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Abstract. We prove a nontrivial estimate for the size of the least rational

prime that splits completely in the ring of integers of certain families of non-
abelian Galois number fields. Our result complements results of Linnik and

Vinogradov and of Pollack who studied this problem in the quadratic and

abelian number field settings, respectively.

1. Introduction

One of the classical problems in number theory is to study the distribution of
quadratic residues and non-residues modulo a prime p. I. M. Vinogradov conjec-
tured that the least quadratic non-residue modulo p is Oε(p

ε) for any ε > 0. Recall
that the least quadratic non-residue (mod p) is always a prime. Analogously, Vino-
gradov conjectured that the least prime quadratic residue modulo p is Oε(p

ε) as
well. Neither of these conjectures has been established.

In this paper we study a generalization of the second problem, bounding the
least prime quadratic residue modulo p. The Pólya-Vinogradov inequality and
Siegel’s theorem for exceptional zeros of Dirichlet L-functions imply that the least
prime quadratic residue (mod p) is Oε(p

1/2+ε) for any ε > 0. Yu. V. Linnik and
A. I. Vinogradov [22] improved this estimate to Oε(p

1/4+ε) using Burgess’s esti-
mates for character sums in place of the Pólya-Vinogradov inequality. Due to the
use of Siegel’s theorem, the implied constant in this estimate is ineffective. Pintz
[14] later developed an elementary proof of the same bound using similar tools.

Since the least prime quadratic residue modulo an odd prime p is the smallest
prime that splits completely in a quadratic number field with a discriminant of ei-
ther p or 4p (depending on the residue class of p modulo 4), this problem generalizes
to number fields. Let K be a Galois extension of Q with discriminant DK and ring
of integers OK . We aim to bound the least rational prime that splits completely in
OK , denoted henceforth as qK , in terms of |DK |. As we show below, there is always
a bound of the form qK � |DK |1/2+ε with an implied constant depending on ε and
the degree [K : Q] of K over Q. We refer to this as the trivial bound for this prob-
lem. For abelian extensions K over Q, Pollack [15] recently proved the nontrivial
estimate that qK �[K:Q],ε |DK |1/4+ε (see also [16]). This generalizes Linnik and
Vinogradov’s estimate for the quadratic extensions of Q and the proof uses similar
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methods. Pollack’s proof relies on essentially three ingredients: the factorization
of the Dedekind zeta-function ζK(s) into Dirichlet L-functions, Burgess’s estimates
for character sums, and Siegel’s theorem for exceptional zeros.

In this note, for certain nonabelian Galois extensions K over Q, we prove non-
trivial estimates for the size of the least prime that splits completely in OK . The
methods in [22] and [15], mentioned above, do not immediately generalize to this
setting. There is a generalization of Siegel’s theorem for exceptional zeros known
as the Brauer-Siegel theorem [2]. However, when a Galois extension K/Q is non-
abelian, the Dedekind zeta-function ζK(s) does not factor into a product of Dirichlet
L-functions and so we cannot use Burgess’s estimates for character sums to esti-
mate coefficients of ζK(s). In place of Burgess’s estimates, we invoke subconvexity
estimates for ζK(s) in the discriminant aspect. Such estimates are known when
ζK(s) can be expressed in terms of product of automorphic L-functions for which
level-aspect subconvexity bounds have been established. We give some examples of
families of nonabelian number fields for which this is the case in the next section.
To keep things slightly more general, we state our main theorem in terms of the
following subconvexity hypothesis.

Hypothesis 1. Let K be a number field of fixed degree m. There exist constants
ϑ,A ≥ 0 (depending at most on m) such that for Re(s) = 1/2, we have

(1.1) ζK(s)�m |s|A|DK |1/4−ϑ.

This hypothesis is stated by Einsiedler, Lindenstrauss, Michel, and Venkatesh in
[6] where examples of families of number fields satisfying Hypothesis 1 are listed.
In particular, they note that by results in [1, 3, 4, 7, 8, 11, 21] this hypothesis holds
when K/Q is contained in a ring class field of an arbitrary quadratic extension of
an arbitrary but fixed ground field F .

Assuming this Hypothesis 1, we prove the following theorem.

Theorem 1. Let K/Q be a Galois extension of degree m, and let qK denote the
least prime that splits completely in OK . Assuming Hypothesis 1, we have

(1.2) qK � |DK |1/2−2ϑ+ε

for any ε > 0. Here the implied constant depends at most on ε and m.

The Phragmén-Lindelöf convexity principle implies that Hypothesis 1 always
holds with ϑ = 0. Therefore Theorem 1 implies that qK �ε,m |DK |1/2+ε. As
mentioned above, we refer to this as the trivial bound for the least rational prime
that splits completely in OK . The generalized Lindelöf hypothesis (GLH) implies
that Hypothesis 1 holds with ϑ = 1/4. Therefore, assuming GLH, Theorem 1
implies that qK �ε,m |DK |ε for any ε > 0. This is the number field analogue of
Vinogradov’s conjecture for the least prime quadratic residue.

For abelian extensions K/Q, the generalized Burgess method for estimating
Dirichlet L-functions (e.g. [7, 8]) implies that ϑ = 3/8 is admissible in Hypothesis
1 and hence, via Theorem 1, that qK �ε,m |DK |3/8+ε. Analogously, the stronger
subconvexity estimate of Conrey and Iwaniec [4] for quadratic Dirichlet L-functions
implies that qK �ε,m |DK |1/3+ε for multiquadratic extensions K/Q. While these
estimates are nontrivial, they are weaker than the results of Vinogradov and Linnik
[22] and of Pollack [15]. In the next section, we use Theorem 1 to give examples of
nonabelian Galois number fields where the results in [22] and [15] do not apply.
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If a Galois number field K/Q has a quadratic subfield, then the implied constant
in Theorem 1 is ineffective (due to the application of the Brauer-Siegel Theorem).
This is true even for the trivial bound qK �ε |DK |1/2+ε for any ε > 0. Using
classical work of Stark [18] and more recent work of Soundararajan [17], our proof
of Theorem 1 can be modified to give the following effective estimate for qK for a
large class of number fields.

Theorem 2. Let K be a solvable Galois number field of degree m over Q with no
quadratic subfield. Then

qK �ε,m |DK |1/2(log |DK |)ε

for any ε > 0 where the implied constant is effectively computable.

It would be equally natural to ask for bounds on the least prime that does not
split completely in a number field K. This problem, which is a generalization of
the classical problem of bounding the least quadratic non-residue, is of a somewhat
different nature than the one discussed in this paper and has been investigated by
Murty [12], Vaaler and Voloch [20], Li [9], Murty and Patankar [13], and Zaman
[23]. As an example of what is known, Li shows in [9] that for an arbitrary number
field K (not necessarily Galois over Q) of degree m, there is a nonsplit prime
�ε |DK |1/(4(m−1))+ε for any ε > 0 when m is sufficiently large; more precisely, it
is shown that there is a nonsplit prime

�ε |DK |(1+ε)/(4Am(m−1)),

where Am ≥ 1−
√

2 (m− 1)−1/2. As a corollary of a more general result, this more
precise bound was recently improved slightly by Zaman in [23]. The Brauer-Siegel
Theorem is not needed in this setting, so the estimates in [9] and [23] are effective.

2. Examples

In this section, we exhibit explicit examples of families of nonabelian Galois
extensions K/Q for which nontrivial estimates for the size of the least prime that
splits completely in OK can be established using Theorem 1 and the following
subconvexity estimates.

Lemma 1. Let L(s, ρ) be an Artin L-function of degree two over Q not of icosa-
hedral type with conductor D such that the determinant character χ is primitive
modulo D. Then, for Re(s) = 1/2, we have

L(s, ρ)� |s|A|D|1/4−1/1889+ε

for any ε > 0 where A is an absolute constant.

Proof. This is due to Blomer, Harcos, and Michel [1] improving upon the earlier
work of Duke, Friedlander, and Iwaniec [5]. �

Lemma 2. Let χ be a primitive Dirichlet character modulo D. Then, for Re(s) =
1/2, we have

L(s, χ)� |s|A|D|η+ε,
for any ε > 0 where A is an absolute constant, η = 1/6 if χ is quadratic, and
η = 3/16 otherwise.



4 Z. GE, M. B. MILINOVICH, AND P. POLLACK

Proof. The case for quadratic Dirichlet L-functions is due to Conrey and Iwaniec
[4], while the result for general characters is due to Heath-Brown [7, 8] extending
work of Burgess [3]. �

Example 1. Let K/Q be a degree 2n Galois extension whose Galois group is
isomorphic to the dihedral group Dn, the group of symmetries of the regular n-gon.
Then we have that

(2.1) qK �n,ε |DK |1/2−2/1889+ε

for any ε > 0 where the implied constant is ineffective.

When n is odd, the dihedral group Dn has 2 degree one irreducible charac-
ters, denoted χ0 and χ1, and (n− 1)/2 degree two irreducible characters, denoted
ψ1, ψ2, . . . , ψn−1

2
. Hence the induced character for K over Q can be decomposed as

χ0 + χ1 + 2ψ1 + 2ψ2 + · · ·+ 2ψn−1
2
.

From this decomposition, it follows that

(2.2) ζK(s) = ζ(s)L (s, χ1)

(n−1)/2∏
j=1

L (s, ψj)
2

where ζ(s) is the Riemann zeta-function, L(s, χ1) is a quadratic Dirichlet L-function,
and the L(s, ψj) for 1 ≤ j ≤ (n− 1)/2 are degree two Artin L-functions over Q of
dihedral type.

When n is even, the dihedral group Dn has 4 degree one irreducible characters,
denoted χ0, χ1, χ2, and χ3, and (n − 2)/2 degree two irreducible characters, de-
noted ψ1, ψ2, . . . , ψn−2

2
. In this case, the induced character for K over Q can be

decomposed as

χ0 + χ1 + χ2 + χ3 + 2ψ1 + 2ψ2 + · · ·+ 2ψn−2
2

and we have

ζK(s) = ζ(s)L (s, χ1)L (s, χ2)L (s, χ3)

(n−2)/2∏
j=1

L (s, ψj)
2

where the L(s, χi) for i = 1, 2, 3 are quadratic Dirichlet L-functions and the L(s, ψj)
for 1 ≤ j ≤ (n− 2)/2 are degree two Artin L-functions over Q of dihedral type.

We now apply the above subconvexity estimates to both cases simultaneously.
Let Dχi denote the conductor of each Dirichlet L-function L(s, χi) and let Dψj

denote the conductor of each Artin L-function L(s, ψj). Then, by Lemma 1 and
Lemma 2, we have

ζK(s)� |s|A
∏

i

|Dχi |
∏
j

|Dψj |2
1/4−1/1889+ε

� |s|A |DK |1/4−1/1889+ε

for Re(s) = 1/2 and ε > 0 arbitrary by the Führerdiskriminantenproduktformel
(conductor–discriminant formula). Hence Hypothesis 1 holds with ϑ = 1/1889− ε
and therefore the estimate in (2.1) follows from Theorem 1.
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Example 1 is a special case of generalized dihedral (Galois) extensions of Q. We
say a group G of order 2n is a finite generalized dihedral group if G = Ao (Z/2Z)
where A is a finite abelian group and Z/2Z acts on A by τaτ = a−1 for any a ∈ A
where τ is the generator of Z/2Z. By classical representation theory, if s denotes
the number of squares in A, then there are 2n/s one dimensional representations
χi of G and (n − n/s)/2 inequivalent two-dimensional irreducible representations
ρj of G. This accounts for all irreducible representations of G.

Now if a Galois extension K over Q with [K : Q] = 2n has Gal(K/Q) ∼= G, then

ζK(s) = ζ(s)

2n/s−1∏
i=1

L(s, χi)

(n−n/s)/2∏
j=1

L(s, ρj)
2

where the L(s, χi) are Dirichlet L-functions and the L(s, ρj) are degree two Artin
L-functions over Q of dihedral type (as can be seen by considering intermediate
dihedral fields between K and Q). Again applying Lemma 1 and Lemma 2 as in
Example 1, we are led to the following conclusion.

Example 2. Let K/Q be a generalized dihedral Galois extension of Q. Then we
have that

qK �ε |DK |1/2−2/1889+ε

for any ε > 0, where the implied constant is ineffective.

Quaternion octic extensions of Q are an example of a family of Galois number
fields that are not generalized dihedral Galois extensions of Q.

Example 3. Let K/Q be a (Galois) quaternion octic number field. Then for any
ε > 0 we have

(2.3) qK �ε |DK |1/2−2/1889+ε,

where the implicit constant is ineffective.

As in the previous examples, we need only verify Hypothesis 1 for the Dedekind
zeta-function ζK(s). In this case, we have

(2.4) ζK(s) = ζ(s)L (s, χ1)L (s, χ2)L (s, χ3)L (s, ψ)
2
,

where L(s, χi) for i = 1, 2, 3 are quadratic Dirichlet L-functions and L(s, ψ) is a
degree two Artin L-function over Q of dihedral type. For details, see [10, Section 1].
Again, applying Lemma 1 and Lemma 2 to each L-function, we obtain the desired
result from the conductor–discriminant formula.

The estimates in Examples 1 and 2 can be improved when the degree [K : Q]
is large enough using explicit bounds for the least prime ideal in the Chebotarev
density theorem. For instance, if K is a degree 2n dihedral Galois extension of Q,
then we can use the recent work of Thorner and Zaman [19, Theorem 1.1] to deduce
an estimate of the form

(2.5) qK � |DK |173/n+521/ϕ(n)

where ϕ(n) is the Euler ϕ-function. Their theorem is more precise and we have
used a number of inequalities to deduce this slightly weaker estimate for qK . If
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we assume n is prime, then the effective bound in (2.5) is better than (2.1) when
n ≥ 1399. If n is composite, using explicit lower bounds for ϕ(n), we can show that
(2.5) is stronger than the bound in Example 1 when n ≥ 5814. On the other hand,
we can show that if [K : Q] ≤ 2088, then it is always better to use the bounds in
Examples 1 or 2 than the actual version [19, Theorem 1.1]. We have not tried to
optimize all of these values.

3. Lemmas

In this section, we establish some lemmas that are used to prove Theorem 1.

Lemma 3. Let D be a positive integer and D∞ = {n ∈ N : p | n implies p | D}
for primes p. Then, for any ε > 0, we have

(3.1)
∑
n∈D∞

1√
n
�ε D

ε.

Proof. Since every n ∈ D∞ is a product of the prime divisors of D, it follows that

(3.2)
∑
n∈D∞

1√
n

=
∏
p|D

(
1− 1
√
p

)−1
=
∏
p|D

(
1 +

1
√
p− 1

)
≤
(

1 +
1√

2− 1

)ω(D)

.

Here, as usual, ω(D) denotes the number of distinct prime divisors of D. Since
ω(D)� logD/ log logD, the result follows. �

Lemma 4. Let K/Q be a Galois extension of degree m and let ζK(s) denote the
corresponding Dedekind zeta-function. For Re(s) > 1, write

(3.3) ζK(s) =

∞∑
n=1

r
K
(n)

ns
.

Then

(3.4)
∑
n<qK

r
K
(n)� q

1/2+ε
K |DK |ε

for any ε > 0, where the implied constant depends only on ε and m.

Proof. Since K/Q is a Galois extension, we have

pOK = (p1 · · · pg)e

for every rational prime p where g · e · f = m and f is the relative degree of each
of the prime ideals pi over p. A prime p splits completely if and only if g = m and
f = e = 1. Hence any rational prime p that does not split completely in OK must
fall into one the following cases:

(i) p is ramified with e ≥ 2 and p | DK ;
(ii) e = 1 and f ≥ 2.

Recalling that qK is the least prime that splits completely in OK , we see that every
prime p less than qK falls into either case (i) or (ii). Since the primes in case (i) and
case (ii) are disjoint, every positive integer n less than qK has a unique factorization
n = uv, where u is a product of primes in case (ii) and v is a product of primes in
case (i). Clearly v ∈ |DK |∞. We claim that u is power-full whenever r

K
(n) 6= 0.1 To

see this, first notice that r
K
(·) is multiplicative, being the coefficients in a Dirichlet

1We say an integer n is power-full or square-full if p | n implies that p2 | n for any prime p.
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series with an Euler product. If p is a prime of type (ii), then r
K
(p) = 0, since

f ≥ 2. So if p ‖ n where p is of type (ii), then r
K
(n) = 0. Hence, if r

K
(n) 6= 0, then

u is power-full.
Using the factorization n = uv described above, we have∑

n<qK

r
K
(n) ≤

∑
v<qK

v∈|DK |∞

r
K
(v)

∑
u<qK/v

u power-full

r
K
(u).

Since the number of power-full integers less than x is O(x1/2) and the coefficients
r
K
(n)�ε n

ε for any ε > 0, it follows from Lemma 3 that

∑
n<qK

r
K
(n)�ε q

1/2+ε
K

∑
v<qK

v∈|DK |∞

v−1/2 �ε q
1/2+ε
K |DK |ε.

This completes the proof of the lemma. �

Lemma 5. Let K/Q be a finite extension of degree m (not necessarily Galois).
Then, assuming Hypothesis 1, we have

(3.5)

∞∑
n=1

r
K
(n) e−n/x = xRes

s=1
ζK(s) +Om

(√
x |DK |1/4−ϑ

)
.

Proof. Using the inverse Mellin transform identity

(3.6) e−y =
1

2πi

∫ c+i∞

c−i∞
Γ(s) y−s ds

which is valid for c > 0 and y > 0, we deduce that

(3.7)

∞∑
n=1

r
K
(n) e−n/x =

∞∑
n=1

r
K
(n)

{
1

2πi

∫ 2+i∞

2−i∞
Γ(s)

(x
n

)s
ds

}

=
1

2πi

∫ 2+i∞

2−i∞

∞∑
n=1

r
K
(n)

ns
Γ(s)xs ds

=
1

2πi

∫ 2+i∞

2−i∞
ζK(s) Γ(s)xs ds

for any x > 0. Here the interchange of summation and integration is justified by
the absolute convergence of the series in (3.3) when Re(s) = 2. Next, we shift the
line of integration in the third integral on the right-hand side left from Re(s) = 2
to Re(s) = 1/2. (To justify the contour shift, we use that ζK(s) is polynomially
bounded in the vertical strip 1/2 ≤ σ ≤ 2, while |Γ(σ+ it)| decays exponentially in
t there.) In doing so, we pass over the simple pole of ζK(s) at s = 1 and no other
singularities of the integrand. Since

Res
s=1

(
ζK(s) Γ(s)xs

)
= xRes

s=1
ζK(s),

we deduce that

(3.8)

∞∑
n=1

r
K
(n) e−n/x = xRes

s=1
ζK(s) +

1

2πi

∫ 1
2+i∞

1
2−i∞

ζK(s) Γ(s)xs ds.
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Stirling’s formula for the gamma function and Hypothesis 1 imply that the integral
on the right-hand side is

�m

√
x |DK |1/4−ϑ

∫ ∞
−∞

(1+|t|)A
∣∣Γ( 1

2 +it)
∣∣dt �m

√
x |DK |1/4−ϑ.

Inserting this estimate into (3.8), the lemma follows. �

4. Proof of Theorem 1

We may suppose that |DK | is sufficiently large in terms of ε, since otherwise
there are only finitely many fields K in question, and the estimate of Theorem 1
is trivial. We prove Theorem 1 by contrasting the fact that the algebraic estimate
in Lemma 4 indicates that the sum

∑
n<qK

r
K
(n) is small while the combination of

the Brauer-Siegel theorem and the analytic estimate in Lemma 5 tell us that this
sum must be large if qK is sufficiently large in terms of |DK |.

Fix ε > 0. Lemma 4 states that

(4.1)
∑
n<qK

r
K
(n)� q

1/2+ε
K |DK |ε.

On the other hand, by Lemma 5, we have∑
n≤x log x

r
K
(n) ≥

∞∑
n=1

r
K
(n) e−n/x +O

(
(x log x)ε

)
≥ xRes

s=1
ζK(s) +Om

(√
x |DK |1/4−ϑ

)
.

(4.2)

Here we bounded the tail of the infinite sum as follows:∑
n>x log x

r
K
(n) e−n/x �

∑
n>x log x

nε e−n/x � (x log x)ε.

(To see the last estimate, put n into intervals (x log x+ jx, x log x+ (j + 1)x], and
note that the contribution from the jth interval is � ((x log x)ε + jεxε)e−j .) We
now argue that (4.1) and (4.2) are incompatible if qK ≥ |DK |1/2−2ϑ+3ε. Since the
Brauer-Siegel theorem [2] states that

(4.3) Res
s=1

ζK(s)� |DK |−ε,

by choosing x with qK = x log x it follows from (4.2) that

(4.4)
∑
n≤qK

r
K
(n)� qK

log qK
|DK |−ε

if qK ≥ |DK |1/2−2ϑ+3ε. Hence, if qK ≥ |DK |1/2−2ϑ+3ε, by combining (4.1) and
(4.4) we see that

qK
log qK

|DK |−ε �
∑
n≤qK

r
K
(n)� q

1/2+ε
K |DK |ε,

which is not possible if |DK | is sufficiently large. Therefore it must be the case that
qK � |DK |1/2−2ϑ+3ε. Theorem 1 now follows by replacing 3ε with ε.
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5. Proof of Theorem 2

In this section, we indicate what changes need to be made to our proof of The-
orem 1 in order to prove Theorem 2.

Sketch of the Proof. In place of Hypothesis 1, we use the very general weak sub-
convexity result of Soundararajan [17] which, for Galois extensions of Q, implies
that

ζK(s)�m,ε |s|m/4
|DK |1/4

(log |DK |)1−ε
for Re(s) = 1/2 and any ε > 0.2 Using this estimate in the proof of Lemma 5, we
deduce that

(5.1)

∞∑
n=1

r
K
(n) e−n/x = xRes

s=1
ζK(s) +Om,ε

(√
x

|DK |1/4

(log |DK |)1−ε

)
.

If K/Q is a solvable Galois number field with no quadratic subfield, then Stark [18]
proved an effective version of the Brauer-Siegel Theorem which states that

(5.2) Res
s=1

ζK(s)� 1

log |DK |
where the implied constant is effectively computable. Theorem 2 now follows by
using (5.1) and (5.2) in place of Lemma 4 and (4.3) in the proof of Theorem 1. �
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Études Sci., 111 (2010), 171–271.

12. V. K. Murty, The least prime which does not split completely, Forum Math., 6 (1994), no. 5,
555–565.

13. V. K. Murty and V. M. Patankar, Tate cycles on Abelian varieties with complex multipli-
cation, Canad. J. Math., 67 (2015), no. 1, 198–213.

14. J. Pintz, Elementary methods in the theory of L-functions. VI. On the least prime quadratic

residue (mod p), Acta Arith., 32(2) (1977), 173–178.
15. P. Pollack, The smallest prime that splits completely in an abelian number field,

Proc. Amer. Math. Soc., 142(6) (2014), 1925–1934.

16. , Prime splitting in abelian number fields and linear combinations of Dirichlet char-
acters, Int. J. Number Theory, 10(4) (2014), 885–903.

17. K. Soundararajan, Weak subconvexity for central values of L-functions, Ann. of Math. (2),

172 (2010), no. 2, 1469–1498.
18. H. M. Stark, Some effective cases of the Brauer-Siegel theorem, Invent. Math., 23 (1974),

135–152.

19. J. Thorner and A. Zaman, An explicit bound for the least prime ideal in the Chebotarev
density theorem, Algebra Number Theory, 11 (2017), no. 5, 1135–1197.

20. J. D. Vaaler and J. F. Voloch, The least nonsplit prime in Galois extensions of Q, J. Num-

ber Theory, 85 (2000), no. 2, 320–335.
21. A. Venkatesh, Sparse equidistribution problems, period bounds and subconvexity, Ann. of

Math. (2), 172 (2010), 989–1094.
22. A. I. Vinogradov and Ju. V. Linnik, Hypoelliptic curves and the least prime quadratic

residue, Dokl. Akad. Nauk SSSR., 168 (1966), 258–261.

23. A. Zaman, The least unramified prime which does not split completely, Forum. Math., to
appear.

Department of Mathematics, University of Mississippi, University, MS 38677, USA

E-mail address: zge@olemiss.edu

E-mail address: mbmilino@olemiss.edu

Department of Mathematics, University of Georgia, Athens, GA 30602, USA

E-mail address: pollack@uga.edu


