

Molecular Modeling of Nanocomposites

H. Alkhateb, A. Al-Ostaz, A. Cheng and P. R. Mantena

Composite Structures and Nano Engineering Research Group University of Mississippi

Molecular Dynamic Simulation of Nanocomposites and their Constituents

Θ			Nano- Reinforcement						<u>Nano- Matrix</u>					Nano- Composite Interface				Nano- Composites									
		F						AL MAR		and a second		مملحه المعام	and and a							i R	5	R	7				
SI	SWCNT		MWCNT	Graphene			Graphite	Clay (MMT)				e 1				Nylon6,6 - DWNT Nylon6,6				n6,6 - MWNT Polyethylene - SWNT Polyethylene - S			WNT	NNT Vinyl Ester - xGnP Vinyl Ester - GnP			
	En Const	ıg. tants	SWCNT	MWCNT	Graphene	Graphite	ММТ	1 11	Vinyl Ester	Polyurethan	e Nylon6,	,6 Po	yurea	Polyethylene		Eng. Constants	5%	10%	20%	Eng. Constants				Eng.	GnP Gn	1P xGnP	xGnP
	E11 (6	GPa)		690		461.4	354	A Cal	Eng. Constants	Vinylester	Polyurethane	Nylon6,6	Polyurea	Polyethylene		E ₁₁ (GPa)	5.5	13.6	73.5	E ₁₁ (GPa)	92.18	Eng. Constants		Constants			
	E,, (G	GPa)	23.2	27.5		31.7	84.1		E ₁₁ (GPa)	3.7	5.5	3.4	5.5	1.2		E ₂₂ (GPa)	5	9.6	40.6	E ₂₂ (GPa)	2.31			E ₁₁ (GPa)	81.8 16	.3 17.4	140.6
	v., (G	GPa)	0.16	0.33	0.30	0.012	0.23	12 B 2 B	v ₁₂ (GPa)	0.31	0.32	0.37	0.29	.37	F of sub-units of SWCNT pathod out of the matrix.	v ₁₂ (GPa)	0.32	0.31	-	v ₁₂ (GPa)	0.33	E ₁₁ (GPa)	24.62	v ₁₂ (GPa)		0.05	0.03
	G ₂₃ (0	GPa)	7.6	8.6	340.5	216	198.4	POSS	G ₂₃ (GPa)	1.41	2.1	3.6	4.4	.45	Polyethylene – SWCNT Interface	G ₂₃ (GPa)	1.8	6.3	8.6	G ₂₃ (GPa)	0.97		0.26	G ₂₃ (GPa)	27.9 56	.4 41.8	49.4
	K ₂₃ (G	GPa)	24.6 57.6		624.1 248.6	248.6	267.6		K ₂₃ (GPa)	3.37	3.6	1.6	2.1	1.73		K ₂₃ (GPa)	5.3	10.5	18	K ₂₃ (GPa)	13.55	V ₁₂ (GPa)	0.36	K ₂₃ (GPa)	77 13	9.7 94.1	124.4

Parametric Evaluation of Multiwalled Carbon Nanotubes (MWCNT) MD

Acknowledgment

This work was partially supported by the funding received under a subcontract from the Department of Homeland Security - sponsored Southeast Region Research Initiative (SERRI) at the Department of Energy's Oak Ridge National Laboratory, USA. Authors wish to acknowledge the partial support for this research by ONR Grant # N00014-07-1-1010. Office of Naval Research, Solid Mechanics Program (Dr. Yapa D.S. Rajapakse, Program Manager)