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Let C +
q be the set of even, primitive Dirichlet characters (mod q). Using the mollifier

method, we show that L(k)( 1
2
, χ) �= 0 for almost all the characters χ ∈ C +

q when k and
q are large. Here L(s, χ) is the Dirichlet L-function associated to the character χ.
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1. Introduction and Statement of the Main Result

An important topic in number theory is the behavior of families of L-functions and
their derivatives inside the critical strip. In particular, questions concerning the
order of vanishing of L-functions at special points on the critical line have received
a great deal of attention. In the case of Dirichlet L-functions, it is widely believed
that L(1

2 , χ) �= 0 for all primitive characters χ. For quadratic characters χ, this
appears to have been first conjectured by Chowla (see [3, Chap. 8]).

Though a proof of the non-vanishing of Dirichlet L-functions at the central point,
s = 1/2, has remained elusive, there has been considerable progress in showing that
L(1

2 , χ) is very often non-zero within various families of characters χ. In [10], Iwaniec
and Sarnak show that at least 1/3 of Dirichlet L-functions in the family of even
primitive characters, to a large modulus q, do not vanish at the central point. This
improves upon earlier work of Balasubramanian and Murty [1]. Soundararajan [16]
has shown that at least 7/8 of the central values in the family of quadratic Dirichlet
L-functions are non-zero. More recently, Baier and Young [2] consider the family
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of Dirichlet L-functions associated to cubic and sextic characters and show that
infinitely many (though not a positive proportion) of these functions are not zero
at the central point.

In [15], Michel and VanderKam consider the behavior of the derivatives of com-
pleted Dirichlet L-functions, Λ(s, χ), at the central point. (See Sec. 2, below, for a
definition.) In particular, they show that for ε > 0 and q sufficiently large depending
on ε, the inequality ∑

χ∈C+
q

Λ(k)( 1
2 ,χ) �=0

1 ≥ (Pk − ε) ·
∑

χ∈C+
q

1 (1.1)

holds, where the proportion

Pk =
2
3
− 1

36k2
− c

k4

for some absolute constant c > 0. As k tends to infinity, the proportion Pk

approaches two thirds. This is analogous to a result of Conrey [4], who shows that
almost all of the zeros of the kth derivative of the Riemann ξ-function are on the
critical line, and to a result of Kowalski et al. [13] who show that almost half of the
set

{
Λ(k)(1

2 , f)
}

is non-zero, where f runs over the set of primitive Hecke eigen-
forms of weight 2 relative to Γ0(q). This last result is best possible because half of
these forms are even and half are odd. However, unlike the results in [4, 13], the
inequality in (1.1) is not best possible since it is expected that Pk = 1 for every
positive integer k.

In contrast to [15], we study the behavior of the functions L(k)(s, χ), the deriva-
tives of Dirichlet L-functions, at s = 1

2 . When k and q are sufficiently large, we
show that L(k)(1

2 , χ) �= 0 for almost all of the even, primitive characters χ. As is
the case in [4, 13], our result is asymptotically best possible as k tends to infinity.

Theorem 1.1. Let k ∈ N. Then, for ε > 0 and q sufficiently large (depending
on ε), we have ∑

χ∈C+
q

L(k)( 1
2 ,χ) �=0

1 ≥ (P ∗
k − ε) ·

∑
χ∈C+

q

1, (1.2)

where the proportion

P ∗
k = 1 − 1

16k2
− c

k4
(1.3)

for some absolute constant c > 0. In particular, P ∗
1 ≥ 0.7544, P ∗

2 ≥ 0.9083, P ∗
3 ≥

0.9642, P ∗
4 ≥ 0.9853, P ∗

5 ≥ 0.9935, and P ∗
25 ≥ 0.9999.

Theorem 1.1 confirms a prediction of Conrey and Snaith which arises from the
L-functions Ratios Conjectures (see [8, §8.1]). Their heuristic is based upon studying
the behavior of the mollified moments of the derivatives of the Riemann zeta-
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function in t-aspect which they conjecture should behave similarly to the mollified
moments of the derivatives of Dirichlet L-functions at the central point in q-aspect.
This is in agreement with the conjectures of Keating and Snaith [11, 12] that suggest
that both of these families of L-functions, the Riemann zeta-function in t-aspect
and Dirichlet L-functions in q-aspect, should have the same underlying “unitary”
symmetry and so their (mollified) moments should behave similarly. See [5] for a
detailed discussion of these ideas. In particular, our Proposition 2.2 is a q-analogue
of a result of Conrey and Ghosha who computed the mollified moments of the
derivatives of the Riemann zeta-function on the critical line.

We remark that Theorem 1.1 does not improve upon the main result of [15]. In
fact, for k ∈ N, the zeros of the functions L(k)(s, χ) and Λ(k)(s, χ) are expected to
behave quite differently. To illustrate this point, let χ be a primitive character and
assume that the Riemann Hypothesis (RHχ) holds for the function L(s, χ). Then
all the non-trivial zeros of L(s, χ) and all the zeros of Λ(s, χ) lie on the critical line
Re s = 1

2 . In addition, L(s, χ) has an infinite number of trivial zeros on the negative
real axis. Under the RHχ, one can prove that all the zeros of Λ(k)(s, χ) lie on the
line Re s = 1

2 . In contrast, it can be shown that all but possibly a finite number of
the non-real zeros of L(k)(s, χ) are forced to lie in the half-plane Re s ≥ 1

2 and it is
very likely the case that none of these zeros lie on the critical line.b In particular,
it is reasonable to conjecture that L(k)(1

2 , χ) �= 0 for all primitive characters χ and
all k ∈ N. However, if χ is an even, real-valued, primitive (i.e. quadratic) character,
then the functional equation for L(s, χ) states that Λ(s, χ) = Λ(1− s, χ). It follows
from this that Λ(k)(1

2 , χ) = 0 whenever k is odd. Thus, the analogous conjecture for
Λ(k)(1

2 , χ) fails for infinitely many values of k and infinitely many characters χ.

1.1. Notation and conventions

We say a Dirichlet character χ (mod q) is even if χ(−1) = 1. We let Cq denote the
set of primitive characters (mod q) and let C +

q denote the subset of characters in
Cq which are even. We put ϕ+(q) = 1

2ϕ∗(q) where

ϕ∗(q) =
∑
k|q

ϕ(k)µ
( q

k

)
=
∣∣Cq

∣∣;
the proof of this appears in Lemma 4.1, below. It is not difficult to show that

∣∣C +
q

∣∣ =
ϕ+(q) + O(1). In addition, we write

∑+
χ (mod q) to indicate that the summation

is restricted to χ ∈ C +
q and we write

∑�
a (mod q) and

∑�
n to indicate that the

summation is restricted to the residues a (mod q) which are coprime to q and to n

which are relatively prime to q, respectively.

aSee [6, Eq. (7)].
bWe can show that if q is sufficiently large, then the only zeros of L′(s, χ) on the critical line are
the multiple zeros of L(s, χ). However, it is believed that the zeros of L(s, χ) are simple.



March 16, 2011 9:49 WSPC/S1793-0421 203-IJNT S1793042111004125

374 H. M. Bui & M. B. Milinovich

2. The Mollified Moments of L(k)
(
1
2
, χ
)

As may be expected, we prove Theorem 1.1 by computing certain mollified first and
second moments of L(k)(1

2 , χ) over the characters χ ∈ C +
q and then we use Cauchy’s

inequality.
For χ ∈ C +

q , the Dirichlet L-function L(s, χ) satisfies the functional equation

Λ(s, χ) :=
(

q

π

)s/2

Γ
(

s

2

)
L(s, χ) = εχΛ(1 − s, χ), (2.1)

where χ̄ is conjugate character of χ, εχ = τ(χ)q−1/2, and τ(χ) is the Gauss sum

τ(χ) =
∑

a(mod q)

χ(a)e
(

a

q

)
; e(x) = e2πix.

Note that |εχ| = 1 and, since χ is even, τ(χ) = τ(χ̄). For each χ ∈ C +
q , we let

M(χ) = M(χ, P, y) :=
∑
n≤y

µ(n)χ(n)√
n

P

(
log y/n

log y

)
, (2.2)

where P is an arbitrary polynomial satisfying the conditions P (0) = 0 and P (1) = 1.
The purpose of the function M(χ) is to smooth out or “mollify” the large values of
L(k)(1

2 , χ) as we average over χ ∈ C +
q . Since |εχL(k)(1

2 , χ̄)| = |L(k)(1
2 , χ)|, if we let

S1(k, q) =
∑

χ (mod q)

+
εχL(k)

(
1
2
, χ̄

)
M(χ) (2.3)

and

S2(k, q) =
∑

χ (mod q)

+
∣∣∣∣L(k)

(
1
2
, χ

)∣∣∣∣
2 ∣∣M(χ)

∣∣2, (2.4)

then Cauchy’s inequality implies that

∑
χ (mod q)

L(k)( 1
2 ,χ) �=0

+
1 ≥

∣∣S1(k, q)
∣∣2

S2(k, q)
. (2.5)

Thus, we require a lower bound for |S1(k, q)
∣∣ and an upper bound for S2(k, q). The

following propositions provide such estimates.

Proposition 2.1. Let k ∈ N. Then, for y = qϑ and 0 < ϑ < 1, we have

S1(k, q) = (−1)kϕ+(q) logk q(1 + O((log q)−1)),

where the implied constant depends on ϑ and k.

Proposition 2.2. Let k be a positive integer and ε > 0 be arbitrary. Then, for
y = qϑ and 0 < ϑ < 1

2 , we have

S2(k, q) = Ck(ϑ) ϕ+(q) log2k q(1 + O((log q)−1+ε)),
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where

Ck(ϑ) =
ϑ−1

2k + 1

∫ 1

0

P ′(x)2 dx +
1
2

+
ϑk2

2k − 1

∫ 1

0

P (x)2 dx,

and the implied constant depends on ϑ, ε and k.

It is clear from (2.5) and the propositions that in order to prove Theorem 1.1
we need to choose the polynomial P , for each k ≥ 1, which minimizes the con-
stant Ck(ϑ). This is done in Sec. 6. It turns out that except for a term which is
exponentially small (as a function of k), the optimal choice of P is independent of
the choice of ϑ. This is not surprising, since similar phenomena have been observed
when mollifying high derivatives of the Riemann zeta-function and the Riemann
ξ-function on the critical line, and also when mollifying high derivatives of families
of L-functions at the central point (see [4, 6, 13, 15]).

3. Proof of Proposition 2.1

In this section we establish Proposition 2.1. The result we require is implicit in
[15, §3, p. 135] where it is shown thatc

∑
χ (mod q)

+
Λ(k)

(
1
2
, χ

)
M(χ) = ϕ+(q)Γ

(
1
4

)
q̂1/2 logk q̂(1 + O((log q)−1)) (3.1)

for k ∈ N and 0 < ϑ < 1. Here q̂ =
√

q/π and the implied constant depends on ϑ.
From (2.1), we see that

εχL(s, χ̄) = Hq(s)Λ(1 − s, χ), where Hq(s) =
q̂−s

Γ
(s

2

) . (3.2)

Using well-known estimates for the gamma function, it follows that

H(k)
q

(
1
2

)
= (−1)k q̂−1/2

Γ
(

1
4

) logk q̂(1 + Ok((log q)−1)) (3.3)

for each k ∈ N. Now, combining (3.1)–(3.3) and using the Leibniz formula for
differentiation, we find that

∑
χ(mod q)

+
εχL(k)

(
1
2
, χ̄

)
M(χ)

=
∑

χ(mod q)

+
k∑

�=0

(
k

�

)
H(�)

q

(
1
2

)
(−1)k−�Λ(k−�)

(
1
2
, χ

)
M(χ)

cIt follows from the functional equation for Λ(s, χ) that the quantity L (Pk) in [15, §3] is equal to
2

P+
χ(mod q)

Λ(k)
`

1
2
, χ

´
M(χ).
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=
k∑

�=0

(
k

�

)
(−1)k−�H(�)

q

(
1
2

) ∑
χ(mod q)

+
Λ(k−�)

(
1
2
, χ

)
M(χ)

= (−1)k
k∑

�=0

(
k

�

)
ϕ+(q) logk q̂(1 + O((log q)−1))

= (−1)k2kϕ+(q) logk q̂(1 + O((log q)−1)),

where the implied constant depends on ϑ and k. Since 2 log q̂ = log q + O(1), we
can conclude that∑

χ(mod q)

+
εχL(k)

(
1
2
, χ̄

)
M(χ) = (−1)k ϕ+(q) logk q(1 + O((log q)−1)).

This establishes Proposition 2.1.

4. Some Preliminary Results

In this section, we collect some preliminary results which we will use to establish
Proposition 2.2. In what follows, q is a large positive integer and α, β ∈ C are taken
to be small shifts satisfying |α|, |β| ≤ (log q)−1.

Our first lemma concerns the orthogonality of primitive characters.

Lemma 4.1. For (mn, q) = 1 we have

∑
χ(mod q)

+
χ(m)χ(n) =

1
2

∑
q=dr

r|m±n

µ(d)ϕ(r),

where the sums for the different signs ± are to be taken separately.

Proof. Let

f(h) =
∑

χ(mod h)

∗
χ(m)χ(n)

where
∑∗ denotes summation over primitive characters χ. Then for (mn, q) = 1 we

have

∑
h|q

f(h) =
∑

χ(mod q)

χ(m)χ(n) =

{
ϕ(q), if m ≡ n (mod q),

0, otherwise.

Using Möbius inversion we obtain∑
χ(mod q)

∗
χ(m)χ(n) = f(q) =

∑
h|q

h|m−n

ϕ(h)µ
( q

h

)
.
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It follows from this identity that

∣∣Cq

∣∣ =
∑

χ(mod q)

∗
1 =

∑
k|q

ϕ(k)µ
( q

k

)
,

which justifies an above remark. Our lemma now follows by noting that

∑
χ(mod q)
χ (−1)=1

∗
χ(m)χ(n) =

∑
χ(mod q)

∗ [
1 + χ(−1)

2

]
χ(m)χ(n).

Lemma 4.2. Let G(s) be an even, entire function with rapid decay as |s| → ∞ in
any fixed vertical strip A ≤ σ ≤ B and with G(0) = 1. Let

W±
α,β(x) =

1
2πi

∫ 1+i∞

1−i∞
G(s)H(s)g±α,β(s)x−s ds

s
, (4.1)

where

g+
α,β(s) =

Γ
(

1/2 + α + s

2

)
Γ
(

1/2 + β + s

2

)

Γ
(

1/2 + α

2

)
Γ
(

1/2 + β

2

) ,

g−α,β(s) =
Γ
(

1/2 − α + s

2

)
Γ
(

1/2 − β + s

2

)

Γ
(

1/2 + α

2

)
Γ
(

1/2 + β

2

) ,

and

H(s) =

(
α + β

2

)2

− s2

(
α + β

2

)2 (for α + β �= 0).

Then for χ1, χ2 ∈ C +
q and α �= −β we have that

L

(
1
2

+ α, χ1

)
L

(
1
2

+ β, χ2

)

=
∑
m,n

χ1(m)χ2(n)
m1/2+αn1/2+β

W+
α,β

(
πmn

q

)

+ εχ1εχ2

(
q

π

)−α−β∑
m,n

χ1(m)χ2(n)
m1/2−αn1/2−β

W−
α,β

(
πmn

q

)
.
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Remarks. (1) An admissible choice of G in the above lemma is G(s) = exp(s2).
(2) The purpose of the function H(s) in the above lemma is to cancel the poles

of the functions ζq(1 ± (α + β) + 2s) at s = ∓(α + β)/2 which appear in the
proof of the next lemma. This substantially simplifies our later calculations. A
similar effect has been observed by Conrey et al. (see [7, §3]).

Proof. Consider the integral

Iα,β =
1

2πi

∫ 1+i∞

1−i∞
G(s)H(s)

Λ(1/2 + α + s, χ1)Λ(1/2 + β + s, χ2)

Γ
(

1/2 + α

2

)
Γ
(

1/2 + β

2

) ds

s
.

Shifting the line of integration to Re s = −1 and using Cauchy’s theorem, it follows
that

Iα,β = R0 +
1

2πi

∫ −1+i∞

−1−i∞
G(s)H(s)

Λ(1/2 + α + s, χ1)Λ(1/2 + β + s, χ2)

Γ
(

1/2 + α

2

)
Γ
(

1/2+β
2

) ds

s
,

where R0 is the residue of the integrand at s = 0. Evidently,

R0 =
(

q

π

)(1+α+β)/2

L

(
1
2

+ α, χ1

)
L

(
1
2

+ β, χ2

)
.

By making the change of variables s to −s and using (2.1), we have that

R0 = Iα,β +
1

2πi

∫ 1+i∞

1−i∞
G(s)H(s)

Λ(1/2 − α + s, χ1)Λ(1/2 − β + s, χ2)

Γ
(

1/2 + α

2

)
Γ
(

1/2 + β

2

) ds

s
.

The lemma now follows by using (2.1) to express the Λ-functions in terms of Dirich-
let series and then integrating term-by-term.

Lemma 4.3. Let

S+
α,β(x) =

∞∑
n=1

(n,q)=1

W+
α,β(n2/x)
n1+α+β

and S−
α,β(x) =

∞∑
n=1

(n,q)=1

W−
α,β(n2/x)
n1−α−β

.

Then, for any ε > 0 and α �= −β, we have that

S+
α,β(x) = ζq(1 + α + β) + O(τ(q)x−1/2+ε)

and

S−
α,β(x) = g−α,β(0)ζq(1 − α − β) + O(τ(q)x−1/2+ε),

where τ(q) is the number of divisors of q and the function ζq(s) is defined by

ζq(s) = ζ(s)
∏
p|q

(
1 − 1

ps

)
.
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Proof. From (4.1), we observe that

S+
α,β(x) =

1
2πi

∫ 1+i∞

1−i∞
G(s)H(s)g+

α,β(s)xsζq(1 + α + β + 2s)
ds

s
.

We now shift the line of integration left to Re s = −1/2 + ε, encountering only a
simple pole of the integrand at s = 0. We note that the simple pole of ζq(1 + α +
β + 2s) at s = −(α + β)/2 is canceled by a zero H(s). The residue of the integrand
at s = 0 is ζq(1 + α + β). Also, the integral along the new contour is trivially
� τ(q)x−1/2+ε. This implies the first claim of the lemma. The second claim can be
proved in a similar manner.

Lemma 4.4. Assume α �= −β and let

B(m1, n1; α, β) =
∑

χ (mod q)

+
L

(
1
2

+ α, χ

)
L

(
1
2

+ β, χ

)
χ(m1)χ(n1).

Then for (m1, n1) = 1 and (m1n1, q) = 1 we have

B(m1, n1; α, β) =
ϕ+(q)√
m1n1

(
ζq(1 + α + β)

mβ
1nα

1

+
(

q

π

)−α−β

g−α,β(0)
ζq(1 − α − β)

m−α
1 n−β

1

)

+ O(β(m1, n1) + q1/2+ε),

where β(m1, n1) satisfies

∑
m1,n1≤y

β(m1, n1)√
m1n1

� yq1/2+ε.

Proof. With χ1 = χ, χ2 = χ̄, Lemmas 4.1 and 4.2 imply that

B(m1, n1; α, β) =
1
2

∑
q=dr

µ(d)ϕ(r)
∑

r|mm1±nn1

�
W+

α,β

(
πmn

q

)
m1/2+αn1/2+β

+
1
2

(
q

π

)−α−β ∑
q=dr

µ(d)ϕ(r)
∑

r|mn1±nm1

�
W−

α,β

(
πmn

q

)
m1/2−αn1/2−β

, (4.2)

where
∑� denotes summation over all (mn, q) = 1. The main contribution to

B(m1, n1; α, β) comes from the diagonal terms mm1 = nn1 and mn1 = nm1 in the
first and second sums on the right-hand side of (4.2), respectively. For (m1, n1) = 1,
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this contribution is

ϕ+(q)


 ∑

mm1=nn1

�
W+

α,β

(
πmn

q

)
m1/2+αn1/2+β

+
(

q

π

)−α−β ∑
mn1=nm1

�
W−

α,β

(
πmn

q

)
m1/2−αn1/2−β




= ϕ+(q)




S+
α,β

(
q

πm1n1

)
n

1/2+α
1 m

1/2+β
1

+
(

q

π

)−α−β S−
α,β

(
q

πm1n1

)
m

1/2−α
1 n

1/2−β
1


,

where S±
α,β(x) are defined in Lemma 4.3. By Lemma 4.3, the above expression is

equal to

ϕ+(q)√
m1n1

(
ζq(1 + α + β)

mβ
1nα

1

+
(

q

π

)−α−β

g−α,β(0)
ζq(1 − α − β)

m−α
1 n−β

1

)
+ O(q1/2+ε).

All the other terms in (4.2) contribute at most

β(m1, n1) =
∑

mm1 �=nn1

(mm1 ± nn1, q)√
mn

∣∣∣∣W±
α,β

(
πmn

q

)∣∣∣∣.
Using the estimate |W±

α,β(x)| � (1 + |x|)−1 one can show that (see [10, Sec. 4])

∑
m1,n1≤y

β(m1, n1)√
m1n1

� yq1/2+ε(log yq)4.

The lemma now follows from the above estimates.

Lemma 4.5. Let

Sj(d) =
∑

n≤y/d
(n,dq)=1

µ(n)
n

(log n)jP

(
log y/dn

log y

)
.

Then Sj(d) = Mj(d) + O(Ej(d)) uniformly for d ≤ y, where

M0(d) =
dq

ϕ(dq) log y
P ′
(

log y/d

log y

)
, M1(d) = − dq

ϕ(dq)
P

(
log y/d

log y

)
,

Mj(d) = 0 (for j ≥ 2), and

Ej(d) = (log y)j−2(log log y)2(1 + (d/y)θ log y)
∏
p|dq

(
1 +

1
p1−2δ

)

with θ � 1/ log log y and δ = 1/ log log y.

Proof. Consider the Dirichlet polynomial

G(z) =
∑

n≤y/d
(n,dq)=1

µ(n)
n1+z

P

(
log y/dn

log y

)
.
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Since, for n ≤ y/d, we have

P

(
log y/dn

log y

)
=
∑
�≥1

a�

(log y)�
(log y/dn)� =

∑
�≥1

a��!
(log y)�

1
2πi

∫ 2+i∞

2−i∞

(
y

dn

)s
ds

s�+1
,

we can express G(z) as

G(z) =
∑
�≥1

a��!
(log y)�

1
2πi

∫ 2+i∞

2−i∞

(
y

d

)s

A(s + z)
ds

ζ(1 + z + s)s�+1

where

A(s) =
∏
p|dq

(
1 − 1

p1+s

)−1

.

We note that G(z) is precisely Gj(1 + z) in Lemma 10 of Conrey [4] (see the first
expression in the proof), with x being replaced by y/d and 1/F (j, s) being replaced
by A(s − 1). Using this, we obtain that

G(j)(z) = Mj(d; z) + O(Ej(d)) (4.3)

uniformly for 0 < |z| � 1/ log y, where

M0(d; z) = A(z)
[
zP

(
log y/d

log y

)
+

1
log y

P ′
(

log y/d

log y

)]
,

M1(d; z) = A(z)P
(

log y/d

log y

)
, and

Mj(d; z) = 0 for j ≥ 2.

Since G(z) and Mj(d; z) are both holomorphic in z, (4.3) also holds for z = 0.
Observing that Sj(d) = (−1)jG(j)(0) and A(0) = dq/ϕ(dq), the lemma follows.

Lemma 4.6. Suppose that f(d) =
∏

p|d f(p) with f(p) = 1+O(p−c) for some c > 0
and that

Jj(y) =
∑
d≤y

� µ(d)2

d
f(d)

(
log

y

d

)j

.

Then we have

Jj(y) =
1

j + 1

∏
p

(
1 − 1

p

)(
1 +

f(p)
p

)∏
p|q

(
1 +

f(p)
p

)−1

(log y)j+1 + O((log y)j).

Proof. We consider only the case where j ≥ 1. The case j = 0 can be handled by
following [14, proof of Lemma 3.11]. We first express Jj(y) as a complex integral,
namely

Jj(y) =
j!

2πi

∫ 2+i∞

2−i∞

∑
(d,q)=1

µ(d)2f(d)
d1+s

ys ds

sj+1
.
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The sum over d is

∏
p�q

(
1 +

f(p)
p1+s

)
= B(s)ζ(1 + s),

where

B(s) =
∏
p

[(
1 − 1

p1+s

)(
1 +

f(p)
p1+s

)]∏
p|q

(
1 +

f(p)
p1+s

)−1

.

Since f(p) = 1+O(p−c) for some c > 0, B(s) is absolutely and uniformly convergent
in some half-plane containing the origin. We now shift the line of integration left
to Re s = −δ, crossing a pole of order j + 2 at s = 0. Here δ > 0 is some small,
fixed constant chosen so that the arithmetical factor B(s) converges absolutely for
Re s ≥ −δ. Using Cauchy’s theorem and the bound ζ(s) � (1 + |t|)1/2+δ on the
new line of integration, we obtain the estimate

Jj(y) =
1

j + 1
B(0)(log y)j+1 + O((log y)j).

The lemma now follows.

5. Proof of Proposition 2.2

In this section, we prove Proposition 2.2. Throughout the proof, we let y = qϑ and
assume that 0 < ϑ < 1

2 . We begin by considering the mollified “shifted” second
moment

Jα,β(q) =
∑

χ(mod q)

+
L

(
1
2

+ α, χ

)
L

(
1
2

+ β, χ

)
|M(χ)|2, (5.1)

where α, β ∈ C are small shifts satisfying |α|, |β| ≤ (log q)−1 and α �= −β. Applying
Lemma 4.4, we have that

Jα,β(q) =
∑

m,n≤y

µ(m)µ(n)√
mn

P

(
log y/m

log y

)
P

(
log y/n

log y

)
B(m, n; α, β)

= Σ1(α, β) + Σ2(α, β) + O(yq1/2+ε), (5.2)

where

Σ1(α, β) = ϕ+(q) ζq(1 + α + β)
∑
d≤y

� ∑
m,n≤y/d
(m,n)=1

� µ(dm)µ(dn)
dm1+βn1+α

×P

(
log y/dm

log y

)
P

(
log y/dn

log y

)
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and

Σ2(α, β) = ϕ+(q)
(

q

π

)−α−β

g−α,β(0)ζq(1 − α − β)

×
∑
d≤y

� ∑
m,n≤y/d
(m,n)=1

� µ(dm)µ(dn)
dm1−αn1−β

P

(
log y/dm

log y

)
P

(
log y/dn

log y

)
.

We can remove the restriction (m, n) = 1 by writing Kα,β(q) := Σ1(α, β) +
Σ2(α, β) as

ϕ+(q)
∑
cd≤y

� µ(c)µ(cd)2

c2d

×
∑

m,n≤y/cd
(mn,cdq)=1

µ(m)µ(n)
mn

P

(
log y/cdm

log y

)
P

(
log y/cdn

log y

)
Zq,α,β(m, n, c), (5.3)

where

Zq,α,β(m, n, c) =
ζq(1 + α + β)
cα+βmβnα

+
(

q

π

)−α−β

g−α,β(0)
ζq(1 − α − β)

c−α−βm−αn−β
. (5.4)

Though the function ζq(s) has a simple pole at s = 1, we note that Zq,α,β(m, n, c)
is holomorphic in both α and β in a small neighborhood of α = β = 0 (as can be
seen, for instance, by computing the Laurent series expansion of each of the terms
on the right-hand side of (5.4) about α = β = 0). Therefore, the expressions in
(5.1) and (5.3) provide an analytic continuation of the function Jα,β(q) − Kα,β(q)
to the region |α|, |β| ≤ (log q)−1; the function K0,0(q) must be defined in terms of
the limit

Zq,0,0(m, n, c) = lim
α→0

(
ζq(1 + 2α)
(c2mn)α

+
(

q

π

)−2α
ζq(1 − 2α)
(c2mn)−α

)
.

Moreover, by the maximum modulus principle and (5.2), we see that

|Jα,β(q) − Kα,β(q)| �ε yq1/2+ε

uniformly for |α|, |β| ≤ (log q)−1. Hence, by Cauchy’s Integral Theorem,

d2k

dαkdβk
[Jα,β(q) − Kα,β(q)]

∣∣∣∣
α=β=0

=
(k!)2

(2πi)2

∫
Cα

∫
Cβ

Jwα,wβ
(q) − Kwα,wβ

(q)
(wαwβ)k+1

dwαdwβ

�k,ε yq1/2+2ε,
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where Cα (respectively, Cβ) denotes the positively oriented circle in the complex
plane centered at α = 0 (respectively, β = 0) with radius (log q)−1. Thus, we have
shown that

S2(k, q) =
d2k

dαkdβk
Kα,β(q)

∣∣∣∣
α=β=0

+ Ok,ε(yq1/2+2ε). (5.5)

Writing

d2k

dαkdβk
Zq,α,β(m, n, c)

∣∣∣∣
α=β=0

=
∑

h+i+j≤2k+1

(ah,i,j(log c)h + bh,i,j(log q/c)h)(log m)i(log n)j

for certain constants ah,i,j and bh,i,j , we see that

d2k

dαkdβk
Kα,β(q)

∣∣∣∣
α=β=0

= ϕ+(q)
∑

h+i+j≤2k+1

∑
cd≤y

�
(ah,i,j(log c)h + bh,i,j(log cq)h)

µ(c)µ(cd)2

c2d
Si(cd)Sj(cd),

(5.6)

where Si and Sj are defined in Lemma 4.5. It follows from Lemma 4.5 that

Si(cd) �i
cdq

ϕ(cdq)
(log y)i−1,

from which it can be seen that the contribution of the terms with h + i + j ≤ 2k to
the sum on the right-hand side of (5.6) is

�k (log q)2k−1qϕ+(q)/ϕ(q) �k,ε ϕ+(q)(log q)2k−1+ε.

The last estimate holds since q/ϕ(q) � log log q. It remains to consider the contri-
bution of the terms with h + i + j = 2k + 1. In the notation of Lemma 4.5, it can
be shown that

∑
cd≤y

� Si(cd)Ej(cd)
c2d

�i,j,ε (log y)i+j−2+ε

and

∑
cd≤y

� Ei(cd)Ej(cd)
c2d

�i,j,ε (log y)i+j−3+ε.
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Hence the contribution of the error terms Ei and Ej , arising from Lemma 4.5, to
the terms in (5.6) with h + i + j = 2k + 1 is �k,ε ϕ+(q)(log q)2k−1+ε. Thus,

d2k

dαkdβk
Kα,β(q)

∣∣∣
α=β=0

= ϕ+(q)
∑

h+i+j=2k+1

∑
cd≤y

�
(ah,i,j(log c)h

+ bh,i,j(log cq)h)
µ(c)µ(cd)2

c2d
Mi(cd)Mj(cd)

+ Ok,ε(ϕ+(q)(log q)2k−1+ε).

Since Mi(cd) = 0 for i > 1, we need only to consider the terms with 0 ≤ i, j ≤ 1.
Moreover, the terms involving powers of log c can be ignored, as they contribute
(due to the presence of c−2 in the sum) an amount which is �k,ε (log q)2k−1+ε.
Therefore, the above expression simplifies to

d2k

dαkdβk
Kα,β(q)

∣∣∣
α=β=0

= T1 + 2T2 + T3 + Ok,ε(ϕ+(q)(log q)2k−1+ε), (5.7)

where

T1 = ϕ+(q)
∑
cd≤y

�
b2k+1,0,0(log q)2k+1 µ(c)µ(cd)2

c2d
M0(cd)2,

T2 = ϕ+(q)
∑
cd≤y

�
b2k,1,0(log q)2k µ(c)µ(cd)2

c2d
M0(cd)M1(cd)

and

T3 = ϕ+(q)
∑
cd≤y

�
b2k−1,1,1(log q)2k−1 µ(c)µ(cd)2

c2d
M1(cd)2.

We first evaluate T1. Using Lemma 4.5, we have that

T1 = ϕ+(q)
b2k+1,0,0q

2(log q)2k+1

ϕ(q)2(log y)2
∑
cd≤y

� µ(c)µ(cd)2d
ϕ(cd)2

P ′
(

log y/cd

log y

)2

= ϕ+(q)
b2k+1,0,0q

2(log q)2k+1

ϕ(q)2(log y)2
∑
n≤y

� µ(n)2

ϕ(n)
P ′
(

log y/n

log y

)2

.

Now Lemma 4.6 implies that

∑
n≤y

� µ(n)2

ϕ(n)
P ′
(

log y/n

log y

)2

=
ϕ(q)

q
(log y + O(1))

∫ 1

0

P ′(x)2dx.

Hence

T1 = ϕ+(q)
b2k+1,0,0q(log q)2k+1

ϕ(q) log y

∫ 1

0

P ′(x)2dx + Ok,ε(ϕ+(q)(log q)2k−1+ε). (5.8)
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Similarly, it can be shown that

T2 = −ϕ+(q)
b2k,1,0q(log q)2k

ϕ(q)

∫ 1

0

P ′(x)P (x)dx + Ok,ε(ϕ+(q)(log q)2k−1+ε)

= −ϕ+(q)
b2k,1,0q(log q)2k

2ϕ(q)
+ Ok,ε(ϕ+(q)(log q)2k−1+ε) (5.9)

and that

T3 = ϕ+(q)
b2k−1,1,1q(log q)2k−1 log y

ϕ(q)

∫ 1

0

P (x)2dx + Ok,ε(ϕ+(q)(log q)2k−1+ε).

(5.10)

Thus, combining (5.5), (5.7)–(5.10), and noting that

b2k+1,0,0 =
ϕ(q)

q(2k + 1)
, b2k,0,1 = −ϕ(q)

2q
and b2k−1,1,1 =

ϕ(q)k2

q(2k − 1)
,

it follows that, for y = qϑ and 0 < ϑ < 1
2 ,

S2(k, q) =
(

ϑ−1

2k + 1

∫ 1

0

P ′(x)2dx +
1
2

+
ϑk2

2k − 1

∫ 1

0

P (x)2dx

)
ϕ+(q)(log q)2k

+ Ok,ε(ϕ+(q)(log q)2k−1+ε).

This completes the proof of Proposition 2.2.

6. Completing the Proof of Theorem 1.1: Optimizing the Mollifier

We are now in a position to complete the proof of Theorem 1.1. By Propositions 2.1
and 2.2, for 0 < ϑ < 1

2 , we see that

P ∗
k ≥

[
ϑ−1

2k + 1

∫ 1

0

P ′(x)2dx +
1
2

+
ϑk2

2k − 1

∫ 1

0

P (x)2dx

]−1

. (6.1)

For each choice of k ∈ N, we wish to find a polynomial P satisfying P (0) = 0
and P (1) = 1 that maximizes the expression on the right-hand side of the above
inequality. Equivalently, we wish to minimize the expression

Fk(P ) :=
ϑ−1

2k + 1

∫ 1

0

P ′(x)2dx +
ϑk2

2k − 1

∫ 1

0

P (x)2dx. (6.2)

This optimization problem is solved explicitly in [15, Sec. 7] and, independently, in
[6, p. 97]. We recall the argument given by Michel and Vanderkam in [15].

Using a standard approximation argument, the polynomial P can be replaced
by any infinitely differentiable function with a rapidly convergent Taylor series on
[0, 1]. In this case, using the calculus of variations, the optimization problem can be
explicitly solved and, for k > 0, the optimal choice of P is

P (t) =
sinh(Λt)
sinh(Λ)

, where Λ = ϑk

√
2k + 1
2k − 1

.
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Table 1. In the table, lower bounds for the propor-
tions Pk and P ∗

k , defined in Eqs. (1.1) and (1.2),
respectively. These calculations were performed by
using the expression for Fk(P ) given in (6.3) with
ϑ = 1

2
− 1 × 10−8.

k Lower bound for Pk Lower bound for P ∗
k

1 2
3
× 0.8216 . . . 0.7544 . . .

2 2
3
× 0.9369 . . . 0.9083 . . .

3 2
3
× 0.9758 . . . 0.9642 . . .

4 2
3
× 0.9901 . . . 0.9853 . . .

5 2
3
× 0.9956 . . . 0.9935 . . .

10 2
3
× 0.9995 . . . 0.9993 . . .

15 2
3
× 0.9997 . . . 0.9997 . . .

20 2
3
× 0.9998 . . . 0.9998 . . .

25 2
3
× 0.9999 . . . 0.9999 . . .

With this choice of P , it follows that

Fk(P ) =
Λ cothΛ
ϑ(2k + 1)

=
k coth Λ√
4k2 − 1

. (6.3)

As k gets large, the function coth Λ → 1 and so asymptotically (as k → ∞) we have

Fk(P ) =
1
2

+
1

16k2
+ O

(
1
k4

)
.

When combined with (6.1) and (6.2), this asymptotic formula is enough to establish
the estimate for P ∗

k in (1.3) and, thus, completes the proof of Theorem 1.1.
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