Di Pietro Rotary Air Engine

Engineair's Ultra-Efficient Rotary Compressed-Air Motor Applications

EngineAir Motor Prototype Motor Weight: 28.6 Lbs.

Example Products

Note: Each front wheel driven by separate motors

Compressed Air Car

December 2, 2004 French engineers have designed a low consumption and low pollution engine for urban motoring that runs on compressed air technology. The CATS (Compressed Air Technology System) "<u>air car</u>" from Motor Development International is a significant step for zeroemission transport, delivering a compressed air-driven vehicle that is safe, quiet, has a top speed of 110 km/h and a range of 200 km. Costing next to nothing to run, the Zero Emission Vehicle (ZEV) range which includes a pick-up truck and van - is set for release in early 2005.

Compressed Air Concept

Typical Piston Engine

All the weekly for provinciation

By Bob Ewing Posted Fri Jul 13, 2007 8:07am PDT

The world's first commercial compressed air-powered vehicle is rolling towards the production line. The Air Car, developed by ex-Formula One engineer Guy Nègre, will be built by India's largest automaker, Tata Motors.

The Air Car uses compressed air to push its engine's pistons. It is anticipated that approximately 6000 Air Cars will be cruising the streets of India by 2008. If the manufacturers have no surprises up their exhaust pipes the car will be practical and reasonably priced. The CityCat model will clock out at 68 mph with a driving range of 125 miles.

Alternate Fuels

Potential Fuels

Energy Sources	Typical Chemical Energy Densit
Hydrogen	142.0 MJ/kg
Ethanol	29.7 MJ/kg
Ammonia	17.0 MJ/kg
Automotive Gasoline	45.8 MJ/kg
Methane	55.5 MJ/kg
Methanol	22.7 MJ/kg

(Source: Chemical Energy, The Physics Hyper text Book)

Energy Density in Watt-Hour/Liter

Material	Volumetric	Gravimetric
Diesel	10942 Wh/I	13762Wh/kg
Gasoline	9,700 Wh/I	12,200 Wh/kg
LNG	7,216 Wh/I	12,100 Wh/kg
Propane	6,600 Wh/I	13, <mark>900 W</mark> h/kg
Ethanol	6,100 Wh/I	7,850 Wh/kg
Methanol	4,600 Wh/I	6,400 Wh/kg
Liquid H2	2600 Wh/I	39,000 Wh/kg
150 Bar H2	405 Wh/I	39,000 Wh/kg
Lithium	250 Wh/I	350 Wh/kg
Nickel Metal Hydride	100 W·h/L	60Wh/kg
Lead Acid Battery	40 VVh/I	25 Wh/kg
Compressed Air	17 Wh/I	34 Wh/kg

Estimates of Alternate Fuel Vehicles In Use

Year	LPG	CNG	LNG	M85	M100	E85 ^b	E95	Electricity	Hydrogen ^c	Total
1995	172,806	50,218	603	18,319	386	1,527	136	2,860	0	246,855
1996	175,585	60,144	663	20,265	172	4,536	361	3,280	0	265,006
1997	175,679	68,571	813	21,040	172	9,130	347	4,453	0	280,205
1998	177,183	78,782	1,172	19,648	200	12,788	14	5,243	0	295,030
1999	178,610	91,267	1,681	18,964	198	24,604	14	6,964	0	322,302
2000	181,994	100,750	2,090	10,426	0	87,570	4	11,830	0	394,664
2001	185,053	111,851	2,576	7,827	0	100,303	0	17,847	0	425,457
2002	187,680	120,839	2,708	5,873	0	120,951	0	33,047	0	471,098
2003	190,369	114,406	2,640	0	0	179,090	0	47,485	9	533,999
2004	182,864	118,532	2,717	0	0	211,800	0	49,536	43	565,492
2005	173,795	117,699	2,748	0	0	246,363	0	51,398	119	592,122
				Average	e annual per	rcentage cha	nge			
1995-2005	0.1%	8.9%	16.4%	-10.8%	-100%	66.3%	-100%	33.5%		9.1%

Fuel type al	bbrev	viations are used throughout this chapter.
B20	=	20% biodiesel, 80% petroleum diesel
CNG	=	compressed natural gas
E85	=	85% ethanol, 15% gasoline
E95	=	95% ethanol, 5% gasoline
H_2	=	hydrogen
LNG	=	liquified natural gas
LPG	=	liquified petroleum gas
M85	=	85% methanol, 15% gasoline
M100	=	100% methanol

Hydrogen

Issue: Achieve Adequate Stored Energy In An Efficient, Safe and Cost Effective System

Hydrogen Storage Technology	Current Volumetric Storage Density (g H ₂ /L)	Current Gravimetric Storage Density (wt %)	+ of Storage Technology	– of Storage Technology
5000 psi (350 bar)*	~12.5 g H ₂ /L = 1.5 MJ/L	~ 2.7 wt%	Known Technology	H ₂ under pressure, g H ₂ /L, Infrastructure, H ₂ not humidified
10000 psi (700 bar)*	~24.2 g H ₂ /L = 2.9 MJ/L	~ 3.3 wt%	Known Technology	H ₂ under pressure, g H ₂ /L, Infrastructure, H ₂ not humidified
Liquid*	~37.0 g H ₂ /L = 4.4 MJ/L	~ 5.0 wt%	Known Technology	Boil Off, Infrastructure
Solid Metal Hydrides	?	?	?	
Hydrogen on Demand™ NaBH₄ Chemical Hydride	~> 22 g H ₂ /L = > 2.5 MJ/L	> 4.0 wt%	H ₂ is not under pressure, system design, Infrastructure	Regeneration, Fuel Handling Strategy

Gravimetric storage density: the gravimetric storage density is the weight of the hydrogen being stored divided by the weight of the storage and delivery system proposed

Source: Oak Ridge National Laboratory Hydrogen Storage Workshop, May 2003

Compressed Gas

Gaseous Hydrogen Storage

Work required to compress a gas from Baldur Eliasson and Ulf Bossel: W = [n/(n - 1)] Po Vo $[(P_1/Po) (n-1)/n - 1]$

Compressed Gas Cylinders

Carbon fiber wrap/polymer liner tanks are lightweight and commercially available.

<u>weight</u> 6 wt.% 7.5 wt.% 10 wt.% specific energy 7.2 MJ/kg 9.0 MJ/kg 12 MJ/kg

Energy density is the issue:

Pres	sure
350	bar
700	bar

Gas density 2.7 MJ/L 4.7 MJ/L

System density 1.95 MJ/L 3.4 MJ/L

Liquid Storage - Requires Cryogenic Systems

- Equilibrium temperature at 1 bar for liquid hydrogen is ~ 20 K.
- Estimated storage densities¹
 - Berry (1998)4.4 MJ/literDillon (1997)4.2 MJ/literKlos (1998)5.6 MJ/liter
- Issues with this approach are:
 - dormancy.
 - energy cost of liquifaction.

¹ J. Pettersson and O Hjortsberg, KFB-Meddelande 1999:27

High Pressure Cryogenic Tank

Hydrogen Storage - Liquefaction

Hydrogen Delivery Pipelines

Hydrides – Chemically Bond Hydrogen In A Solid Material

- This storage approach should have the highest hydrogen packing density.
- However, the storage media must meet certain requirements:
 - reversible hydrogen uptake/release
 - lightweight with high capacity for hydrogen
 - rapid kinetic properties
 - equilibrium properties (P,T) consistent with near ambient conditions.
- Two solid state approaches
 - hydrogen absorption (bulk hydrogen)
 - hydrogen adsorption (surface hydrogen) including cage structures

Alanates

Total hydrogen content of some alanates

Complex Hydrides

Chemical Hydrides – H₂ Generation by Hydrolysis

Reaction	wt%H ₂	Capacity,
	Yield	kWh/kg
$LiH + H_2O_{\rightarrow} LiOH + H_2$	7.7	1.46
NaH + H ₂ O -> NaOH + H ₂	4.8	0.91
CaH ₂ + 2 H ₂ O _> Ca(OH) ₂ + 2 H ₂	5.2	0.99
$\text{LIAIH}_4 + 4 \text{H}_2\text{O}_{\rightarrow} \text{LIOH} + \text{AI(OH)}_3 + 4 \text{H}_2$	7.3	1.38
$\text{LiBH}_4 + 4 \text{H}_2\text{O}_{->} \text{LiOH} + \text{H}_3\text{BO}_3 + 4 \text{H}_2$	8.6	1.63
$NaAIH_4 + 4 H_2O_{\rightarrow} NaOH + AI(OH)_3 + 4 H_2$	6.4	1.21
$NaBH_4 + 4 H_2O_{\rightarrow} NaOH + H_3BO_3 + 4 H_2$	7.3	1.38

Storage Methods

Hydrogen storage methods

Improvements

Path to Improvement

Improving storage capacity will require improvement in material performance that will also enable a better system design.

- Better advanced storage materials are needed that will have:
 - Lower weight
 - Smaller volume
 - Lower cost
 - Better stability
- Additional material requirements must be met to allow improvement in system-level characteristics:
 - Low energy use for hydrogen liberation
 - Easy and energy efficient "recharging" or recycling
 - Low-temperature and pressure operation
- Achieving the necessary improvements will require:
 - A solid understanding of the fundamentals of hydrogen storage
 - Invention
 - Solid experimentation

US DOE Targets DOE Technical Targets: On-Board Hydrogen Storage

	Units	Target	Status Physical Storage	Status Chemical Storage
Storage Weight Percent	%	6	5.2	3.4
Energy Efficiency	%	97	94	88
Energy Density	W-h/L	1100	800	1300
Specific Energy	W-h/kg	2000	1745	1080
Cost	\$/kW-h	5	50	18
Operating Temperature	°C	-40–50°C	-40–50°C	-20–50°C
Start-Up Time To Full Flow	sec	15	<1	<15
Hydrogen Loss	scc/hr/L	1.0	1.0	1.0
Cycle Life	Cycles	500	>500	20-50
Refueling Time	min	<5	TBD	TBD
Recoverable Usable Amount	%	90	99.7	>90

Flex Fuels

- Flexible fuel vehicles (FFVs) are designed to run on gasoline or a blend of up to 85% ethanol (E85). Except for a few engine and fuel system modifications, they are identical to gasoline-only models.
- FFVs have been produced since the 1980s, and dozens of models are currently available. Since FFVs look just like gasoline-only models, you may have an FFV and not even know it. To determine if your vehicle is an FFV, check the inside of your car's fuel filler door for an identification sticker or consult your owner's manual.
- FFVs experience no loss in performance when operating on E85. However, since a gallon of ethanol contains less energy than a gallon of gasoline, FFVs typically get about 20-30% fewer miles per gallon when fueled with E85.

Ethanol Production

Million Gallons Per Year

Country	2004	2005
U.S.	3,535	4,264
Brazil	3,989	4,227
China	964	1,004
India	462	449
France	219	240
Russia	198	198
South Africa	110	103
U.K.	106	92
Others	1,187	1,573
Total	10,770	12,150

States in US with Ethanol Plants (2006): 21

>1.4 billion bushels of corn used in US for ethanol,
13-16% of US corn crop. Also used 15% of grain
sorghum crop. 18% of corn crop projected by 2010.
10% ethanol blend nationally would require 50% of
current corn crop (5 billion bushels)

9 million metric tons of distillers grains

Source: Bryan M. Jenkins, UC Davis, Clean Tech. Workshop, 1/30/2007.

Ethanol Plant Energy Consumption

Ethanol Plant Water Consumption

It would take 1,215 gallons of water per acre of corn for the conversion process. The

Water use by Ethanol plants, Institute for Agriculture and Trade Policy, Minnesota 2006.

Emission Test Results From Aftermarket Conversions

Vehicle Model	Model Year	Before NO _X	Conversio CO	n (RFG) NMHC	After ONOX	Conversion CO	n (RFG) NMHC	After ONO _X	Conversion CO	(CNG) NMHC
Acclaim	1992	0.23	4.13	0.15	NC	Θ			0	0
Acclaim	1992	0.46	3.52	0.11	NC	•	NC		Θ	Θ
Astro	1992	1.01	2.42	0.48	Θ	NC	NC	$\overline{}$		Θ
Caravan	1992	0.75	1.30	0.23	Θ		•	•		Θ
Caravan	1992	0.53	1.96	0.24	Θ	Θ	NC			Θ
Safari	1993	1.14	4.92	0.46	NC	Θ	NC	Θ	NC	0
Safari	1993	1.20	6.19	0.54	NC	Θ	\bigcirc	Θ	Θ	0
Taurus	1994	0.22	1.08	0.09	•	NC	Θ	•		NC
Taurus	1994	0.17	0.98	0.08	NC	Θ	0			NC

Washington, D.C. CNG Conversion Vehicles - Kit make: GFI

Denver CNG Conversion Vehicles - Kit make: GFI

Vehicle	Model	Before	Conversio	n (RFG)	After	Conversion	n (RFG)	After	Conversion	n (CNG)
Model	Year	NOx	CO	NMHC	NOX	CO	NMHC	NOX	CO	NMHC
B250	1994	2.31	8.66	0.84	NC	NC	NC	$\overline{}$	\bigcirc	0
B250	1994	0.65	2.75	0.16		NC	NC			0
C1500	1994	0.49	2.88	0.17	NC		NC	$\overline{}$		0
C1500	1994	0.61	3.98	0.18	NC	NC	NC			0

Denver LPG Conversion Vehicles - Kit make and model: IMPCO ADP

Vehicle	Model	Before	Conversio	n (RFG)	After	Conversion	n (RFG)	After (Conversion	ı (LPG)
Model	Year	NOX	CO	NMHC	NOX	CO	NMHC	NOX	CO	NMHC
F150 pkup	1994	1.20	0.66	0.09	Θ			NC	0	
F150 pkup	1994	0.88	0.80	0.08	NC			NC	0	
Taurus	1994	0.25	0.80	0.09	NC	0	NC		0	•

Large emissions decrease (>50%)

Source: NREL

Moderate emissions decrease (10%-50%)

NC = No change (i.e., less than 10%)

OEM Dodge RAM B250 Van

Biofuels In Transportation

Combination of biomass gasification (BG) and Fischer-Tropsch (FT) synthesis is a possible route to produce renewable transportation fuels (biofuels).

Fischer-Tropsch Used to Form Alkenes With Either Iron or Cobalt as Catalysts

$$(2n+1)H_2 + nCO \rightarrow C_nH_{(2n+2)} + nH_2O$$

Biofuel Classification

PRODUCTION SIDE, SUPPLY	MAJOR COMMODITIES	USER SIDE, DEMAND EXAMPLES	
Direct Woodfuels		Solid: Fuelwood (wood in the rough chips, sawdust, pellets), Charcoal	
Indirect Woodfuels	WOODFUELS	Liquid: Black liquor, Methanol, Pyrolitic oil	
Recovered Woodfuels		Gases: Products from gasification and pyrolisis gases of above fuels	
Fuel crops		Solid: Straw, Stalks, Husks,	
Agricultural by-products	AGROFUELS	Charcoal from agrofuels Liquid: Ethanol, Raw vegetable oil, Oil diester, Methanol, Pyrolitic oil	
Animal by-products		Gases: Biogas, Producer gas,	
Agroindustrial by-products		Pyrolisis gases from agrofuels	
		Solid: Municipal solid wastes (MSW	
Municipal by-products	MUNICIPAL BY-PRODUCTS	Liquid: Sewage sludge, Pyrolitic oil from MSW	
		Gases: Landfill gas, Sludge gas	

Source: World Energy Book, 2006, Chapter 10

Oil Crop Production

Plant	Latin Name	lb. oil/acre	kg. oil/hectare
oil palm	Elaeis guineensis	4,585	5,000
coconut	Cocos nucifera	2,070	2,260
jatropha	Jatropha curcas	1,460	1,590
rapeseed	Brassica napus	915	1,000
peanut	Arachis hypogaea	815	890
sunflower	Helianthus annuus	720	800
safflower	Carthamus tinctorius	605	655
soybean	Glycine max	345	375
hemp	Cannabis sativa	280	305
corn	Zea mays	135	145

Figures are international averages. Harvests vary with region and sub-species.

Source: From the fryer to the fuel tank by Josha Tickel, ISBN 0-9707227-0-2, 2003

Fuel Crops

Crop	Fuel (GJ/acre)	Protein (kg/acre)
Soybeans	7.7	393
Corn	39	457
Switchgrass	95	400

- Soybeans: 38 wt% protein, 20 wt% oil, 38 bu/acre
- Corn: 10 wt% protein, 2.7 gal/bu, 180 bu/acre
- Switchgrass: 4 wt% protein, 117 gal/ton, 10 ton/acre

Biodiesel Vs. Petroleum Based Diesel

Advantages	Disadvantages
Domestically produced from non-petroleum, renewable resources	Use of blends above B5 not yet warrantied by auto makers
Can be used in most diesel engines, especially newer ones	Lower fuel economy and power (10% lower for B100, 2% for B20)
Less air pollutants (other than nitrogen oxides) and greenhouse gases	Currently more expensive
Biodegradable	More nitrogen oxide emissions
Non-toxic	B100 generally not suitable for use in low temperatures
Safer to handle	Concerns about B100's impact on engine durability

Notes: Diesel Engine is 30-35% More Fuel Efficient Than Similar Sizes Gasoline Engine.

Ultra Low Sulfur Diesel (ULSD) lowers particulates and combats NOx emissions.

All figures cited were originally gathered and reported by www.fueleconomy.gov

Biodiesel vs Diesel Emissions

Source: From the fryer to the fuel tank by Josha Tickel, ISBN 0-9707227-0-2, 2003

Outlook for Biofuels

Dr. Roberto Schaeffer, Climate Change in Brazil, UNDESA, Nov. 2007

Biofuels Supply Costs

Significant production cost reductions are expected especially for 2nd – generation ligno-cellulisic ethanol.

Dr. Roberto Schaeffer, Climate Change in Brazil, UNDESA, Nov. 2007

Production Costs and Prices

Alternate Power Sources

Fuel Cells

Proton exchange membrane fuel cell

Costs:

In 2002, typical cells had a catalyst content of US\$1000 per kilowatt of electric power output. In 2008 UTC Power has 400kw Fuel cells for \$1,000,000 per 400kW installed costs. The goal is to reduce the cost in order to compete with current market technologies including gasoline internal combustion engines.

Honda FCX Clarity

Fuel Cell Electric Vehicle Storage System

Comparative Volumes and Weights of a FCEV Hydrogen Storage System (Capable of 560 km (350 mi) Range – Compact Sedan)

Storage Systems

LH2 Tank Configuration

Hybrids

<u>Hybrid Features:</u>
Regenerative braking
Electric motor drive/assist
Automatic start/shutoff
Great gas mileage

Source: Alternate Fuel Vehicle

Available & Planned Hybrids

Manufacturer	Model	Туре	Available
Chrysler	Aspen HEMI Hybrid	SUV	2008
Dodge	Durango HEMI Hybrid	SUV	2008
Ford	Fusion Hybrid	Midsize Car	2008
Mercury	Milan Hybrid	Midsize Car	2008
Ford	Edge Hybrid	SUV	2008-10
Ford	Five Hundred Hybrid	Large Car	2008-10
Lincoln	MKX Hybrid	SUV	2008-10
Mercury	Montego Hybrid	Large Car	2008-10
Mercedes-Benz	ML450 Hybrid	SUV	2009
Mercedes-Benz	S400 BlueHybrid	Large Car	2009-10
BMW	X6	SUV	2010
Porsche	Cayenne Hybrid	SUV	2010
Honda	Fit Hybrid	Small Station Wagon	2010-15

<u>Three new hybrids for 2009</u> Cadillac Escalade Hybrid Chevrolet Silverado 15 Hybrid GMC Sierra 15 Hybrid

Sources: J.D. Power-LMC; Energy & Environmental Analysis (EEA), Inc.; manufacturer web sites. Updated 9/6/2006.

All Electric Tesla Car

Tesla Motors

http://www.teslamotors.com/ (1 of 2) [4/14/2008 1:26:42 PM]

Well To Wheel Energy Pathways

Source: Eaves & Eaves, A cost comparison of fuel-cell and battery electric vehicles, J. Pwr Sources, 130 (2004) 208-212

Factors Affecting New Airplane Launch Decisions

- Economics International Market Competition
 - Aircraft Cost/Efficiency/Productivity
 - Airport Gate / Runway Productivity
- Additional Constraints
 - Energy Efficiency
 - Emissions
 - Noise
 - Safety

Factors Influencing Airplane Ticket Price 5500 Nautical Mile Stage Length

Aircraft Fuel Cost

Blended Wing Body Concept

Benefits:

- 20-25 % Less Fuel
- 10-15% Less Weight
- 10-15% Lower DOC

Challenges:

- Propulsion/Airframe Integration
- Aero-Structural Integration
- Aerodynamics
- Controls

Subsonic Aircraft Comparison 5500 Nautical Mile Stage Length

Estimated Fuel Economy

