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Abstract. Assuming the generalized Riemann hypothesis, we prove upper bounds for moments of arbi-

trary products of automorphic L-functions and for Dedekind zeta-functions of Galois number fields on the

critical line. As an application, we use these bounds to estimate the variance of the coefficients of these

zeta and L-functions in short intervals. We also prove upper bounds for moments of products of central

values of automorphic L-functions twisted by quadratic Dirichlet characters and averaged over fundamental

discriminants.

1. Introduction

An important problem in analytic number theory is to understand the behavior of L-functions on the

critical line and at the central point. The Langlands program predicts that the most general L-functions are

attached to automorphic representations of GL(n) over a number field and further conjectures that these

L-functions should be expressible as products of the Riemann zeta-function and L-functions attached to

cuspidal automorphic representations of GL(m) over the rationals. In this paper, we investigate the moments

of such products on the critical line. We also prove estimates for moments of Dedekind zeta-functions, ζK(s),

of Galois extensions K over Q. In general, unless Gal(K/Q) is solvable, it is not known that ζK(s) can be

written as a product of automorphic L-functions (though the Langlands reciprocity conjecture predicts that

this is the case).

An L-function is called primitive if it does not factor as a product of L-functions of smaller degree. Given

a primitive L-function, L(s, π), normalized so that <(s) = 1/2 is the critical line, it has been conjectured

that there exist constants C(k, π) such that

(1.1)

∫ T

0

|L( 1
2 +it, π)|2k dt ∼ C(k, π)T (log T )k

2

for any k > 0 as T →∞, see [11]. The case L(s, π) = ζ(s), the Riemann zeta-function, has received the most

attention. In addition to [11], see [12, 15, 23]. The conjecture in (1.1) has only been established in a few

cases and only for small values of k. For degree one L-functions, the Riemann zeta-function and Dirichlet

L-functions, the conjecture is known to hold when k is 1 or 2. For degree two L-functions, many cases of

the conjecture have been established when k = 1. See, for instance, results of Good [16] and Zhang [47, 48].

For higher degree L-functions, and for higher values of k, the conjecture seems to be beyond the scope of

current techniques.

It is expected that the values of distinct primitive L-functions on the critical line are uncorrelated. There-

fore, given r distinct primitive L-functions, L(s, π1), . . . , L(s, πr), normalized so that <(s) = 1/2 is the
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critical line, one might conjecture that for any k1, . . . , kr > 0 we have

(1.2)

∫ T

0

|L( 1
2 +it, π1)|2k1 · · · |L( 1

2 +it, πr)|2kr dt ∼ C(~k, ~π)T (log T )k
2
1+···k2r

for some constant C(~k, ~π) as T → ∞ where ~k = (k1, . . . , kr) and ~π = (π1, . . . , πr). In the case where

k1, . . . , kr are natural numbers, Heap [18] has recently modified the approaches in [15] and [11] and made a

precise conjecture for the constants C(~k, ~π). Using classical methods, the asymptotic formula in (1.2) can be

established for products of two Dirichlet L-functions in the case when k1 = k2 = 1, L(s, π1) = L(s, χ1), and

L(s, π2) = L(s, χ2) where χ1 and χ2 are distinct primitive Dirichlet characters. It seems that there are no

other cases where the asymptotic formula in (1.2) has been established. The conjectural order of magnitude

of the moments in (1.2) is consistent with the observation that the logarithms of distinct primitive L-functions

on the critical line, logL( 1
2 + it, π1) and logL( 1

2 + it, π2), are (essentially) statistically independent if π1 6∼= π2

as t varies under the assumption of Selberg’s orthogonality conjectures1 for the Dirichlet series coefficients

of L(s, π1) and L(s, π2). This statistical independence can be made precise; see, for instance, the work of

Bombieri and Hejhal [4] and Selberg [42].

1.1. Moments of automorphic L-functions. In this paper, in support of the conjecture in (1.2), we

prove the following mean-value estimate for arbitrary products of primitive automorphic L-functions.

Theorem 1.1. Let L(s, π1), . . . , L(s, πr) be L-functions attached to distinct irreducible cuspidal automorphic

representations, πj, of GL(mj) over Q each with unitary central character, and assume that these L-functions

satisfy the generalized Riemann hypothesis. Then, if max
1≤j≤r

mj ≤ 4, we have

(1.3)

∫ T

0

|L( 1
2 +it, π1)|2k1 · · · |L( 1

2 +it, πr)|2kr dt� T (log T )k
2
1+···+k2r+ε

for any k1, . . . , kr > 0 and every ε > 0 when T is sufficiently large. The implied constant in (1.3) depends

on π1, . . . , πr, k1, . . . , kr, and ε. If max
1≤j≤r

mj ≥ 5, then the inequality in (1.3) holds under the additional

assumption of Hypothesis H described in §2.

Some of the standard properties of the L-functions described in Theorem 1.1 are reviewed in §2. Observe

that the upper bound in Theorem 1.1 is nearly as sharp as the conjectured asymptotic formula in (1.2).

Moreover, note that we do not assume that the L-functions in Theorem 1.1 satisfy the Ramanujan-Petersson

conjecture. Instead, we assume Hypothesis H of Rudnick and Sarnak [40]. This mild (but unproven)

conjecture is implied by the Ramanujan-Petersson conjecture and is known to hold for L-functions attached

to irreducible cuspidal automorphic representations on GL(m) over Q if m ≤ 4.

Our proof of the Theorem 1.1 builds upon techniques of Soundararajan [43] and is inspired by the work

of Chandee [8]. Corollary A of [43] states that for the Riemann zeta-function the inequality

T (log T )k
2

�k

∫ T

0

|ζ( 1
2 +it)|2k dt�k,ε T (log T )k

2+ε

holds for any k > 0 and every ε > 0 assuming the Riemann hypothesis. The upper bound is due to

Soundararajan, and the lower bound is due to Ramachandra [38]. In the case r = 1, combining the result of

1For automorphic L-functions, we state Selberg’s orthogonality conjectures in §2.
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Theorem 1.1 with the work of Pi [37], we deduce that

(1.4) T (log T )k
2

�k,π

∫ T

0

|L( 1
2 +it, π)|2k dt�π,k,ε T (log T )k

2+ε

for any k > 0 and every ε > 0 where π is a self-contragredient irreducible cuspidal automorphic representa-

tions of GL(m) over Q under the assumptions of the generalized Riemann hypothesis and the Ramanujan-

Petersson conjecture for L(s, π). As mentioned above, the upper bound holds under weaker assumptions

and for more general L-functions. We may let L(s, π1) = ζ(s) in the proof of Theorem 1.1, so our theorem

generalizes Soundararajan’s result. As is the case in [43], it is possible to replace the ε in Theorem 1.1 by

a quantity which is O(1/ log log log T ); see Ivić [19]. Moreover, an analogue of Theorem 1.1 for products of

derivatives of L-functions can be proved using the techniques in [31] or [32].

There are a couple of aspects which make the proof of Theorem 1.1 different than the proof of the

analogous result for the Riemann zeta-function. First of all, we need to understand the correlations of the

coefficients of distinct L-functions averaged over the primes. Secondly, we need to handle the contribution

of these coefficients at the prime powers. In [43], assuming the Riemann hypothesis, an inequality for the

real part of the logarithm of the Riemann zeta-function is derived which depends only on the primes. In

the case of ζ(s), one can handle the contribution of the primes powers relatively easily. If we were willing

to assume the Ramanujan-Petersson conjecture and the generalized Riemann hypothesis for the symmetric

square L-functions, then we could similarly derive an inequality involving only the primes for the real part

of the logarithms of the L-functions in Theorem 1.1. In order to circumvent these additional assumptions,

we must estimate the contribution from the prime powers in a different way. To this end, we use a partial

result toward the Ramanujan-Petersson conjecture for automorphic L-functions due to Luo, Rudnick, and

Sarnak [30] and also Hypothesis H (mentioned above) which is known to hold for automorphic L-functions

of small degree. Ideas similar to these were used for degree two L-functions in [33].

Finally we remark that, assuming the generalized Riemann hypothesis and the Ramanujan-Petersson

conjecture, Pi [37] has shown that the integral in (1.4) is � T (log T )k
2

if π is self-contragredient for any

fixed k satisfying 0 < k < 2
m . Moreover, lower bounds for the integral in (1.4) which are � T (log T )k

2

for

any positive rational number k have been established by Akbary and Fodden [1] assuming unproven bounds

toward the Ramanujan-Petersson conjecture but without assuming the generalized Riemann hypothesis. The

results in [1] are unconditional in the case m = 2.

After proving our main results, while in the process of preparing the present manuscript, we learned that

Harper [17] had refined Soundararajan’s techniques. Assuming the Riemann hypothesis, he has shown that∫ T

0

|ζ( 1
2 +it)|2k dt�k T (log T )k

2

.

We note that Harper uses Soundararajan’s upper bounds for moments of ζ(s) in [43] to prove this result. By

combining the ideas and results of the present paper with Harper’s techniques, it may be possible to prove

a version of Theorem 1.1 with ε = 0. We are investigating this possibility.

1.2. Moments of Dedekind zeta-functions. Let K be an algebraic number field, and let OK denote its

ring of integers. The Dedekind zeta-function, ζK(s), is defined by

(1.5) ζK(s) =
∑
a6=0

1

(Na)s
=
∏
p

(
1− 1

(Np)s

)−1

, <(s) > 1,
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where the sum runs over the nonzero ideals a of OK , the product runs over the prime ideals p of OK , and

N = NK/Q denotes the absolute norm on K. It is known that the Dedekind zeta-function factors as a

product of Artin L-functions. For instance, if K is a Galois extension of Q then

(1.6) ζK(s) =
∏
χ

L(s, χ)χ(1)

where the product is over the irreducible characters χ of Gal(K/Q) and

(1.7)
∑
χ

χ(1)2 = |Gal(K/Q)| = [K : Q].

The Langlands reciprocity conjecture implies that each L(s, χ) = L(s, π) for an irreducible cuspidal auto-

morphic representation π of GL(m) over Q where χ(1) = m. By (1.2), (1.6), and (1.7), for Galois extensions

K over Q, this leads to the conjecture that

(1.8)

∫ T

0

∣∣ζK( 1
2 +it)

∣∣2k dt ∼ C(k,K)T (log T )[K:Q]k2

for any k > 0 as T → ∞. Here C(k,K) is a constant depending on k and the number field K. The recent

work of Heap [18] discusses this conjecture in more detail.

The conjectural asymptotic formula in (1.8) is known to hold when k = 1 for the Dedekind zeta-functions

of quadratic extensions of Q. Let d be a fundamental discriminant, and let K = Q[
√
d]. Then Motohashi

[35] has shown that ∫ T

0

∣∣ζK( 1
2 +it)

∣∣2 dt ∼ 6

π2
L(1, χd)

2
∏
p|d

(
1+

1

p

)−1

T log2 T

as T →∞ using the factorization ζK(s) = ζ(s)L(s, χd), where L(s, χd) is the Dirichlet L-function associated

to χd, the Kronecker symbol of d. Also in support of (1.8), for finite Galois extensions K over Q, Akbary

and Fodden [1] have shown that the inequality∫ T

0

∣∣ζK( 1
2 +it)

∣∣2kdt � T (log T )[K:Q]k2

holds for any rational number k > 0 as T →∞.

Using results of Arthur and Clozel [2], the following mean-value estimate for Dedekind zeta-functions is

a consequence of Theorem 1.1.

Corollary 1.2. Let K be a finite solvable Galois extension of Q, and let ζK(s) be the associated Dedekind

zeta-function. Then, assuming the generalized Riemann hypothesis for ζK(s), we have∫ T

0

∣∣ζK( 1
2 +it)

∣∣2kdt�K,k,ε T (log T )[K:Q]k2+ε

for any k, ε > 0 when T is sufficiently large.

Proof. If K is a finite solvable Galois extension of Q, then Arthur and Clozel have shown that

(1.9) ζK(s) =

r∏
j=1

L(s, πj)
kj

where the πj are irreducible cuspidal automorphic representations of the appropriate degree over Q and the

exponents kj are natural numbers satisfying k2
1 + · · ·+ k2

r = [K : Q]. See the concluding example in chapter

3 of [2]. Moreover, since ζK(s) satisfies the Ramanujan-Petersson conjecture, Murty [36] observed that each
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factor L(s, πj) satisfies this conjecture, as well. Hence, Hypothesis H holds for each L-function in the product

(1.9), and thus Theorem 1.1 implies that

(1.10)

∫ T

0

∣∣∣ r∏
j=1

L( 1
2 +it, πj)

kj
∣∣∣2kdt � T (log T )(k21+···+k2r)k2+ε = T (log T )[K:Q]k2+ε.

The corollary now follows from (1.9) and (1.10). �

The condition that Gal(K/Q) be a solvable group can be removed with a little more work. In §5, we

sketch how to modify the proof of Theorem 1.1 to prove the following mean-value estimate.

Theorem 1.3. Let K be a finite Galois extension of Q. Then, assuming the generalized Riemann hypothesis

for ζK(s), we have ∫ T

0

∣∣ζK( 1
2 +it)

∣∣2kdt�K,k,ε T (log T )[K:Q]k2+ε

for any k, ε > 0 when T is sufficiently large.

Unlike the proof of Corollary 1.2, our proof of Theorem 1.3 does not rely on a factorization of ζK(s) into

automorphic L-functions.

1.3. Coefficients of zeta and L-functions in short intervals. Let K be a number field and let rK(n)

denote the number of ideals in K of norm n. Then, by (1.5), we see that

ζK(s) =

∞∑
n=1

rK(n)

ns
, <(s) > 1.

When K is a Galois extension of Q, we can use Theorem 1.3 and a technique of Selberg [41] to study the

distribution of rK(n) in short intervals assuming the generalized Riemann hypothesis for ζK(s). In order to

state our result, recall that

(1.11) Res
s=1

ζK(s) = lim
s→1

(s−1)ζK(s) =
2r1(2π)r2hR

w
√
D

where r1 is the number of real embeddings of K, r2 is the number of pairs of complex embeddings, h is the

class number of K, R is the regulator, w is the number of roots of unity in K, and D = |dK | is the absolute

value of the discriminant. Landau’s classical mean-value estimate for the arithmetic function rK(n) is∑
n≤x

rK(n) =
2r1(2π)r2hR

w
√
D

x+O
(
x1−2/([K:Q]+1)

)
.

We prove the following conditional estimate for the variance of the arithmetic function rK(n) in short

intervals.

Theorem 1.4. Let K be a finite Galois extension of Q. Let y = y(x) be a positive and increasing function

such that y → ∞ and y/x → 0 as x → ∞. Then, assuming the generalized Riemann hypothesis for ζK(s),

we have

1

X

∫ 2X

X

∣∣∣∣∣ ∑
x<n≤x+y

rK(n)− 2r1(2π)r2hR

w
√
D

y

∣∣∣∣∣
2

dx � y (logX)[K:Q]+ε

for ε > 0 when X is sufficiently large. Here the implied constant depends on K and ε.
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Assuming the generalized Riemann hypothesis for ζK(s), it follows from Theorem 1.4 that∑
x<n≤x+y

rK(n) ∼ 2r1(2π)r2hR

w
√
D

y

for almost all x if we choose y to be a function of x satisfying y/(log x)[K:Q]+ε →∞ but y/x→ 0 as x→∞.

Using Theorem 1.1, we can similarly study the behavior of coefficients of products of automorphic L-

functions in short intervals. To state the results in this situation, we first introduce some notation. For

k ≥ 0 an integer and k1, . . . , kr ∈ N, let

L(s) = ζ(s)k
r∏
j=1

L(s, πj)
kj

be an (automorphic) L-function. Here we are assuming that the L-functions L(s, π1), . . . , L(s, πr) are as in

Theorem 1.1 and that L(s, πj) 6= ζ(s) for all 1 ≤ j ≤ r. We distinguish between the case k = 0, where L(s)

is entire, and the case k ≥ 1, where L(s) has a pole of order k at s = 1. For <(s) > 1, we set

L(s) =



∞∑
n=1

aL(n)

ns
, if k = 0,

∞∑
n=1

bL(n)

ns
, if k ∈ N.

As is to be expected, the behavior of aL(n) and bL(n) in short intervals differs due to the presence of the

pole of the generating function when k ≥ 1. For x > 0, we define

RL(x) = Res
s=1

(
L(s)

xs

s

)
.

Note that RL(x) = 0 if k = 0, that

RL(x) = x

r∏
j=1

L(1, πj)
kj

if k = 1, and that

RL(x) =
x(log x)k−1

(k−1)!

r∏
j=1

L(1, πj)
kj +O

(
x(log x)k−2

)
if k ≥ 2. With this set-up, assuming the conditions of Theorem 1.1, the proof of Theorem 1.4 can be modified

to show that

1

X

∫ 2X

X

∣∣∣∣∣ ∑
x<n≤x+y

aL(n)

∣∣∣∣∣
2

dx � y (logX)k
2
1+···+k2r+ε

and

1

X

∫ 2X

X

∣∣∣∣∣ ∑
x<n≤x+y

bL(n)−
(
RL(x+y)−RL(x)

)∣∣∣∣∣
2

dx � y (logX)k
2+k21+···+k2r+ε

for ε > 0 when X is sufficiently large. Here y is any function satisfying the conditions in Theorem 1.4, and

the implied constants depend on π1, . . . , πr, k, k1, . . . , kr, and ε. The details are left to the interested reader.

1.4. Quadratic twists of automorphic L-functions. One can also use the methods of Soundararajan in

[43] to study the moments of central values of quadratic twists of automorphic L-functions. In this case, the

conjecture for the size of moments depends on the symmetry type of the family of these twists. Let L(s, π) be

an L-function attached to a self-contragredient irreducible cuspidal automorphic representation π on GL(m)
6



over Q. (We assume the L-function is self-dual so that the central value is real.) Then Katz and Sarnak

[22] and Rubinstein [39] have conjectured that the family of quadratic twists of L(s, π) has either symplectic

or orthogonal symmetry corresponding to whether or not the symmetric square L-function L(s, π,∧2) has a

pole at s = 1.

Following the notation in [39], we set δ(π) = 1 if L(s, π,∧2) does not have a pole at s = 1 and set

δ(π) = −1 if L(s, π,∧2) has a pole at s = 1. Then for each k > 0 it has been conjectured (see [24, 10]) that

there are constants C[(k, π) > 0 such that∑
|d|≤X

[
L( 1

2 , π ⊗ χd)
k ∼ C[(k, π)X(logX)k(k−δ(π))/2

as X →∞. Here the superscript [ indicates that the sums run over fundamental discriminants d, χd denotes

the corresponding primitive quadratic Dirichlet character, and (as before) we have normalized so that s = 1/2

is the central point. In the case of quadratic Dirichlet L-functions and L-functions of quadratic twists of a

fixed elliptic curve E over Q, Soundararajan [43] proved that

(1.12)
∑
|d|≤X

[
L( 1

2 , χd)
k � X(logX)k(k+1)/2+ε

and

(1.13)
∑
|d|≤X

[
L( 1

2 , E ⊗ χd)
k � X(logX)k(k−1)/2+ε

for every k > 0 and any ε > 0 assuming the generalized Riemann hypothesis for the relevant L-functions.

(Note that in the first example the L-functions have δ(π) = −1, and in the second case the L-functions have

δ(π) = 1.) We generalize these results and, in analogy with our Theorem 1.1, we prove the following result

for central values of quadratic twists of arbitrary products of automorphic L-functions.

Theorem 1.5. Let d denote a fundamental discriminant, and let χd be a primitive quadratic Dirichlet

character of conductor |d|. Let L(s, π1), . . . , L(s, πr) be L-functions attached to distinct self-contragredient

irreducible cuspidal automorphic representations, πj, of GL(mj) over Q each with unitary central character,

and assume that the twisted L-functions L(s, π1 ⊗ χd), . . . , L(s, πr ⊗ χd) satisfy the generalized Riemann

hypothesis. Then, if max
1≤j≤r

mj ≤ 2, we have

(1.14)
∑
|d|≤X

[
L( 1

2 , π1 ⊗ χd)k1 · · ·L( 1
2 , πr ⊗ χd)

kr � X(logX)k1(k1−δ(π1))/2+···+kr(kr−δ(πr))/2+ε,

for any k1, . . . , kr > 0 and every ε > 0 when X is sufficiently large. Here the superscript [ indicates that the

sum is restricted to fundamental discriminants, and the implied constant depends on π1, . . . , πr, k1, . . . , kr,

and ε. If max
1≤j≤r

mj ≥ 3, then the inequality in (1.14) holds under the additional assumptions of Hypothesis

H and Hypothesis E described in §2.

We now give two examples which are consequences of Theorem 1.5 and generalize Soundararajan’s results

in (1.12) and (1.13) to biquadratic extensions of Q. Let d1 and d2 be coprime fundamental discriminants, and

let Kd1,d2 = Q[
√
d1,
√
d2] be the corresponding biquadratic number field. Then the Dedekind zeta-function

of Kd1,d2 factors as

ζKd1,d2(s) = ζ(s)L(s, χd1)L(s, χd2)L(s, χd1d2),
7



and similarly, given an elliptic curve E over Q, the Hasse-Weil L-function L(s, E/Kd1,d2) of E over Kd1,d2

factors as

L(s, E/Kd1,d2) = L(s, E)L(s, E ⊗ χd1)L(s, E ⊗ χd2)L(s, E ⊗ χd1d2).

Using Theorem 1.5, we can estimate moments of ζKd1,d2(
1
2 ) and L( 1

2 , E/Kd1,d2) by averaging over two sets

of fundamental discriminants. (We note that under the assumption of the generalized Riemann hypothesis

for these zeta and L-functions, these central values are non-negative real numbers.) In particular, we have

(1.15)
∑

|d1d2|≤X
(d1,d2)=1

[
ζKd1,d2(

1
2 )k � X (logX)3k(k+1)/2+1+ε

and

(1.16)
∑

|d1d2|≤X
(d1,d2)=1

[
L( 1

2 , E/Kd1,d2)k � X (logX)3k(k−1)/2+1+ε

for any ε > 0. Here the superscript [ indicates that the sum runs over two sets fundamental discriminants,

d1 and d2. When k = 1, the conditional estimate in (1.15) is consistent with a result of Chinta [9] who

proved that, as X →∞, ∑
d1,d2 odd

[
a(d1, d2)ζKd1,d2(

1
2 )F

(
d1d2

X

)
∼ cX log4X

for a constant c > 0, where F is a smooth compactly supported test function satisfying
∫∞

0
F (x) dx = 1 and

a(d1, d2) is a weighting factor satisfying a(d1, d2) = 1 if (d1, d2) = 1 and is (on average) small otherwise.

Since the condition (d1, d2) = 1 implies that χd1d2 = χd1χd2 , and δ(π) = −1 for any degree one L-function,

under the conditions of Theorem 1.5 we have∑
|d1d2|≤X
(d1,d2)=1

[
ζKd1,d2(

1
2 )k = ζ( 1

2 )k
∑
|d1|≤X

[
L( 1

2 , χd1)k
∑

|d2|≤X/|d1|
(d1,d2)=1

[
L( 1

2 , χd2)kL( 1
2 , χd1d2)k

� X(logX)k(k+1)+ε
∑
|d1|≤X

[ L( 1
2 , χd1)k

|d1|

� X(logX)3k(k+1)/2+1+ε

by two applications of (1.14) and summation by parts. This proves that the estimate in (1.15) follows from

Theorem 1.5.

To prove (1.16), we observe that the modularity theorems of Wiles [46], Wiles and Taylor [45], and Breuil,

Conrad, Diamond, and Taylor [5] imply that L(s, E) and its quadratic twists correspond to L-functions

attached to irreducible cuspidal automorphic representations of GL(2) over Q. Moreover, we have δ(π) = 1

for each of these L-functions. Therefore, under the conditions of Theorem 1.5, we similarly have∑
|d1d2|≤X
(d1,d2)=1

[
L( 1

2 , E/Kd1,d2)k = L( 1
2 , E)k

∑
|d1|≤X

[
L( 1

2 , E ⊗ χd1)k
∑

|d2|≤X/|d1|
(d1,d2)=1

[
L( 1

2 , E ⊗ χd2)kL( 1
2 , E ⊗ χd1d2)k

� X(logX)k(k−1)+ε
∑
|d1|≤X

[ L( 1
2 , E ⊗ χd1)k

|d1|

� X(logX)3k(k−1)/2+1+ε
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by two more applications of (1.14) and summation by parts. This shows that the estimate in (1.16) also

follows from Theorem 1.5.

1.5. Notation and Conventions. Throughout the remainder of this article, we use ε to denote a small

positive quantity which may vary from line to line. The letter p is always used to denote a prime. The

superscript [ is used to denote that a sum is restricted to fundamental discriminants. Unless otherwise

indicated, all implied constants are allowed to depend on the cuspidal automorphic representations πj , the

non-negative real numbers kj , and ε.

2. Properties of automorphic L-functions

In this section, we review standard properties of automorphic L-functions on GL(m) over Q and their

twists by Dirichlet characters. Some of this section overlaps with §2 of Rudnick and Sarnak [40] and §3.6 of

Rubinstein [39]. Let π be an irreducible cuspidal automorphic representation of GL(m) over Q with unitary

central character. For <(s) > 1, we let

(2.1) L(s, π) =

∞∑
n=1

aπ(n)

ns
=
∏
p

m∏
j=1

(
1− αj(p)

ps

)−1

be the global L-function attached to π (as defined by Godement and Jacquet in [13] and Jacqet and Shalika

in [21]). Then L(s, π) is either the Riemann zeta-function or L(s, π) analytically continues to an entire

function of order 1 satisfying a functional equation of the form

Φ(s, π) := Ns/2 γ(s, π)L(s, π)

= επ Φ(1−s, π),

where N is a natural number, |επ| = 1, Φ(s, π) = Φ(s̄, π), and the gamma factor

γ(s, π) =

m∏
j=1

ΓR(s+µj).

Here ΓR(s) = πs/2 Γ(s/2), and the µj are complex numbers. Logarithmically differentiating the Euler

product, we define

−L
′

L
(s, π) := − d

ds
logL(s, π) =

∑
p`, `≥1

(
α`1(p) + · · ·+ α`m(p)

)
log p

p`s
=

∞∑
n=1

Λπ(n)

ns

for <(s) > 1. We note that Λπ(p) = aπ(p) log p.

Let χ be a primitive Dirichlet character modulo q satisfying (q,N) = 1, and define

L(s, π ⊗ χ) :=

∞∑
n=1

aπ(n)χ(n)

ns
=
∏
p

m∏
j=1

(
1− αj(p)χ(p)

ps

)−1

for <(s) > 1. Then

−L
′

L
(s, π ⊗ χ) := − d

ds
logL(s, π ⊗ χ) =

∞∑
n=1

Λπ(n)χ(n)

ns
,
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when <(s) > 1. For q > 1, the function L(s, π ⊗ χ) continues to an entire function of order 1 and satisfies a

functional equation of the form

Φ(s, π ⊗ χ) :=
(
qmN

)s/2
γχ(s, π)L(s, π ⊗ χ)

= επ,χ Φ(1−s, π ⊗ χ),

where |επ,χ| = 1, Φ(s, π ⊗ χ) = Φ(s̄, π ⊗ χ), and the gamma factor

γχ(s, π) =

m∏
j=1

ΓR
(
s+µj,χ

)
for complex numbers µj,χ.

The generalized Riemann hypothesis states that all the zeros of the completed L-functions, Φ(s, f) and

Φ(s, f ⊗ χ), are on the critical line <(s) = 1/2. We always indicate the L-functions for which we are

assuming this hypothesis. The Ramanujan-Petersson conjecture states that the Euler coefficients αj(p) in

(2.1) satisfy |αj(p)| = 1 for all but a finite number of primes p. In general, this conjecture is open. Towards

the Ramanujan-Petersson conjecture, Luo, Rudnick, and Sarnak [30] have shown that

|αj(p)| ≤ p1/2−1/(m2+1)

for all p. It follows that

(2.2) |Λπ(n)| < mΛ(n)n1/2−1/(m2+1)

where Λ(n) is the Von Mandgoldt function, defined by Λ(n) = log p if n = pj , j ≥ 1, and Λ(n) = 0 otherwise.

The bound in (2.2) is crucial to our proofs of Theorems 1.1 and 1.5. Our proofs also assume Hypothesis H

of Rudnick and Sarnak [40].

Hypothesis H. Let j ≥ 2 be fixed, and let π be an irreducible cuspidal automorphic representation of GL(m)

over Q. Then we have ∑
p

|Λπ(pj)|2

pj
<∞.

Hypothesis H is known to hold for automorphic L-functions of small degree.

Theorem 2.1. Hypothesis H is true for m ≤ 4.

Proof. The case m = 1 is trivial, the case m = 2 follows from the work of Kim and Sarnak [26], the case

m = 3 is due to Rudnick and Sarnak [40], and the case m = 4 is due to Kim [25]. �

Given distinct automorphic L-functions L(s, π) and L(s, π′), we need to understand the correlation of

their Dirichlet series coefficients averaged over the primes. Selberg [42] has made the following conjecture

(in a different context).

Selberg’s Orthogonality Conjectures. Let π and π′ be two irreducible unitary cuspidal automorphic

representations of GL(m) and GL(m′) over Q, respectively, and let x ≥ 3. Then

∑
p≤x

aπ(p)aπ′(p)

p
=
∑
p≤x

Λπ(p)Λπ′(p)

p log2 p
=


log log x+O(1), if π ∼= π′,

O(1), if π 6∼= π′.
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The following result allows us to use Selberg’s orthogonality conjectures in the proofs of Theorems 1.1

and 1.5.

Theorem 2.2. Let π and π′ be two irreducible unitary cuspidal automorphic representations of GL(m) and

GL(m′) over Q, respectively. If L(s, π) and L(s, π′) satisfy Hypothesis H, then the coefficients of these L-

functions satisfy Selberg’s orthogonality conjectures. In particular, Selberg’s orthogonality conjectures hold if

max(m,m′) ≤ 4.

Proof. This was proved in the special case where at least one of π or π′ is self-contragredient in [27, 28], and

in full generality by Liu and Ye in [29]. See also Avdispahić and Smajlović [3]. �

In order to prove Theorem 1.5, we need to understand the behavior of the Dirichlet series coefficients of

automorphic L-functions averaged over the squares of primes. Let L(s, π) be an L-function attached to a

self-contragredient irreducible cuspidal automorphic representation π of GL(m) over Q (i.e. π = π̃). The

Rankin-Selberg L-function L(s, π ⊗ π̃) = L(s, π ⊗ π) factors as the product of the symmetric and exterior

square L-functions

L(s, π ⊗ π̃) = L(s, π,∨2) · L(s, π,∧2)

and has a simple pole at s = 1, see [6]. This pole must be carried by one of the factors on the right-hand

side. Following [39], we denote the order of the pole of L(s, π,∧2) as (1 + δ(π))/2. Then it is known that

(2.3)
∑
p≤x

Λπ(p2) ∼ −δ(π)x

as x→∞. We use this estimate, in a different form, in §6.

The proof of Theorem 1.5 also requires an assumption on the coefficients of the L-functions which is

stronger than Hypothesis H.

Hypothesis E. Let j ≥ 2 be a fixed integer, and let π be an irreducible cuspidal automorphic representation

of GL(m) over Q. Then we have ∑
p

|Λπ(p2j)|
pj

<∞.

Note that Hypothesis E only applies to even powers of primes, and the power of the prime in the de-

nominator differs from the corresponding exponent in Hypothesis H. Hypothesis E, though stronger than

Hypothesis H, is still considerably weaker than the Ramanujan-Petersson conjecture. Indeed, it would follow

if the Euler product coefficients in (2.1) satisfied a bound of the form |αj(p)| ≤ p1/4−ϑ for some ϑ > 0.

Such a bound trivially holds when m = 1 and follows from the work of Kim and Sarnak [26] when m = 2.

Therefore, in the proof of Theorem 1.5, we only need to assume Hypothesis E when max
1≤j≤r

mj ≥ 3.

3. Lemmas

In this section, we state three lemmas that will be used in the proof of Theorem 1.1.

Lemma 3.1. If {bn} is a sequence of complex numbers such that
∑
|bn| and

∑
n|bn|2 are convergent, then∫ T

0

∣∣∣∣ ∞∑
n=1

bnn
−it
∣∣∣∣2dt = T

∞∑
n=1

|bn|2 +O

( ∞∑
n=1

n|bn|2
)

where the implied constant is absolute.
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Proof. This is Montgomery and Vaughan’s mean-value theorem for Dirichlet polynomials (see Corollary 3

of [34]). �

Lemma 3.2. Let T be large, x ≥ 2, and let ` and j be natural numbers satisfying x` ≤ T j. Then for any

complex numbers b(p) we have

1

T

∫ 2T

T

∣∣∣∣∣ ∑
pj≤x

b(p)

pj(σ+it)

∣∣∣∣∣
2`

dt� `!

∑
pj≤x

|b(p)|2

p2jσ


`

where j is fixed and the sum runs over the primes p.

Proof. This is a consequence of Lemma 3.1. The case j = 1 essentially corresponds to Lemma 3 of

Soundararajan [43]. For any s ∈ C, write∑
p≤y

b(p)

ps


`

=
∑
n≤y`

βy,`(n)

ns
,

where βy,`(n) = 0 unless n is the product of ` (not necessarily distinct) primes, all less than or equal to y.

Thus, we have ∫ 2T

T

∣∣∣∣∣∑
p≤y

b(p)

pj(σ+it)

∣∣∣∣∣
2`

dt =

∫ 2T

T

∣∣∣∣∣ ∑
n≤y`

βy,`(n)

njσ+jit

∣∣∣∣∣
2

dt =
1

j

∫ 2jT

jT

∣∣∣∣∣ ∑
n≤y`

βy,`(n)

njσ+iu

∣∣∣∣∣
2

du,

where in the last step we have made the variable change u = jt. If y` ≤ T , then Lemma 3.1 implies that∫ 2T

T

∣∣∣∣∣∑
p≤y

b(p)

pj(σ+it)

∣∣∣∣∣
2`

dt� 2jT−jT
j

∑
n≤y`

|βy,`(n)|2

n2jσ
� T

∑
n≤y`

|βy,`(n)|2

n2jσ
.

By modifying the combinatorial argument appearing in the proof of Lemma 3 of [43] in a straightforward

manner, it follows that ∑
n≤y`

|βy,`(n)|2

n2jσ
� `!

∑
p≤y

|b(p)|2

p2jσ


`

.

Combining estimates, the lemma follows. �

Lemma 3.3. Assume that either L(s, π) is the Riemann zeta-function or that Φ(s, π) has no pole or zero

at s = 0, 1. Let λ0 = 0.4912 . . . denote the unique positive real number satisfying e−λ0 = λ0 + λ2
0/2. Then,

assuming the generalized Riemann hypothesis for L(s, π), for all λ0 ≤ λ ≤ log x/2 and log x ≥ 2, we have

log |L( 1
2 +it, π)| ≤ <

∑
n≤x

Λπ(n)

n
1
2 + λ

log x+it log n

log x/n

log x
+

(1 + λ)

2

m log T

log x
+O

( 1

log x

)
for T ≤ t ≤ 2T and T sufficiently large, where the implied constant in the error term depends only on π.

Proof. The case where L(s, π) corresponds to the Riemann zeta-function is due to Soundararajan [43], and

the other cases are a consequence of Theorem 2.1 of Chandee [7]. �

4. Proof of Theorem 1.1

In this section, we state and prove a value distribution result for a linear combination of distinct primitive

L-functions and use this to deduce Theorem 1.1. This value distribution result is an analogue of the main
12



theorem in [43]. Let L(s, π1), . . . , L(s, πr) be r distinct primitive L-functions (as in Theorem 1.1) of degrees

m1, . . . ,mr, respectively, let

∆ = max
{
m2

1+1, . . . ,m2
r+1

}
,

and let

(4.1) B = k1m1 + · · ·+ krmr + 1.

Define the set

A(T, V ) = {t ∈ [T, 2T ] : k1 log |L( 1
2 +it, π1)|+ · · ·+ kr log |L( 1

2 +it, πr)| ≥ V }

and the quantity

W = (k2
1 + · · ·+ k2

r) log log T.

Note that ∫ 2T

T

|L( 1
2 +it, π1)|2k1 · · · |L( 1

2 +it, πr)|2kr dt = −
∫ ∞
−∞

exp(2V ) dmeas(A(T, V ))

= 2

∫ ∞
−∞

exp(2V ) meas(A(T, V )) dV.

(4.2)

To prove Theorem 1.1, it suffices to estimate the measure of A(T, V ) for all V ≥ 3 when T is large. Note

that the definitions of A(T, V ) and W depend on our choices of k1, . . . , kr, which we consider to be fixed

throughout the proof Proposition 4.1 below.

We prove estimates for the size of A(T, V ) using Lemmas 3.2 and 3.3. The contribution to the size

of A(T, V ) coming from the primes in the sum on the right-hand side of the inequality in Lemma 3.3 is

estimated following the method of Soundararajan in [43], and the contribution from the prime powers pj

with j > ∆ is estimated trivially. More care is necessary to handle the contribution from the prime powers

pj with 2 ≤ j ≤ ∆, and this is where we appeal to (2.2) and Hypothesis H. This allows us to circumvent

using the Ramanujan-Petersson conjecture.

As might be expected, the proof of Theorem 1.1 relies on understanding the correlations between coeffi-

cients of distinct automorphic L-functions. The key ingredient to the proof of the proposition below (and

hence Theorem 1.1) is the fact that the Selberg orthogonality conjectures imply that

(4.3)
∑
p≤z

|k1Λπ1(p) + · · ·+ krΛπr (p)|2

p log2 p
= (k2

1 + · · ·+ k2
r) log log z +O(1)

as z →∞, which can be seen by expanding the square on the left hand side of (4.3).

Proposition 4.1. Let L(s, π1), . . . , L(s, πr) be L-functions attached to distinct irreducible cuspidal automor-

phic representations, πj, of GL(mj) over Q with unitary central character, and assume that these L-functions

satisfy the generalized Riemann hypothesis. If max
1≤j≤r

mj ≤ 4 or each of the L-functions satisfies Hypothesis

H, then the following inequalities hold. If
√
W ≤ V ≤ W

B2 , we have

meas(A(T, V ))� T
V√
W

exp

(
−V

2

W

(
1− 4

logW

))
;

if W
B2 ≤ V ≤ 1

2B2W logW , we have

meas(A(T, V ))� T
V√
W

exp

(
−V

2

W

(
1− 7B2V

4W logW

)2
)

;
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and if 1
2B2W logW ≤ V , we have

meas(A(T, V ))� T exp

(
− 1

129B2
V log V

)
for any k1, . . . , kr > 0 when T is sufficiently large.

Proof. Our proof is similar to the proof of the main theorem of Soundararajan in [43], and our notation follows

that of [43] and Chandee [8]. Let L(s, π) be a primitive L-function of degree m. Choosing x = (log T )1−ε

and λ = λ0 <
1
2 , it follows from Lemma 3.3 and (2.2) that

log |L( 1
2 +it, π)| ≤ m(log T )1−ε +

(1+λ0)m log T

2(1−ε) log log T
+O

(
1

(1−ε) log log T

)
≤ 3m

4

log T

log log T

for sufficiently large T . Therefore, we see that

k1 log |L( 1
2 +it, π1)|+ · · ·+ kr log |L( 1

2 +it, πr)| ≤
3(k1m1+· · ·+krmr)

4

log T

log log T

when T is large. Recalling the definition of B in (4.1), we may assume that

√
W ≤ V ≤ 3(B−1)

4

log T

log log T

while proving the proposition. Note that B > 1 (a fact that is useful when deriving the estimates below).

Define a parameter A as

A =



B

2
logW, if

√
W ≤ V ≤ W

B2 ,

1

2BV
W logW, if W

B2 < V ≤ 1
2B2W logW,

B, if V > 1
2B2W logW,

and let x = TA/V and z = x1/ log log T . Choosing λ = 1/2 in Lemma 3.3, we deduce that

k1 log |L( 1
2 +it, π1)|+ · · ·+ kr log |L( 1

2 +it, πr)|

≤ |S1(t)|+ |S?1 (t)|+
∑

2≤j≤∆

|Sj(t)|+
3(B−1)

4

V

A
+O(1),

(4.4)

where

S1(t) =
∑
p≤z

(k1Λπ1
(p) + · · ·+ krΛπr (p))

p
1
2 + λ

log x+it log p

log(x/p)

log x
, S?1 (t) =

∑
z<p≤x

(k1Λπ1
(p) + · · ·+ krΛπr (p))

p
1
2 + λ

log x+it log p

log(x/p)

log x
,

and

Sj(t) =
∑
pj≤x

(
k1Λπ1(pj) + · · ·+ krΛπr (p

j)
)

pj(
1
2 + λ

log x+it) log pj

log(x/pj)

log x

for 2 ≤ j ≤ ∆. The coefficient bound in (2.2) implies that the error term in (4.4) is O(1) since∑
j>∆

|Sj(t)| �
∑
j>∆

∑
pj≤x

∣∣k1Λπ1
(pj)+· · ·+krΛπr (pj)

∣∣
jpj/2 log p

� 1.
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Let

V1 := V

(
1− 7(B−1)

8A

)
, V ?1 = Vj :=

(B−1)V

8∆A

for 2 ≤ j ≤ ∆. Note that if t ∈ A(T, V ), then at least one of the following inequalities holds:

|S?1 (t)| ≥ V ?1 or |Sj(t)| ≥ Vj

for some j = 1, 2, . . . ,∆. If we define

Nj(T, Vj) := meas{t ∈ [T, 2T ] : |Sj(t)| ≥ Vj}

for j = 1, 2, . . . ,∆ and define N?
1 (T, V ?1 ) similarly, then we can bound Nj(T, Vj) and N?

1 (T, V ?1 ) using Lemma

3.2 since Chebyshev’s inequality implies that

Nj(T, Vj) ≤ (Vj)
−2`

∫ 2T

T

|Sj(t)|2` dt

and

N?
1 (T, V ?1 ) ≤ (V ?1 )−2`

∫ 2T

T

|S?1 (t)|2` dt

for every non-negative integer `.

Let us first estimate N1(T, V1). Letting ` be any natural number such that z` ≤ T, Lemma 3.2 and (4.3)

imply that

∫ 2T

T

|S1(t)|2`dt� T`!

∑
p≤z

|k1Λπ1
(p) + · · ·+ krΛπr (p)|2

p log2 p

`

� T`!
(
(k2

1 + · · ·+ k2
r) log log z +O(1)

)`
� T`!

(
(k2

1 + · · ·+ k2
r) log log T

)`
� T

√
`

(
`(k2

1 + · · ·+ k2
r) log log T

e

)`
� T

√
`

(
`W

e

)`
.

Thus we have

(4.5) N1(T, V1)� T
√
`

(
`W

eV 2
1

)`
.

We consider separately the two cases where V ≤ W 2

B4 and V > W 2

B4 . In the first case, we choose ` = bV
2
1

W c in

(4.5) and find that

N1(T, V1)� T
V√
W

exp

(
−V

2
1

W

)
.

In the case, where V > W 2

B4 , we choose ` = b10V c in (4.5) and find that

N1(T, V1)� T exp(−4V log V ).

Hence

(4.6) N1(T, V1)� T
V√
W

exp

(
−V

2
1

W

)
+ T exp(−4V log V )

for all V .
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Next, we find an upper bound for N?
1 (T, V ?1 ). For any natural number ` with x` ≤ T , Lemma 3.2 and

(4.3) imply that

∫ 2T

T

|S?1 (t)|2` dt� T`!

 ∑
z≤p≤x

|k1Λπ1(p) + · · ·+ krΛπr (p)|2

p log2 p

`

� T`!
(
(k2

1 + · · ·+ k2
r)(log log x− log log z) +O(1)

)`
� T

(
`(k2

1 + · · ·+ k2
r) log log log T +O(1)

)`
� T

(
2`(k2

1 + · · ·+ k2
r) log log log T

)`
when T is large. Choosing ` = bVA c, we have that

(4.7) N?
1 (T, V ?1 )� T

(
8∆A

(B−1)V

)2` (
2`(k2

1 + · · ·+ k2
r) log log log T

)` � T exp

(
−V log V

2A

)
.

Finally, we find an upper bound for Nj(T, Vj) for each 2 ≤ j ≤ ∆. For x1/j ≤ T , Lemma 3.2 and

Hypothesis H imply that

∫ 2T

T

|Sj(t)|2` dt� T`!

∑
pj≤x

|k1Λπ1(pj) + · · ·+ krΛπr (p
j)|2

j2pj log2 p

`

� T
(
`Cj(k

2
1 + · · ·+ k2

r)
)`
,

for each fixed j, where Cj is a constant (depending on j). Let

Cmax = max
2≤j≤∆

Cj .

be an absolute constant. Then for every 2 ≤ j ≤ ∆, we have∫ 2T

T

|Sj(t)|2` dt� T
(
`Cmax(k2

1 + · · ·+ k2
r)
)`
.

Comparing this upper bound to the upper bound for
∫ 2T

T
|S?1 (t)|2`dt, we conclude that

(4.8) Nj(T, Vj)� T exp

(
−V log V

2A

)
,

for each 2 ≤ j ≤ ∆. The proposition now follows by combining the estimates in (4.6), (4.7), and (4.8). �

We now use Proposition 4.1 and (4.2) to prove Theorem 1.1.

Proof of Theorem 1.1. Proposition 4.1 implies that

meas(A(T, V ))�

T (log T )ε exp
(
−V

2

W

)
, if 3 ≤ V ≤ 256W

B2 ,

T (log T )ε exp
(
− 4V
B2

)
, if V > 256W

B2 .

Inserting these bounds into (4.2) and estimating the range V < 3 trivially, we deduce that∫ 2T

T

|L( 1
2 +it, π1)|2k1 · · · |L( 1

2 +it, πr)|2kr dt� T (log T )εeW 256W � T (log T )k
2
1+···k2r+ε.
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Theorem 1.1 now follows by summing this estimate over the dyadic intervals [T2 , T ], [T4 ,
T
2 ], [T8 ,

T
4 ], . . . . �

5. Sketch of the proof of Theorem 1.3

We now sketch how to modify the proof of Theorem 1.1 to deduce Theorem 1.3. Throughout this section,

let K be a finite extension of Q, and let ζK(s) be the associated Dedekind zeta-function. As before, our

starting point is the observation that

(5.1)

∫ 2T

T

|ζK( 1
2 +it)|2k dt = 2

∫ ∞
−∞

exp(2V ) meas(A(T, V )) dV

where

A(T, V ) = {t ∈ [T, 2T ] : k log |ζK( 1
2 +it)| ≥ V }.

In order to bound the measure of A(T, V ), we need analogues of Lemma 3.3 and (4.3) for ζK(s). For

<(s) > 1, define

ζ ′K
ζK

(s) :=
d

ds
log ζK(s) = −

∞∑
n=1

ΛK(n)

ns
.

Since ζK(s) satisfies the Ramanujan-Petersson conjecture, we have

|ΛK(n)| ≤ [K : Q]Λ(n).

Then the following analogue of Lemma 3.3 holds.

Lemma 5.1. Let λ0 = 0.4912 . . . denote the unique positive real number satisfying e−λ0 = λ0 +λ2
0/2. Then,

assuming the generalized Riemann hypothesis for ζK(s), for all λ0 ≤ λ ≤ log x/2 and log x ≥ 2, we have

log |ζK( 1
2 +it)| ≤ <

∑
n≤x

ΛK(n)

n
1
2 + λ

log x+it log n

log x/n

log x
+

(1 + λ)

2

[K : Q] log T

log x
+O

( 1

log x

)
for T ≤ t ≤ 2T and T sufficiently large, where the implied constant in the error term depends only on K.

Proof. This is a consequence of Theorem 2.1 of Chandee [7]. �

The analogue of (4.3) follows from the Chebotarev density theorem.

Lemma 5.2. Let K be a finite Galois extension of Q, and let p denote a rational prime. Then∑
p≤x

rK(p)2 ∼ [K : Q]
∑
p≤x

1

as x→∞, and in particular

(5.2)
∑
p≤x

rK(p)2

p
∼ [K : Q] log log x.

Proof. Let (p) denote the principal ideal in OK generated by p. Then

(p) = Pe1
1 · · ·Per

r ,

where the Pi are the distinct prime ideals in OK lying above p with norm pfi . It follows that

r∑
i=1

eifi = [K : Q].

If p is unramified in K, then e1 = · · · = er = 1. Since K is Galois, all the Pi lying above p are conjugate.

Thus f1 = · · · = fr = f , say. Therefore, for unramified primes p, we see that rK(p) 6= 0 if and only if f = 1.
17



In this case, p completely splits, r = [K : Q], and hence rK(p) = [K : Q]. That is, for unramified primes p,

we have

rK(p) =

[K : Q], if and only if p splits completely,

0, otherwise.

Since there are only a finite number of ramified primes, it follows that∑
p≤x

rK(p)2 =
∑
p≤x

p unramified

rK(p)2 +O(1) =
∑
p≤x

p splits completely

[K : Q]2 +O(1).

On the other hand, the Chebotarev density theorem implies that∑
p≤x

p splits completely

1 ∼ 1

[K : Q]

∑
p≤x

1,

as x→∞. Thus, ∑
p≤x

rK(p)2 ∼ [K : Q]
∑
p≤x

1,

proving the first assertion of the lemma. Using this estimate, the prime number theorem and partial sum-

mation imply (5.2), completing the proof of the lemma. �

We now indicate how to prove Theorem 1.3. Choosing W = k2[K : Q] log log T, B = k[K : Q] + 1, ∆ = 2

(since the Ramanujan-Petersson conjecture holds for ζK(s)), and A as before, a straightforward modification

of the analysis in the previous section implies that

meas(A(T, V ))�

T (log T )ε exp
(
−V

2

W

)
, if 3 ≤ V ≤ 256W

B2 ,

T (log T )ε exp
(
− 4V

B2

)
, if V > 256W

B2 .

Inserting these bounds into (5.1), we deduce Theorem 1.3.

Remark. In order to prove Theorem 1.3, it is not necessary to derive an asymptotic formula for the sum in

(5.2). An upper bound of [K : Q] log log x+O(1) for the sum in (5.2) would be sufficient and is more easily

derived. For instance, since 0 ≤ rK(p) ≤ [K : Q], we see that∑
p≤x

rK(p)2

p
≤ [K : Q]

∑
p≤x

rK(p)

p
≤ [K : Q] log log x+O(1)

by Landau’s prime ideal theorem.

6. Sketch of the Proof of Theorem 1.5.

We now sketch how to modify the proof of Theorem 1.1 to deduce Theorem 1.5. In this case, the starting

point is the observation that∑
|d|≤X

[
L( 1

2 , π1 ⊗ χd)k1 · · ·L( 1
2 , πr ⊗ χd)

kr

=

∫ ∞
−∞

exp

(
V − k1δ(π1)+· · ·+krδ(πr)

2
log logX

)
N (X,V ) dV,

(6.1)

where N (X,V ) denotes the number of fundamental discriminants d with |d| ≤ X such that

(6.2) k1 log
∣∣L( 1

2 , π1 ⊗ χd)
∣∣+· · ·+kr log

∣∣L( 1
2 , πr ⊗ χd)

∣∣ ≥ V −(k1δ(π1)+· · ·+krδ(πr)
2

)
log logX.

18



We can bound N (X,V ) with the following analogues of Lemmas 3.2 and 3.3. (Note that the definition of

N (X,V ) takes into account the contribution from the squares of primes in Lemma 6.2, below.)

Lemma 6.1. Let X and y be real numbers and ` be a natural number with y` ≤ X1/2/ logX. For any

complex numbers b(p) we have

∑
|d|≤X

[

∣∣∣∣∣∣
∑

2<p≤y

b(p)χd(p)

p1/2

∣∣∣∣∣∣
2`

� X
(2`)!

`!2`

∑
p≤y

|b(p)|2

p

 ,

where the implied constant is absolute.

Proof. This is Lemma 6.3 of Soundararajan and Young [44]. �

Lemma 6.2. Let L(s, π) be an L-function attached to an irreducible cuspidal automorphic representation π

on GL(m) over Q and let d be a fundamental discriminant. Let λ0 = 0.4912 . . . denote the unique positive real

number satisfying e−λ0 = λ0 + λ2
0/2. Then, assuming the generalized Riemann hypothesis for L(s, π ⊗ χd),

for all λ0 ≤ λ ≤ log x/2 and log x ≥ 2, we have

log
∣∣L( 1

2 , π ⊗ χd)
∣∣ ≤

∣∣∣∣∣∣
∑
n≤x

Λπ(n)χd(n)

n
1
2 + λ

log x log n

log x/n

log x

∣∣∣∣∣∣+
(1 + λ)

2

m log |d|
log x

+O
( 1

log x

)
,

where the implied constant depends only on π.

Proof. This follows from Theorem 2.1 of Chandee [7]. �

We now indicate how to prove Theorem 1.5. The primary difference between the proof of this theorem

and the proof of Theorem 1.1 is how we handle the contribution from the prime powers. By (2.3), the

contribution from the prime squares to the inequality in Lemma 6.2 is∑
p2≤x

Λπ(p2)χd(p
2)

p1+ 2λ
log x log p2

∼ −δ(π)

2
log log x,

giving rise to the extra term on the right-hand side of (6.2) in the definition of N (X,V ). In this way, the

squares of primes contribute to our bounds for the size of these moments.

In contrast to the proof of Theorem 1.1, we must handle prime powers pj with j > 2 differently depending

on whether j is odd or even. When j is odd, χd(p
j) = χd(p), and hence we can average over fundamental

discriminants using Lemma 6.1, (2.2), and Hypothesis H in a manner analogous to the analysis in §4. If

j is even, then χd(p
j) = 1 for p - d, and therefore we cannot average over discriminants to estimate their

contribution. Instead, we use Hypothesis E to show that the contribution of these primes to Lemma 6.2 is

O(1).

With these changes, choosing B,∆, and A as in §4 and W = (k2
1 + · · ·+k2

r) log log x, a relatively straight-

forward modification of the proof of Proposition 4.1 gives

N (X,V )�

X (logX)ε exp
(
− V 2

2W

)
, if 3 ≤ V ≤ 512W

B2 ,

X (logX)ε exp
(
− 4V
B2

)
, if V > 512W

B2 .

Theorem 1.5 now follows by inserting these bounds into (6.1).
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7. Proof of Theorem 1.4

We follow the proof of Theorem 1 of Selberg [41], who studied the distribution of primes in short intervals

using upper bounds for moments of the logarithmic derivative of ζ(s) near the critical line. (See also Section

4 of Goldston, Gonek, and Montgomery [14].) For K a finite Galois extension of Q, let

cK =
2r1(2π)r2hR

w
√
D

, S(x) =
∑
n≤x

rK(n), and S0(x) =
1

2
lim
ε→0

(
S(x+ε) + S(x−ε)

)
so that S(x) = S0(x) for almost all x. Perron’s formula implies that

S0(x) =
1

2πi

∫ 2+i∞

2−i∞
ζK(s)

xs

s
ds.

Assuming the generalized Riemann hypothesis (GRH) for ζK(s), we move the contour left from <(s) = 2 to

<(s) = 1/2 passing over a pole of the integrand at s = 1 and no other singularities. Here we are implicitly

using the generalized Lindelöf hypothesis for ζK(s) in t-aspect (which follows from GRH) to justify the

contour shift. Thus by the residue calculation in (1.11) and a variable change, we have

S0(x)− cKx =
1

2πi

∫ 1/2+i∞

1/2−i∞
ζK(s)

xs

s
ds =

1

2π

∫ ∞
−∞

ζK( 1
2 +it)

(
x

1
2 +it

1
2 +it

)
dt.

Applying this formula twice with the values x = eτ+κ and x = eτ , it follows that

S0(eκ+τ )−S0(eτ )−cK(eκ−1)eτ

eτ/2
=

1

2π

∫ ∞
−∞

ζK( 1
2 +it)

(
e
κ
(

1
2 +it

)
− 1

1
2 + it

)
eiτt dt,

giving a Fourier transform relation for all τ ∈ R. By Plancherel’s theorem, since S0(x) = S(x) almost

everywhere, we have

∫ ∞
−∞

∣∣S(eκ+τ )−S(eτ )−cK(eκ−1)eτ
∣∣2 dτ
eτ

=
1

2π

∫ ∞
−∞

∣∣ζK( 1
2 +it)

∣∣2 ∣∣∣∣∣∣e
κ
(

1
2 +it

)
−1

1
2 + it

∣∣∣∣∣∣
2

dt.

Observing that the integrand on the left-hand side is even and letting x = eτ , X ≥ T ≥ 2, and eκ = 1 + 1/T,

we derive that∫ 2X

X

∣∣∣S(x+
x

T

)
−S(x)−cK

x

T

∣∣∣2 dx
x2
≤
∫ ∞

0

∣∣∣S(x+
x

T

)
−S(x)−cK

x

T

∣∣∣2 dx
x2

=
1

π

∫ ∞
0

∣∣ζK( 1
2 +it)

∣∣2 ∣∣∣∣∣∣e
κ
(

1
2 +it

)
−1

1
2 + it

∣∣∣∣∣∣
2

dt

=
1

π

∞∑
`=0

∫ (2`+1−1)T

(2`−1)T

∣∣ζK( 1
2 +it)

∣∣2 ∣∣∣∣∣∣e
κ
(

1
2 +it

)
− 1

1
2 + it

∣∣∣∣∣∣
2

dt

�
∞∑
`=0

1

(2`T )2

∫ (2`+1−1)T

0

∣∣ζK( 1
2 +it)

∣∣2 dt.
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It follows from this and Theorem 1.3 that

1

X2

∫ 2X

X

∣∣∣S(x+
x

T

)
−S(x)−cK

x

T

∣∣∣2 dx� ∞∑
`=0

1

2`T
(log T )[K:Q]+ε � (log T )[K:Q]+ε

T

for any ε > 0. Theorem 1.4 now follows by choosing y = x/T.
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