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A NOTE ON THE GAPS BETWEEN CONSECUTIVE ZEROS

OF THE RIEMANN ZETA-FUNCTION

H. M. BUI, M. B. MILINOVICH, AND N. C. NG

(Communicated by Ken Ono)

Abstract. Assuming the Riemann Hypothesis, we show that infinitely often
consecutive non-trivial zeros of the Riemann zeta-function differ by at most
0.5155 times the average spacing and that infinitely often they differ by at
least 2.6950 times the average spacing.

1. Introduction

Let ζ(s) denote the Riemann zeta-function. Assuming the Riemann Hypothesis,
the non-trivial zeros of ζ(s) can be written as ρ = 1

2 ± iγ, where γ is a positive real
number. It is well known that, for T ≥ 10,

N(T ) :=
∑

0<γ≤T

1 =
T

2π
log

T

2π
− T

2π
+O

(
log T

)
.

Hence, if we let 0 < γ ≤ γ′ denote consecutive ordinates of non-trivial zeros of ζ(s),
we see that the average size of γ′ − γ is 2π/ log γ. Normalizing, we let

λ := lim sup
γ>0

(γ′ − γ) log γ

2π

and

μ := lim inf
γ>0

(γ′ − γ) log γ

2π
,

and we observe that μ ≤ 1 ≤ λ. It is expected that there are arbitrarily large
and arbitrarily small (normalized) gaps between consecutive zeros of the Riemann
zeta-function on the critical line; in other words, that μ = 0 and λ = +∞. In this
paper, we prove the following theorem.

Theorem 1.1. Assume the Riemann Hypothesis. Then λ > 2.6950 and μ < 0.5155.

We briefly describe the history of the problem. Very little is known uncondi-
tionally; however, Selberg (unpublished, but announced in [12]) has shown that
μ < 1 < λ. Assuming the Riemann Hypothesis, numerous authors [2, 5, 7, 8, 10]
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have obtained explicit bounds for μ and λ. Theorem 1.1 improves the previously
best known results under this assumption which were μ < 0.5172 due to Conrey,
Ghosh, and Gonek [2] and λ > 2.6306 due to R. R. Hall [5]. The results in Hall’s
paper are actually unconditional, but a lower bound for λ can only be obtained if
the Riemann Hypothesis is assumed. Assuming the generalized Riemann Hypothe-
sis for the zeros of Dirichlet L-functions, Conrey, Ghosh, and Gonek [3] have shown
that λ > 2.68. Their method can be modified (see [11] and [1]) to show that λ > 3.

Understanding the distribution of the zeros of the zeta-function is important
for a number of reasons. One reason, in particular, is the connection between the
spacing of the zeros of ζ(s) and the class number problem for imaginary quadratic
fields. This is described by Conrey and Iwaniec in [4]; see also Montgomery and
Weinberger [9]. Studying this connection led Montgomery [7] to investigate the
pair correlation of the ordinates of the zeros of the zeta-function. He conjectured
that, for any fixed 0 < α < β,

∑

0<γ,γ̃≤T
2πα
log T ≤γ̃−γ≤ 2πβ

log T

1 ∼ N(T )

∫ β

α

(
1−

( sin πu
πu

)2
)

du.

Here γ and γ̃ run over two distinct sets of ordinates of the non-trivial zeros of
ζ(s). Clearly, Montgomery’s conjecture implies that μ = 0. Moreover, F. J. Dyson
observed that the eigenvalues of large, random complex Hermitian or unitary matri-
ces have the same pair correlation function. This observation (among other things)
has led to a stronger conjecture that the zeros of the zeta-function should behave,
asymptotically, like the eigenvalues of large random matrices from the Gaussian
Unitary Ensemble. These ideas led to the conjecture that λ = +∞.

2. Montgomery and Odlyzko’s method for exhibiting irregularity

in the gaps between consecutive zeros of ζ(s)

Throughout the remainder of this paper, we assume the truth of the Riemann
Hypothesis.

Let T be large and put K = T (log T )−2. Further, let

h(c) := c−
Re

(∑
nk≤K akankgc(n)Λ(n)n

−1/2
)

∑
k≤K |ak|2

,

where

(2.1) gc(n) =
2 sin

(
πc logn

log T

)

π log n

and Λ(·) is von Mangoldt’s function defined by Λ(n) = log p if n = pk for a prime p
and k ∈ N and by Λ(n) = 0 otherwise. In [8], by an argument using the Guinand-
Weil explicit formula for the zeros of ζ(s), Montgomery and Odlyzko show that if
h(c) < 1 for some choice of c > 0 and a sequence {an}, then λ ≥ c and that if
h(c) > 1 for a choice of c > 0 and a sequence {an}, then μ ≤ c. In particular,
for any such choices of c and {an}, their method proves the existence of a pair
of consecutive zeros of ζ(s) with ordinates γ ≤ γ′ in the interval [T/2, 2T ] which
satisfy γ′ − γ ≥ 2πc

log T and γ′ − γ ≤ 2πc
log T , respectively.
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Conrey, Ghosh, and Gonek [2], expanding on an idea of Mueller [10], have given
an alternate and much simpler way of viewing this problem. Let

A(t) =
∑

k≤K

akk
−it

be a Dirichlet polynomial and set

M1 =

∫ 2T

T/2

∣∣A(t)
∣∣2 dt and M2(c) =

∫ πc/ log T

−πc/ log T

∑

T/2≤γ≤2T

∣∣A(γ + α)
∣∣2 dα.

Then, clearly, M2(c) is monotonically increasing and M2(μ) ≤ M1 ≤ M2(λ) when
T is sufficiently large. Therefore, if it can be shown that M2(c) < M1 for some
choice of A(t) and c, then λ > c. Similarly, if M2(c) > M1 for some choice of A(t)
and c, then μ < c. Using standard techniques to estimate M1 and M2(c), it can be
shown that

M2(c)/M1 = h(c) + o(1).

Hence, this argument is seen to be equivalent to Montgomery and Odlyzko’s method,
described above. Moreover, we note that this formulation of the method suggests
that we should choose a test function A(t) which is small near the zeros of ζ(s) to
exhibit large gaps between the zeros of the zeta-function and a test function A(t)
which is large near the zeros of ζ(s) to exhibit small gaps.

In [8], Montgomery and Odlyzko make the choices of

a+k =
1√
k
f
(

log k
logK

)
and a−k =

λ(k)√
k
f
(

log k
logK

)

(using the coefficients a+k to exhibit large gaps and a−k to exhibit small gaps),
where f is a continuous function of bounded variation on [0, 1] normalized so that∫ 1

0
|f |2 = 1 and λ(k), the Liouville function, equals (−1)Ω(k). Here, Ω(k) denotes

the total number of primes dividing k. By choosing f to be a certain modified
Bessel function, the values μ < 0.5179 and λ > 1.9799 are obtained. They mention
that this choice of f is nearly optimal for their choice of coefficients {a±k }.

In [2], Conrey, Ghosh, and Gonek choose the coefficients

a+k =
dr(k)√

k
and a−k =

λ(k)dr(k)√
k

,

where dr(k) is a multiplicative function defined on integral powers of a prime p by

dr(p
k) =

Γ(k + r)

Γ(r)k!
.

In this context, exhibiting large and small (normalized) gaps between consecutive
zeros of the zeta-function becomes an optimization problem in the variable r. The
choice r = 1.1 yields μ < 0.5172, and the choice r = 2.2 yields λ > 2.3378.

In order to prove Theorem 1.1, we combine the approaches of [8] and [2]. We
choose the coefficients

(2.2) a+k =
dr(k)√

k
f
( logK/k

logK

)
and a−k =

λ(k)dr(k)√
k

f
( logK/k

logK

)

for sufficiently smooth functions f . This variant allows us to optimize over both r
and f rather than over just r or just f .
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We now provide further insight into the choice of these coefficients. For simplic-
ity, suppose f is a polynomial. Since, for Re s > 1,

∑

k≥1

dr(k)

ks
= ζ(s)r and

∑

k≥1

λ(k)dr(k)

ks
=

(ζ(2s)
ζ(s)

)r

,

with our choice of coefficients {a+k } and {a−k } we see that the test function A(t)
approximates ζ( 12 + it)r and ζ(1 + 2it)r/ζ( 12 + it)r, respectively, and should have
the desired effect of making A(t) small (respectively large) near the zeros of ζ(s).

Moreover, when we multiply dr(k) by f
( logK/k

logK

)
, then A(t) behaves like a linear

combination of ζ( 12 + it)r and its derivatives and an analogous comment applies to
the other case. The presence of the function f leads to improved numerical results
for bounds for μ and λ.

With the coefficients {a±k } in (2.2), we define

h±(c) := c−
Re

(∑
nk≤K a±k a±nk gc(n)Λ(n)n

−1/2
)

∑
k≤K |a±k |2

,

where gc(n) is the arithmetic function defined in (2.1). In order to establish the
bounds for λ and μ in Theorem 1.1, we require the following lemma.

Lemma 2.1. Let T be large, K = T (log T )−2, and r ≥ 1. Then we have

h±(c) = c∓ 2r

π

∫ 1

0
(1−u)r

2−1f(u)
∫ u

0
sin(πcv)

v f(u−v) dv du
∫ 1

0
(1−u)r2−1f(u)2 du

+Of,r,ε

(
(log T )−1+ε

)
,

(2.3)

where f is a continuous, real-valued function of bounded variation on L2[0, 1] and
ε > 0 is arbitrary.

We are now able to deduce Theorem 1.1 from Lemma 2.1.

Proof of Theorem 1.1. We begin with the lower bound for λ. Choosing r = 3.00
and

f(x) = 1 + 11x+ 42x2 + 26x3 − 75x4

in (2.3), a numerical calculation shows that h+(2.6950) < 1 when T is sufficiently
large. This provides the lower bound for λ in Theorem 1.1.

We now establish the upper bound for μ. Choosing r = 1.23 and

f(x) = 1 + 0.99x− 0.42x2

in (2.3), a numerical calculation implies that h−(0.5155) > 1 for sufficiently large
T . This provides the upper bound for μ stated in Theorem 1.1. (See Table 1 and
Table 2 in §3 for some other numerically optimal choices of f .) �

Our choices of r and f shall be explained in more detail in the next section. We
conclude this section with the proof of Lemma 2.1.

Proof of Lemma 2.1. We begin by establishing the formula for h+(c) in (2.3). We
assume that r ≥ 1 so that dr(mn) ≤ dr(m)dr(n) for m,n ∈ N. It is well known
that, for fixed r ≥ 1,

(2.4)
∑

k≤x

dr(k)
2

k
= Ar(log x)

r2 + O
(
(log T )r

2−1
)
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uniformly for x ≤ T ; here Ar is a certain arithmetical constant (the exact value is
not important in our argument). By partial summation, we find that the denomi-
nator in the ratio of sums in the definition of h+(c) is

∑

k≤K

|a+k |2 =

∫ K

1−
f
( logK/x

logK

)2
d
(∑

k≤x

dr(k)
2

k

)

= Arr
2

∫ K

1

f
( logK/x

logK

)2
(log x)r

2−1 dx

x
+Of,r

(
(log T )r

2−1
)

by (2.4). By the variable change u = 1− log x
logK , we have

∑

k≤K

|a+k |2 = Arr
2(logK)r

2

∫ 1

0

(1−u)r
2−1f(u)2 du+Of,r

(
(log T )r

2−1
)
,

where ε > 0 is arbitrary.
We now evaluate the numerator in the ratio of sums in the definition of h+(c).

If we let

N+(c) :=
∑

nk≤K

a+k a
+
nkgc(n)Λ(n)n

−1/2,

then

N+(c) =
2

π

∑

nk≤K

dr(k)dr(kn)Λ(n)

kn log n
f
( logK/k

logK

)
f( logK/nk

logK

)
sin

(
πc logn

log T

)

=
2

π

∑

pk≤K

dr(k)dr(kp)

kp
f
( logK/k

logK

)
f( logK/pk

logK

)
sin

(
πc log p

log T

)

+Of,r

(
(log T )r

2−1
)

=
2r

π

∑

p≤K

sin
(
πc log p

log T

)

p

∑

k≤K/p

dr(k)
2

k
f
( logK/k

logK

)
f( logK/pk

logK

)

+Of,r

(
(log T )r

2−1
)
,

where the sum over p runs over the primes. By Stieltjes’ integration and a variable
change, the inner sum in the main term of the last expression for N+(c) is

∫ K/p

1−
f
( logK/x

logK

)
f( logK/px

logK

)
d
(∑

k≤x

dr(k)
2

k

)

= Arr
2

∫ K/p

1

f
( logK/x

logK

)
f( logK/px

logK

)
(log x)r

2−1 dx

x
+ Of,r

(
(log T )r

2−1
)

= Arr
2(logK)r

2

∫ 1

log p
log K

(1−u)r
2−1f(u)f(u− log p

logK

)
du + Of,r

(
(log T )r

2−1
)
.
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By combining the above estimates and interchanging the order of summation and

integration, we conclude that N+(c) = M+(c) +Of,r

(
(log T )r

2−1
)
, where

M+(c) =
2Arr

3

π
(logK)r

2

∫ 1

log 2
log K

(1−u)r
2−1f(u)

∑

2≤p≤Ku

sin
(
πc log p

log T

)

p
f
(
u− log p

logK

)
du

=
2Arr

3

π
(logK)r

2

∫ 1

0

(1−u)r
2−1f(u)

∑

2≤p≤Ku

sin
(
πc log p

log T

)

p
f
(
u− log p

logK

)
du

+ Of,r,ε

(
(log T )r

2−1+ε
)
.

By the prime number theorem with remainder term, it follows that

∑

2≤p≤Ku

sin
(
πc log p

log T

)

p
f
(
u− log p

logK

)
=

∫ Ku

2

sin
(
πc log x

log T

)

x log x
f
(
u− log x

logK

)
dx+Of,r

( 1

log T

)
.

By the variable change v = log x
logK , the integral is

∫ u

log 2
log K

sin
(
πcv logK

log T

)

v
f(u−v) dv =

∫ u

0

sin(πcv)

v
f(u−v)dv +Of,r,ε

(
(log T )−1+ε

)
.

Hence,

N+(c) =
2Arr

3

π
(logK)r

2

∫ 1

0

(1−u)r
2−1f(u)

∫ u

0

sin(πcv)

v
f(u−v) dv du

+Of,r,ε

(
(log T )r

2−1+ε
)
.

Combining our formulae for
∑

k≤K |a+k |2 and N+(c), we find that

h+(c) = c− 2r

π

∫ 1

0
(1−u)r

2−1f(u)
∫ u

0
sin(πcv)

v f(u−v) dv du
∫ 1

0
(1−u)r2−1f(u)2 du

+Of,r,ε

(
(log T )−1+ε

)
,

(2.5)

as claimed.
Since the proof of the formula for h−(c) is very similar to the proof of the

formula for h+(c), we simply indicate the changes that need to be made in the above

argument. In this case, we would consider the coefficients a−k = λ(k)dr(k)√
k

f
( logK/k

logK

)
.

Note that

(2.6) λ(n)2 = 1 and λ(pn) = −λ(n)

for every n ∈ N and every prime p. The first identity in (2.6) implies that

∑

k≤K

|a−k |2 =
∑

k≤K

|a+k |2 =
∑

k≤K

dr(k)
2

k
f
( logK/k

logK

)2
,

and using the second identity in (2.6) it is not hard to show that
∑

nk≤K

a−k a
−
nkgc(n)Λ(n)n

−1/2

= − 2

π

∑

pk≤K

dr(k)dr(kp)

kp
f
( logK/k

logK

)
f( logK/pk

logK

)
sin

(
πc log p

log T

)

+Of,r

(
(log T )r

2−1
)
.
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Each of these expressions were dealt with in our evaluation of h+(c). The only
difference is the − sign in the second identity. Thus, by the above calculations, we
find that

h−(c) = c+
2r

π

∫ 1

0
(1−u)r

2−1f(u)
∫ u

0
sin(πcv)

v f(u−v) dv du
∫ 1

0
(1−u)r2−1f(u)2 du

+Of,r,ε

(
(log T )−1+ε

)
.

(2.7)

This completes the proof of Lemma 2.1. �

3. Numerical calculations

In this section, we summarize the numerical calculations which led to Theo-
rem 1.1. This theorem establishes the best known bounds for λ and μ assuming
the Riemann Hypothesis; however, we are still far from proving the conjectured
values of μ = 0 and λ = ∞. In fact, it is known that this is not attainable us-
ing Montgomery and Odlyzko’s method with Dirichlet polynomials of length ≤ T .
Specifically, in [2], it is shown that h(c) < 1 if c < 1

2 and h(c) > 1 if c ≥ 6.2.
Moreover, the authors note, without proof, that h(c) > 1 if c ≥ 3.74. It would be
interesting to better understand the limitations of this method and, in particular,
if it can be used to show that μ ≤ 1

2 .
We have not been able to prove that our bounds for λ and μ in Theorem 1.1 are

the optimal bounds for our choice of coefficients {a±k } in (2.2). In the special case
of r = 1, this optimization problem has been solved (in terms of prolate spheroidal
wave functions). See comments in [8] and the articles [13] and [6]. When r 	= 1, the
analogous optimization problem seems considerably more difficult. Instead of trying
to solve it explicitly, we have instead chosen f to be a polynomial of low degree
(≤ 6) having the form f(x) = 1 + α1x + α2x

2 + · · · + αkx
k. Using Mathematica,

we numerically evaluated (2.5) and (2.7) for each choice of c and r in terms of
the coefficients α1, α2, . . . , αk. Then, using the Minimize/Maximize commands, we
were able to find numerically optimal polynomials of each degree. Our results are
summarized in the following tables. The coefficients of the polynomials in Table 1
are rounded to the nearest integer, and the coefficients in Table 2 are rounded to
two significant figures.

Table 1. Using the coefficients {a+k } defined in (2.2), the following
table displays some numerically optimal polynomials of low degree
for which h+(c) < 1.

Degree Value of c Value of r Polynomial

0 2.3378 2.17 1

1 2.6779 2.87 1 + 30x

2 2.6938 3.02 1 + 14x+ 39x2

3 2.6949 3.00 1 + 9x+ 60x2 − 45x3

4 2.6950 3.00 1 + 11x+ 42x2 + 26x3 − 75x4

5 2.6950 3.00 1 + 12x+ 35x2 + 61x3 − 155x4 + 60x5

6 2.6950 3.00 1 + 12x+ 39x2 + 37x3 − 67x4 − 77x5 + 76x6
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Table 2. Using the coefficients {a−k } defined in (2.2), the following
table displays some numerically optimal polynomials of low degree
for which h−(c) > 1.

Degree Value of c Value of r Polynomial

0 .5172 1.1 1

1 .5156 1.23 1 + 0.59x

2 .5155 1.23 1 + 0.99x− 0.42x2

3 .5155 1.23 1 + 0.9x− 0.19x2 − 0.16x3

Our numerical calculations seem to suggest that polynomials of low degree poly-
nomials work well; it does not seem like there is much to gain by taking f to be a
polynomial of degree greater than 4. To demonstrate this phenomenon, we observe
that one can recover the bounds for λ and μ, in the case of r = 1, derived in [8]
using polynomials of low degree in place of the modified Bessel functions. Letting
f(x) = 1+6.47x+15.36x2− 43.65x3+21.83x4, a numerical calculation shows that
h+(1.9799) < 1, and if we let f(x) = 1 + 0.465x − 0.465x2, then it can be shown
that h−(0.5179) > 1. These are the nearly optimal values obtained by Mongomery
and Odlyzko in [8] when r = 1.

From Table 1 it appears that the optimal value that can be obtained for λ occurs
when r ≈ 3. It should be noted that r = 3 does not appear to give the optimal
value, as we are able to show that r = 2.998 gives a slightly better value for λ using
polynomials of low degree. It would be interesting to determine, in the spirit of the
articles [13] and [6], the choices of r and f which give the optimal values for λ and
μ.
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