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Upper bounds for moments of ζ ′(ρ)

Micah B. Milinovich

Abstract

Assuming the Riemann hypothesis, we obtain an upper bound for the 2kth moment of the
derivative of the Riemann zeta-function averaged over the non-trivial zeros of ζ(s) for every
positive integer k. Our bounds are nearly as sharp as the conjectured asymptotic formulae for
these moments.

1. Introduction and statement of the main results

Let ζ(s) denote the Riemann zeta-function. This article is concerned with estimating discrete
moments of the following form:

Jk(T ) =
1

N(T )

∑
0<γ�T

∣∣ζ ′(ρ)
∣∣2k

, (1.1)

where k ∈ N and the sum runs over the non-trivial (complex) zeros ρ = β + iγ of ζ(s). As
usual, the function

N(T ) =
∑

0<γ�T

1 =
T

2π
log

T

2π
− T

2π
+ O(log T ) (1.2)

denotes the number of zeros of ζ(s) up to a height T counted with multiplicity.
It is an open problem to determine the behavior of Jk(T ) as k varies. Independently, Gonek

[7] and Hejhal [10] have conjectured that

Jk(T ) � (log T )k(k+2) (1.3)

for fixed k ∈ R as T → ∞. Though widely believed for positive values of k, there is evidence
to suggest that this conjecture is false for k � −3/2.

Until recently, estimates in agreement with (1.3) were only known in a few cases. Assuming
the Riemann hypothesis (which asserts that β = 1

2 for each non-trivial zero of ζ(s)), Gonek [5]
has shown that J1(T ) ∼ 1

12 (log T )3 and Ng [17] has proved that J2(T ) � (log T )8. Confirming
a conjecture of Conrey and Snaith [1, Section 7.1], the author [14] has calculated the lower-
order terms in the asymptotic expression for J1(T ). Under the additional assumption that
the zeros of ζ(s) are simple, Gonek [7] has shown that J−1(T ) � (log T )−1 and conjectured
[9] that J−1(T ) ∼ (6/π2)(log T )−1. In addition, there are a few related unconditional results
where the sum in (1.1) is restricted to the simple zeros of ζ(s) with β = 1

2 . See, for instance,
[3, 4, 13, 21].

By modeling the behavior of the Riemann zeta-function and its derivative on the critical line
using the characteristic polynomials of random matrices, Hughes, Keating and O’Connell [12]
have refined Gonek’s and Hejhal’s conjecture in (1.3). In particular, they conjectured a precise
constant Dk such that Jk(T ) ∼ Dk(log T )k(k+2) as T → ∞ for fixed k ∈ C with 	k > −3/2.
Their conjecture is consistent with the results mentioned above.
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Very little is known about the moments Jk(T ) when k>2. However, assuming the Riemann
hypothesis, one may deduce from well-known results of Littlewood ([23, Theorems 14.14 A-B])
that, for σ � 1/2 and t � 10, the estimate

ζ ′(σ + it) 
 exp
( C log t

log log t

)
holds for some constant C >0. It immediately follows that

Jk(T ) 
 exp
(2kC log T

log log T

)
for any k�0. The goal of this paper is to improve this estimate by obtaining a conditional upper
bound for Jk(T ) (when k ∈ N) very near the conjectured order of magnitude. In particular, we
prove the following result.

Theorem 1.1. Assume the Riemann hypothesis. Let k ∈ N and let ε > 0 be arbitrary.
Then for sufficiently large T we have

1
N(T )

∑
0<γ�T

∣∣ζ ′(ρ)
∣∣2k 
 (log T )k(k+2)+ε,

where the implied constant depends on k and ε.

Under the assumption of the generalized Riemann hypothesis for Dirichlet L-functions, Ng
and the author [15] have shown that Jk(T ) � (log T )k(k+2) for each fixed k ∈ N. Combining
this result with Theorem 1.1 lends strong support for the conjecture in (1.3) when k is a
positive integer.

Our proof of Theorem 1.1 is based upon a recent method of Soundararajan [22] that provides
upper bounds for the frequency of large values of |ζ( 1

2 + it)|. His method relies on obtaining
an inequality for log |ζ( 1

2 + it)| involving the real part of a ‘short’ Dirichlet polynomial which
is a smoothed approximation to the Dirichlet series for log ζ(s). Using mean-value estimates
for high powers of this Dirichlet polynomial, he deduces upper bounds for the measure of the
following set:

{t ∈ [0, T ] : log |ζ( 1
2 + it)| � V },

and from this, for arbitrary positive values of k and ε, is able to conclude that

1
T

∫T

0

∣∣ζ( 1
2 + it)

∣∣2k
dt 
k,ε (log T )k2+ε. (1.4)

Soundararajan’s techniques build upon the work of Selberg [18–20] who studied the
distribution of values of log ζ(1

2 + it) in the complex plane.
Since log ζ ′(s) does not have a Dirichlet series representation, it is not clear that the function

log |ζ ′( 1
2 +it)| can be approximated by a Dirichlet polynomial.† For this reason, we do not study

the distribution of the values of ζ ′(ρ) directly, but instead examine the frequency of large values
of |ζ(ρ + α)|, where α ∈ C is a small shift away from a zero ρ of ζ(s). This requires deriving
an inequality for log |ζ(σ + it)| involving a short Dirichlet polynomial that holds uniformly for
values of σ in a small interval to the right of, and including, σ = 1

2 . Using a result of Gonek
(Lemma 4.1 below), we estimate high power moments of this Dirichlet polynomial averaged
over the zeros of the zeta-function and are able to derive upper bounds for the frequency of
large values of |ζ(ρ + α)|. Using this information we prove the following theorem.

†Hejhal [10] studied the distribution of log |ζ′( 1
2

+ it)| by a method that does not directly involve the use of
Dirichlet polynomials.
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Theorem 1.2. Assume the Riemann hypothesis. Let α ∈ C with |α| � 1 and |	α| �
(log T )−1. Let k ∈ R with k > 0 and let ε > 0 be arbitrary. Then, for sufficiently large T ,
the inequality

1
N(T )

∑
0<γ�T

∣∣ζ(ρ + α)
∣∣2k 
k,ε (log T )k2+ε

holds uniformly in α.

Our argument, modified in a straightforward manner, actually implies that the constant ε
appearing in power of log T in the inequalities in Theorems 1.1 and 1.2 is O(1/ log log log T ).
Comparing the result of Theorem 1.2 with the estimate in (1.4), we see that our theorem
provides essentially the same upper bound (up to the implied constant) for discrete averages
of the Riemann zeta-function near its zeros as can be obtained for continuous moments of
|ζ( 1

2 + it)| by using the methods in [22]. There has been some previous work on discrete mean-
value estimates of the zeta-function that are of a form that is similar to the sum appearing in
Theorem 1.2. For instance, see the results of Fujii [2], Gonek [5], and Hughes [11].

We deduce Theorem 1.1 from Theorem 1.2 since, by Cauchy’s integral formula, we can use
bounds for ζ(s) near its zeros to recover bounds on the values for ζ ′(ρ). For a precise statement
of this idea, see Lemma 7.1 below. Our proof only allows us to establish Theorem 1.1 when k
is a positive integer despite the fact that Theorem 1.2 holds for all k > 0.

2. An inequality for log |ζ(σ + it)| when σ � 1
2

Throughout the remainder of this article, we use s = σ + it to denote a complex variable and
use p to denote a prime number. We let λ0 = 0.5671... be the unique positive real number
satisfying e−λ0 = λ0. Also, we put σλ = σλ,x = 1/2 + λ/log x and let

log+ |x| =

{
0 if |x| < 1,
log |x| if |x| � 1.

As usual, we denote by Λ(·) the arithmetic function defined by Λ(n) = log p when n = pk and
Λ(n) = 0 when n �= pk. The main result of this section is the following lemma.

Lemma 2.1. Assume the Riemann hypothesis. Let τ = |t| + 3. Then, for λ0 � λ � 1
4 log x

and 3 � x � τ2, the estimate

log+
∣∣ζ(σ + it)

∣∣ �
∣∣∣∣∣
∑
n�x

Λ(n)
nσλ+it log n

log x/n

log x

∣∣∣∣∣+ (1 + λ)
2

log τ

log x
+ O(1) (2.1)

holds uniformly for 1
2 � σ � σλ � 3

4 .

In [22], Soundararajan proved an inequality similar to Lemma 2.1 for log
∣∣ζ( 1

2 + it)
∣∣. In his

case, when ζ( 1
2 + it) �= 0, an inequality slightly stronger than (2.1) holds with the constant

λ0 replaced by δ0 = 0.4912..., where δ0 is the unique positive real number satisfying e−δ0 =
δ0 + 1

2δ2
0 . Our proof of the above lemma is a modification of his argument.

Proof of Lemma 2.1. We assume that |ζ(σ + it)|�1, as otherwise the lemma holds for a triv-
ial reason. In particular, we are assuming that ζ(σ + it) �=0. Assuming the Riemann hypothesis,
we denote a non-trivial zero of ζ(s) as ρ = 1

2 + iγ and define a function F (s) as follows:

F (s) = 	
∑

ρ

1
s − ρ

=
∑

ρ

σ − 1/2
(σ − 1/2)2 + (t − γ)2

.
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Note that F (s) � 0 whenever σ � 1/2 and s �= ρ. The partial fraction decomposition of
ζ ′(s)/ζ(s) (see [23, equation (2.12.7)]) says that, for s �= 1 and s not coinciding with a zero of
ζ(s), we have

ζ ′

ζ
(s) =

∑
ρ

( 1
s − ρ

+
1
ρ

)
− 1

2
Γ′

Γ
(

1
2s + 1

)− 1
s − 1

+ B, (2.2)

where the constant B = −	∑
ρ

1
ρ = log 2π − 1 − 1

2γ0, in which γ0 denotes Euler’s constant.

Since

	
(

1
s − 1

)
< 0

when σ < 1, by taking the real part of each term in (2.2), we find that

−	 ζ ′

ζ
(s) � 	 1

2
Γ′

Γ
(

1
2s + 1

)− F (s) (2.3)

for σ � 3
4 , say. Stirling’s asymptotic formula for the gamma function implies that

Γ′

Γ
(s) = log s − 1

2s
+ O

(|s|−2
)

(2.4)

for δ > 0 fixed, | arg s| < π − δ and |s| > δ (cf. [16, Theorem C.1]). By combining (2.3) and
(2.4) with the observation that F (s) � 0, we find that

−	 ζ ′

ζ
(s) � 1

2
log τ − F (s) + O(1)

� 1
2

log τ + O(1) (2.5)

uniformly for 1
2 � σ � 3

4 . Consequently, the inequality

log |ζ(σ + it)| − log |ζ(σλ + it)| = 	
∫σλ

σ

[
− ζ ′

ζ
(u + it)

]
du

�
(
σλ − σ

)(1
2

log τ + O(1)
)

�
(
σλ − 1

2

)(1
2

log τ + O(1)
)

(2.6)

holds uniformly for 1
2 � σ � σλ � 3

4 . Here, while using the inequality (2.5) in the second line
of (2.6), we have implicitly assumed that λ � 1

4 log x to ensure that σλ � 3
4 .

To complete the proof of the lemma, we require an upper bound for log |ζ(σλ + it)| which, in
turn, requires an additional identity for ζ ′(s)/ζ(s). Specifically, for s �= 1 and s not coinciding
with a zero of ζ(s), we have

−ζ ′

ζ
(s) =

∑
n�x

Λ(n)
ns

log(x/n)
log x

+
1

log x

(ζ ′

ζ
(s)
)′

+
1

log x

∑
ρ

xρ−s

(ρ − s)2

− 1
log x

x1−s

(1 − s)2
+

1
log x

∞∑
k=1

x−2k−s

(2k + s)2
. (2.7)

This identity is due to Soundararajan ([22, Lemma 1]). Integrating over σ from σλ to ∞ and
using the assumption that 3 � x � τ2, we deduce from the above identity that

log |ζ(σλ + it)| = 	
∑
n�x

Λ(n)
nσλ+it log n

log x/n

log x
− 1

log x
	 ζ ′

ζ
(σλ + it)

+
1

log x

∑
ρ

	
∫∞

σλ

xρ−s

(ρ − s)2
dσ + O

( 1
log x

)
. (2.8)
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We now estimate the second and third terms on the right-hand side of this expression. Using
the first inequality in (2.5), it follows that

−	 ζ ′

ζ
(σλ + it) � 1

2
log τ − F (σλ + it) + O(1) (2.9)

for 0 � λ � 1
4 log x. Also, by observing that

∑
ρ

∣∣∣ ∫∞

σλ

xρ−s

(ρ − s)2
dσ
∣∣∣ �

∑
ρ

∫∞

σλ

x1/2−σ

|ρ − s|2 dσ

�
∑

ρ

x1/2−σλ

|ρ − σλ − it|2 log x
=

x1/2−σλF (σλ + it)
(σλ − 1/2) log x

, (2.10)

and then combining (2.9) and (2.10) with (2.8), we see that

log |ζ(σλ + it)| � 	
∑
n�x

Λ(n)
nσλ+it log n

log x/n

log x
+

1
2

log τ

log x

+
F (σλ + it)

log x

(
x1/2−σλ

(σλ − 1/2) log x
− 1

)
+ O

( 1
log x

)
.

If λ � λ0, then the term on the right-hand side involving F (σλ + it) is less than or equal to
zero, and hence omitting it does not change the inequality. Thus, when λ � λ0, we have

log |ζ(σλ + it)| � 	
∑
n�x

Λ(n)
nσλ+it log n

log x/n

log x
+

1
2

log τ

log x
+ O

( 1
log x

)
. (2.11)

Since we have assumed that |ζ(σ + it)| � 1, the lemma now follows by combining the
inequalities in (2.6) and (2.11) and then taking absolute values.

3. A variation of Lemma 2.1

In this section, we prove a version of Lemma 2.1 in which the sum over n on the right-hand side
of the inequality is restricted just to the primes. A sketch of the proof of the lemma appearing
below has been given previously by Soundararajan (see [22, Lemma 2]). Our proof is different
and the details are provided for completeness.

Lemma 3.1. Assume the Riemann hypothesis. Consider τ = |t| + 100. Then∣∣∣∣∣∣
∑
n�x

Λ(n)
nσ+it log n

log x/n

log x
−
∑
p�x

1
pσ+it

log x/n

log x

∣∣∣∣∣∣ = O
(
log log log τ

)

uniformly for σ � 1
2 and |t| � 1. As a consequence, for any λ satisfying λ0 � λ � 1

4 log x and
3 � x � τ2, the estimate

log+
∣∣ζ(σ + it)

∣∣ �
∣∣∣∣∣
∑
p�x

1
pσλ+it

log x/p

log x

∣∣∣∣∣+ (1 + λ)
2

log τ

log x
+ O

(
log log log τ

)

holds uniformly for 1
2 � σ � σλ and |t| � 1.
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Proof. First, for σ � 1
2 , we observe that,∑

n�x

Λ(n)
ns log n

log x/n

log x
−
∑
p�x

1
ps

log x/p

log x
=

1
2

∑
p�√

x

1
p2s

log
√

x/n

log
√

x
+ O(1).

=
1
2

∑
n�√

x

Λ(n)
n2s log n

log
√

x/n

log
√

x
+ O(1).

Thus, if we let w = u + iv and ν = |v| + 100, then the lemma will follow if we can show that∑
n�z

Λ(n)
nw log n

log z/n

log z
= O

(
log log log ν

)
(3.1)

uniformly for u � 1 and 2 � z � ν. In what follows, we can assume that z � (log ν)2, as
otherwise ∑

n�z

Λ(n)
nw log n

log z/n

log z

 1 +

∑
p<log2 ν

1
p

 log log log ν.

Let c = max(2, 1 + u). Then, by expressing ζ ′(s + w)/ζ(s + w) as a Dirichlet series and inter-
changing the order of summation and integration (which is justified by absolute convergence),
it follows that

1
2πi

∫ c+i∞

c−i∞

[
− ζ ′

ζ
(s + w)

]
zs ds

s2
=

1
2πi

∫ c+i∞

c−i∞

[ ∞∑
n=1

Λ(n)
ns+w

]
zs ds

s2

=
1

2πi

∞∑
n=1

Λ(n)
nw

∫ c+i∞

c−i∞

( z

n

)s ds

s2

=
∑
n�z

Λ(n)
nw

log(z/n).

Here we have made use of the following standard identity:

1
2πi

∫ c+i∞

c−i∞
xs ds

s2
=

{
log x if x � 1,
0 if 0 � x < 1,

which is valid for c>0. By moving the line of integration in the integral left to 	s = σ = 3
4 − u,

we find (by the calculus of residues) that∑
n�z

Λ(n)
nw

log(z/n) = −(log z)
ζ ′

ζ
(w) −

(ζ ′

ζ
(w)

)′
+

z1−w

(w − 1)2

+
1

2πi

∫ 3
4−u+i∞

3
4−u−i∞

[
− ζ ′

ζ
(s + w)

]
zs ds

s2
. (3.2)

That there are no residues obtained from poles of the integrand at the non-trivial zeros of ζ(s)
follows from the Riemann hypothesis. To estimate the integral on the right-hand side of the
above expression, we use [23, Theorem 14.5], namely, that if the Riemann hypothesis is true,
then ∣∣∣∣∣ζ

′

ζ
(σ + it)

∣∣∣∣∣
 (log τ)2−2σ (3.3)

uniformly for 5
8 � σ � 7

8 , say. Using (3.3), it immediately follows that
∫ 3

4−u+i∞

3
4−u−i∞

[
− ζ ′

ζ
(s + w)

]
zs ds

s2

 z3/4−u

√
log ν.
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Inserting this estimate into equation (3.2) and dividing by log z, it follows that

∑
n�z

Λ(n)
nw

log(z/n)
log z

= −ζ ′

ζ
(w) − 1

log z

(ζ ′

ζ
(w)

)′
+

z1−w

(w − 1)2 log z
+ O

(
z3/4−u

log z

√
log ν

)
. (3.4)

Integrating the expression in (3.4) from ∞ to u (along the line σ + iν, u � σ < ∞), we find
that ∑

n�z

Λ(n)
nw log n

log(z/n)
log z

= log ζ(w) +
1

log z

ζ ′

ζ
(w) + O

(
z1−u

ν2(log z)2
+

z3/4−u

(log z)2
√

log ν

)
.

Assuming the Riemann hypothesis, we can estimate the terms on the right-hand side of the
above expression by invoking the bounds

| log ζ(σ + it)| 
 log log log τ and

∣∣∣∣∣ζ
′

ζ
(σ + it)

∣∣∣∣∣
 log log τ, (3.5)

which hold uniformly for σ�1 and |t|�1. For a discussion of these (and other similar) estimates,
see [16, Section 13.2]. Using the estimates in (3.5) and recalling that we are assuming that
u � 1 and z � (log ν)2, we find that∑

n�z

Λ(n)
nw log n

log(z/n)
log z


 log log log ν +
log log ν

log z
+

z1−u

ν2(log z)2
+ z−1/4

√
log ν

(log z)2


 log log log ν.

This establishes (3.1) and, thus, the lemma.

4. A sum over the zeros of ζ(s)

In this section we prove an estimate for the mean-square of a Dirichlet polynomial averaged
over the zeros of ζ(s). Our estimate follows from the Landau–Gonek explicit formula.

Lemma 4.1. Let x, T > 1 and let ρ = β + iγ denote a non-trivial zero of ζ(s). Then∑
0<γ�T

xρ = − T

2π
Λ(x) + O

(
x log(2xT ) log log(3x)

)

+ O

(
log xmin

(
T,

x

〈x〉
))

+ O

(
log(2T )min

(
T,

1
log x

))
,

where 〈x〉 denotes the distance from x to the nearest prime power other than x itself; Λ(x) =
log p if x is a positive integral power of a prime p, and Λ(x) = 0 otherwise.

Proof. This is due to Gonek [6, 8].

Lemma 4.2. Assume the Riemann hypothesis and let ρ = 1
2 + iγ denote a non-trivial zero

of ζ(s). For any sequence of complex numbers A = {an}∞n=1 and for ξ � 1, we define

mξ = mξ(A ) = max
1�n�ξ

(
1, |an|

)
.

Then, for 3 � ξ � T (log T )−1 and any complex number α with 	α � 0, we have

∑
0<γ�T

∣∣∣∣∣
∑
n�ξ

an

nρ+α

∣∣∣∣∣
2


 mξT log T
∑
n�ξ

|an|
n

, (4.1)

where the implied constant is absolute (and independent of α).
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Proof. Assuming the Riemann hypothesis, we note that 1 − ρ = ρ̄ for any non-trivial zero
ρ = 1

2 + iγ of ζ(s). This implies that∣∣∣∣∣
∑
n�ξ

an

nρ+α

∣∣∣∣∣
2

=
∑
m�ξ

∑
n�ξ

am

mρ+α

an

n1−ρ+ᾱ
,

and, moreover, that

∑
0<γ�T

∣∣∣∣∣∣
∑
n�ξ

an

nρ+α

∣∣∣∣∣∣
2

= N(T )
∑
n�ξ

|an|2
n1+2�α

+ 2	
∑
m�ξ

am

mα

∑
m<n�ξ

an

n1+ᾱ

∑
0<γ�T

( n

m

)ρ

,

where N(T ) ∼ T
2π log T denotes the number of zeros ρ with 0 < γ � T . Since 	α � 0, it follows

that

N(T )
∑
n�ξ

|an|2
n1+2�α


 T log T
∑
n�ξ

|an|2
n


 mξT log T
∑
n�ξ

|an|
n

.

Appealing to Lemma 4.1, we find that∑
m�ξ

am

mα

∑
n<m

an

n1+ᾱ

∑
0<γ�T

( n

m

)ρ

= Σ1 + Σ2 + Σ3 + Σ4,

where

Σ1 = − T

2π

∑
m�ξ

am

mα

∑
m<n�ξ

an

n1+ᾱ
Λ
( n

m

)
,

Σ2 = O

⎛
⎝log T log log T

∑
m�ξ

|am|
m1+�α

∑
m<n�ξ

|an|
n�α

⎞
⎠ ,

Σ3 = O

⎛
⎝∑

m�ξ

|am|
m1+�α

∑
m<n�ξ

|an|
n�α

log(m/n)
〈m/n〉

⎞
⎠

and

Σ4 = O

⎛
⎝log T

∑
m�ξ

|am|
m�α

∑
m<n�ξ

|an|
n1+�α log(n/m)

⎞
⎠.

We estimate Σ1 first. Making the substitution n = mk, we rewrite our expression for Σ1 as

− T

2π

∑
m�ξ

am

mα

∑
k� ξ

m

amk · Λ(k)
(mk)1+ᾱ

= − T

2π

∑
m�ξ

am

m1+2�α

∑
k� ξ

m

amk · Λ(k)
k1+ᾱ

.

Again using the assumption that 	α � 0, we find that

Σ1 
 mξT
∑
n�ξ

|an|
n

∑
m�ξ/n

Λ(m)
m


 mξT log T
∑
n�ξ

|an|
n

.

Here we have made use of the standard estimate
∑

m�ξ Λ(m)/m 
 log ξ. We can replace 	α
by 0 in each of the sums Σi (for i = 2, 3 or 4), as doing so will only make the corresponding
estimates larger. Thus, using the assumption that 3 � ξ � T/ log T , it follows that

Σ2 
 mξ log T log log T
∑
n�ξ

|an|
n

∑
m<n�ξ

1 
 mξT log T
∑
n�ξ

|an|
n

.
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Next, turning to Σ3, we find that

Σ3 
 mξ

∑
m�ξ

|am|
m

∑
m<n�ξ

log(n/m)
〈n/m〉 .

Writing n as qm + � with −m/2 < � � m/2, we have

Σ3 
 mξ

∑
m�ξ

|am|
m

∑
q��ξ/m�+1

∑
−m/2<��m/2

log
(
q + �/m

)
〈q + �/m〉 ,

where, as usual, �x� denotes the greatest integer less than or equal to x. Now 〈q + �/m〉 =
|�|/m if q is a prime power and � �= 0, otherwise 〈q + �/m〉 is at least 1

2 . Using the estimate∑
n�ξ Λ(n) 
 ξ, we now find that

Σ3 
 mξ

∑
m�ξ

|am|
m

∑
q��ξ/m�+1

Λ(q)
∑

1���m/2

m

�
+ mξ

∑
m�ξ

|am|
m

∑
q��ξ/m�+1

log(q + 1)
∑

1���m/2

1


 mξ

∑
m�ξ

|am| log m
∑

q��ξ/m�+1

Λ(q) + mξ

∑
m�ξ

|am|
∑

q��ξ/m�+1

log(q + 1)


 mξ(ξ log ξ)
∑
m�ξ

|am|
m


 mξT log T
∑
m�ξ

|am|
m

.

It remains to consider the contribution from Σ4, which is much less than

mξ log T
∑
m�ξ

|am|
∑

m<n�ξ

1
n log(n/m)


 mξ log T
∑
m�ξ

|am|
m

∑
m<n�ξ

1
log(n/m)

,

since 1/m > 1/n if n > m. Writing n = m + �, we see that∑
m<n�ξ

1
log(n/m)

=
∑

1���ξ−m

1
log

(
1 + �/m

) 

∑

1���ξ−m

m

�

 m log ξ 
 ξ log ξ.

Consequently, we have

Σ4 
 mξT log T
∑
m�ξ

|am|
m

.

Now, by combining the estimates, we obtain the lemma.

5. The frequency of large values of |ζ(ρ + α)|
Our proof of Theorem 1.2 requires the following lemma concerning the distribution of values of
|ζ(ρ + α)|, where ρ is a zero of ζ(s) and α ∈ C is a small shift. In what follows, log3(·) stands
for log log log(·).

Lemma 5.1. Assume the Riemann hypothesis. Let T be large, let V � 3 be a real number
and let α ∈ C with |α| � 1 and 0 � 	α � (log T )−1. Consider the set

Sα

(
T ;V

)
=
{
γ ∈ (0, T ] : log |ζ(ρ + α)| � V

}
,
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where ρ = 1
2 + iγ denotes a non-trivial zero of ζ(s). Then, the following inequalities for

#Sα

(
T ;V

)
, the cardinality of Sα

(
T ;V

)
, hold.

(i) When
√

log log T � V � log log T , we have

#Sα

(
T ;V

)
 N(T )
V√

log log T
exp

(
− V 2

log log T

(
1 − 4

log3 T

))
.

(ii) When log log T � V � 1
2 (log log T ) log3 T , we have

#Sα

(
T ;V

)
 N(T )
V√

log log T
exp

(
− V 2

log log T

(
1 − 4V

(log log T ) log3 T

))
.

(iii) Finally, when V > 1
2 (log log T ) log3 T , we have

#Sα

(
T ;V

)
 N(T ) exp
(
− V

201
log V

)
.

Here, as usual, the function N(T ) ∼ (T/2π) log T denotes the number of zeros ρ of ζ(s) with
0 < γ � T .

Proof. Since λ0 < 3/5, by taking x = (log τ)2−ε in Lemma 3.1 (where ε>0 arbitrary) and
estimating the sum over primes trivially, we find that

log+ |ζ(σ + iτ)| �
(1 + λ0

4
+ o(1)

) log τ

log log τ
� 2

5
log τ

log log τ

for 1/2 � σ � λ0/log x and |τ | sufficiently large. Therefore, we may suppose that V �
(2/5)(log T/log log T ), for otherwise the set Sα(T ;V ) is empty.

We define a parameter

A = A(T, V ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
2

log3(T ) if V � log log T,

1
2V

log log T log3(T ) if log log T < V � 1
2
(log log T ) log3 T,

1 if V >
1
2
(log log T ) log3 T,

set x = TA/V and put z = x1/ log log T . We now observe that since λ0 � 1
2 , x � TA/V � T 1/2

and 0 � 	α � (log T )−1, it follows that

1
2

� 	(ρ + α) � 1
2

+
1

log T
� 1

2
+

λ0

log x

for any non-trivial zero ρ = 1
2 + iγ of ζ(s) with 0 < γ � T . Thus, if we let

S1(s) =
∑
p�z

1
ps+λ0/log x

log(x/p)
log x

and S2(s) =
∑

z<p�x

1
ps+λ0/log x

log(x/p)
log x

,

Lemma 3.1 implies that

log+ |ζ(ρ + α)| � |S1(ρ)| + |S2(ρ)| + (1 + λ0)
2A

V + O
(
log3 T

)
for any non-trivial zero ρ of ζ(s). Since λ0 < 3/5, it follows that

log+ |ζ(ρ + α)| � |S1(ρ)| + |S2(ρ)| + 4
5

V

A
+ O

(
log3 T

)
.
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Therefore, if ρ ∈ Sα(T ;V ), then either

|S1(ρ)| � V
(
1 − 9

10A

)
or |S2(ρ)| � V

10A
.

For simplicity, we put V1 = V
(
1 − 9/10A

)
and V2 = V/10A.

Let N1(T ;V ) be the number of ρ with 0 < γ � T such that |S1(ρ)| � V1 and let N2(T ;V )
be the number of ρ with 0 < γ � T such that |S2(ρ)| � V2. We prove the lemma by obtaining
upper bounds for the size of the sets Ni(T ;V ) for i = 1 and 2 using the inequality

Ni(T ;V ) · V 2k
i �

∑
0<γ�T

|Si(ρ)|2k, (5.1)

which holds for any positive integer k. With some restrictions on the size of k, we can use
Lemma 4.2 to estimate the sums appearing on the right-hand side of this inequality.

We first turn our attention to estimating N1(T ;V ). If we define the sequence αk(n) =
αk(n, x, z) by

∑
n�zk

αk(n)
ns

=

⎛
⎝∑

p�z

1
ps

log x/p

log x

⎞
⎠

k

,

then it is easily seen that |αk(n)| � k!. Thus, Lemma 4.2 implies that the estimate

∑
0<γ�T

|S1(ρ)|2k 
 N(T ) k!

⎛
⎝∑

p�z

1
p

log(x/p)
log x

⎞
⎠

k


 N(T ) k!

⎛
⎝∑

p�z

1
p

⎞
⎠

k


 N(T )
√

k

(
k log log T

e

)k

holds for any positive integer k with zk � T (log T )−1 and T sufficiently large. Using (5.1), we
deduce from this estimate that

N1(T ;V ) 
 N(T )
√

k
(k log log T

eV 2
1

)k

. (5.2)

It is now convenient to consider separately the case when V � (log log T )2 and the case V >
(log log T )2. When V � (log log T )2 we choose k = �V 2

1 / log log T � where, as before, �x� denotes
the greatest integer less than or equal to x. To see that this choice of k satisfies zk � T (log T )−1,
we note from the definition of A that

V A � max
(
V, 1

2 (log log T ) log3 T
)
.

Therefore, we find that

zk � zV 2
1 / log log T = exp

(
V A log T

(log log T )2
(
1 − 9

10A

)2
)

� exp
(

log T
(
1 − 9

10A

)2
)

� T/ log T.

Thus, by (5.2), we see that for V � (log log T )2 and T large we have

N1(T ;V ) 
 N(T )
V√

log log T
exp

(
− V 2

1

log log T

)
. (5.3)
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When V >(log log T )2 we choose k = �10V �. This choice of k satisfies zk � T (log T )−1 since
z10V = T 10/ log log T � T (log T )−1 for large T . With this choice of k, we conclude from (5.2) that

N1(T ;V ) 
 N(T ) exp
(1

2
log V − 10V log

( eV

1000 log log T

))

 N(T ) exp

(− 10V log V + 11V log3(T )
)

(5.4)

for T sufficiently large. Since V > (log log T )2, we have that log V � 2 log3(T ) and thus it
follows from (5.4) that

N1(T ;V ) 
 N(T ) exp
(− 4V log V

)
. (5.5)

By combining (5.3) and (5.5), for any choice of V , we have shown that,

N1(T ;V ) 
 N(T )
V√

log log T
exp

(
− V 2

1

log log T

)
+ N(T ) exp

(− 4V log V
)
. (5.6)

We now turn our attention to estimating N2(T ;V ). If we define the sequence βk(n) =
βk(n, x, z) by

∑
n�xk

βk(n)
ns

=

⎛
⎝ ∑

z<p�x

1
ps

log x/p

log x

⎞
⎠

k

,

then it can be seen that |βk(n)| � k!. Thus, Lemma 4.2 implies that

∑
0<γ�T

|S2(ρ)|2k 
 N(T ) k!

⎛
⎝ ∑

z<p�x

1
p

log(x/p)
log x

⎞
⎠

k


 N(T ) k!

⎛
⎝ ∑

z<p�x

1
p

⎞
⎠

k


 N(T ) k!
(

log3(T ) + O(1)
)k


 N(T ) k!
(
2 log3(T )

)k


 N(T )
(
2k log3(T )

)k (5.7)

for any natural number k with xk � T/ log T and T sufficiently large. The choice of k = �V/A −
1� satisfies xk � T/ log T when T is large. To see why, recall that A � 1, x = TA/V and V �
(2/5)(log T/log log T ). Therefore, we have

xk � x(V/A−1) � T 1−A/V � T 1−1/V = T (log T )−5/2 � T (log T )−1.

Also, observing that A � 1
2 log3(T ) and recalling that V �

√
log log T , with this choice of k

and T large, it follows from (5.1) that

N2(T ;V ) 
 N(T )
(10A

V

)2k(
2k log3(T )

)k


 N(T ) exp
(
− 2k log

(
V

10A

)
+ k log(2k log3(T ))

)


 N(T ) exp
(
− 2

V

A
log

(
V

10A

)
+ 2 log

V

10A
+

V

A
log

(2V

A
log3(T )

))

 N(T ) exp

(
− V

2A
log V

)
. (5.8)
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Using our estimates for N1(T ;V ) and N2(T ;V ) we can now complete the proof of the lemma
by checking the various ranges of V . By combining (5.6) and (5.8), we see that

#Sα(T ;V ) 
 N(T )
V√

log log T
exp

(
− V 2

1

log log T

)
+ N(T ) exp

(
− 4V log V

)
+ N(T ) exp

(
− V

2A
log V

)
. (5.9)

If
√

log log T � V � log log T , then A = 1
2 log3(T ) and, for T sufficiently large, (5.9) implies that

#Sα(T ;V ) 
 N(T )
V√

log log T
exp

(
− V 2

log log T

(
1 − 9

5 log3 T

)2
)


 N(T )
V√

log log T
exp

(
− V 2

log log T

(
1 − 4

log3 T

))
. (5.10)

If log log T < V � 1
2 (log log T ) log3(T ), then A = (log log T/2V ) log3(T ) and we deduce from

(5.9) that

#Sα(T ;V ) 
 N(T )
V√

log log T
exp

(
− V 2

log log T

(
1 − 9V

5(log log T ) log3 T

)2
)

+ N(T ) exp
(
− V 2 log V

(log log T ) log3 T

)
+ N(T ) exp

(
− 4V log V

)
. (5.11)

For V in this range, log V /(log log T ) log3 T > 1/log log T and V/log V < log log T , and hence
(5.11) implies that

#Sα(T ;V ) 
 N(T )
V√

log log T
exp

(
− V 2

log log T

(
1 − 9V

5(log log T ) log3 T

)2
)


 N(T )
V√

log log T
exp

(
− V 2

log log T

(
1 − 4V

(log log T ) log3 T

))
. (5.12)

Finally, if V � 1
2 (log log T ) log3 T , then A = 1 and we deduce from (5.9) that

#Sα(T ;V ) 
 N(T ) exp
(

log V − V 2

100 log log T

)
+ N(T ) exp

(
−V

2
log V

)
. (5.13)

Certainly, if V � 1
2 (log log T ) log3 T , then we have that V 2/100 log log T − log V >

(1/201)V log V for T sufficiently large and hence it follows from (5.13) that

#Sα(T ;V ) 
 N(T ) exp
(
− V

201
log V

)
. (5.14)

The lemma now follows from the estimates in (5.10), (5.12) and (5.14).

6. Proof of Theorem 1.2

Using Lemma 5.1, we first prove Theorem 1.2 in the case where |α| � 1 and 0 � 	α � (log T )−1.
Then, from this result, the case when −(log T )−1 � 	α < 0 can be deduced from the functional
equation for ζ(s) and Stirling’s formula for the gamma function. In what follows, k ∈ R is fixed
and we let ε > 0 be an arbitrarily small positive constant that may not be the same at each
occurrence.

First, we partition the real axis into the intervals I1 = (−∞, 3], I2 = (3, 4k log log T ] and
I3 = (4k log log T,∞) and set

Mi =
∑

ν∈Ii∩Z

e2kν · #Sα(T, ν)
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for i = 1, 2 and 3. Then we observe that∑
0<γ�T

∣∣ζ(ρ + α)
∣∣2k �

∑
ν∈Z

e2kν
[
#Sα(T, ν) − #Sα(T, ν − 1)

]
� M1 + M2 + M3. (6.1)

Using the trivial bound #Sα(T, ν) � N(T ), which holds for every ν ∈ Z, we find that M1 �
e6kN(T ). To estimate M2, we use the bound

#Sα(T, ν) 
 N(T )(log T )ε exp
( −ν2

log log T

)
,

which follows from the first two cases of Lemma 5.1 when ν ∈ I2 ∩ Z. From this, it follows that

M2 
 N(T )(log T )ε

∫4k log log T

3

exp
(
2ku − u2

log log T

)
du


 N(T )(log T )ε

∫4k

0

(log T )u(2k−u) du


 N(T )(log T )k2+ε

When ν ∈ I3 ∩ Z, the second two cases of Lemma 5.1 imply that

#Sα(T, ν) 
 N(T )(log T )εe−4kν .

Thus, we have

M3 
 N(T )(log T )ε

∫∞

4k log log T

e−2ku du 
 N(T )(log T )−8k2+ε.

In light of (6.1), by collecting estimates, we see that∑
0<γ�T

∣∣ζ(ρ + α)
∣∣2k 
 N(T )(log T )k2+ε (6.2)

for every k > 0 when |α| � 1 and 0 � 	α � (log T )−1.
The functional equation for the zeta-function states that ζ(s) = χ(s)ζ(1 − s), where

χ(s) = 2sπs−1Γ(1 − s) sin(πs/2). Stirling’s asymptotic formula for the gamma function
(cf. [16, Theorem C.1]) can be used to show that

∣∣χ(σ + it)
∣∣ =

( |t|
2π

)1/2−σ(
1 + O

( 1
|t|
))

uniformly for −1 � σ � 2 and |t| � 1. Using the Riemann hypothesis, we see that∣∣ζ(ρ + α)
∣∣ =

∣∣χ(ρ + α)ζ(1 − ρ − α)
∣∣

=
∣∣χ(ρ + α)ζ(ρ̄ − α)

∣∣
=
∣∣χ(ρ + α)ζ(ρ − ᾱ)

∣∣
� C

∣∣ζ(ρ − ᾱ)
∣∣

for some absolute constant C > 0 when |α| � 1, |	α| � (log T )−1 and 0 < γ � T . Consequently,
for −(log T )−1 � 	α < 0, we have∑

0<γ�T

∣∣ζ(ρ + α)
∣∣2k � C2k ·

∑
0<γ�T

∣∣ζ(ρ − ᾱ)
∣∣2k

. (6.3)
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Applying the inequality in (6.2) to the right-hand side of (6.3) we see that∑
0<γ�T

∣∣ζ(ρ + α)
∣∣2k 
k N(T )(log T )k2+ε (6.4)

for every k > 0 when |α| � 1 and −(log T )−1 � 	α < 0. The theorem now follows from the
estimates in (6.2) and (6.4).

7. Theorem 1.2 implies Theorem 1.1

Theorem 1.1 can now be established as a simple consequence of Theorem 1.2 and the following
lemma.

Lemma 7.1. Assume the Riemann hypothesis. Let k, � ∈ N and let R > 0 be arbitrary.
Then we have

∑
0<γ�T

∣∣ζ(�)(ρ)
∣∣2k �

( �!
R�

)2k

·
⎡
⎣max
|α|�R

∑
0<γ�T

∣∣ζ(ρ + α)
∣∣2k

⎤
⎦ . (7.1)

Proof. Since the function ζ(�)(s) is real when s ∈ R, it follows that ζ(�)(s̄) = ζ(�)(s). Hence,
assuming the Riemann hypothesis, the identity∣∣ζ(�)(1 − ρ + α)

∣∣ =
∣∣ζ(�)(ρ̄ + α)

∣∣ =
∣∣ζ(�)(ρ + α)

∣∣ (7.2)

holds for any non-trivial zero ρ of ζ(s) and any α ∈ C. For each positive integer k, let �αk =
(α1, α2, . . . , α2k) and define

Z
(
s; �αk

)
=

k∏
i=1

ζ(s + αi)ζ(1 − s + αi+k).

If we suppose that each |αi| � R for i = 1, . . . , 2k and apply Hölder’s inequality in the form∣∣∣∣∣
N∑

n=1

(
2k∏
i=1

fi(sn)

)∣∣∣∣∣ �
2k∏
i=1

( N∑
n=1

|fi(sn)|2k
)1/2k

,

then we see that (7.2) implies that∣∣∣∣∣∣
∑

0<γ�T

Z
(
ρ; �αk

)∣∣∣∣∣∣ �
k∏

i=1

⎛
⎝ ∑

0<γ�T

∣∣ζ(ρ + αi)
∣∣2k

⎞
⎠

1/2k ⎛
⎝ ∑

0<γ�T

∣∣ζ(ρ + αk+i)
∣∣2k

⎞
⎠

1/2k

� max
|α|�R

∑
0<γ�T

∣∣ζ(ρ + α)
∣∣2k

. (7.3)

In order to prove the lemma, we first rewrite the left-hand side of equation (7.1) using the
function Z(s; �αk) and then apply the inequality in (7.3). By Cauchy’s integral formula and
another application of (7.2), we see that

∑
0<γ�T

∣∣ζ(�)(ρ)
∣∣2k =

∑
0<γ�T

( k∏
i=1

ζ(�)(ρ)ζ(�)(1 − ρ)
)

=
(�!)2k

(2πi)2k

∫
C1

· · ·
∫
C2k

⎛
⎝ ∑

0<γ�T

Z
(
ρ; �αk

)⎞⎠ 2k∏
i=1

dαi

α�+1
i

, (7.4)
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where, for each i = 1, . . . , 2k, the contour Ci denotes the positively oriented circle in the complex
plane centered at 0 with radius R. Now, combining (7.3) and (7.4) we find that

∑
0<γ�T

∣∣ζ(�)(ρ)
∣∣2k �

( �!
2π

)2k

·
⎡
⎣max
|α|�R

∑
0<γ�T

∣∣ζ(ρ + α)
∣∣2k

⎤
⎦ ·

∫
C1

· · ·
∫
C2k

2k∏
i=1

dαi

|αi|�+1

�
( �!

2π

)2k

·
⎡
⎣max
|α|�R

∑
0<γ�T

∣∣ζ(ρ + α)
∣∣2k

⎤
⎦ ·

(2π

R�

)2k

�
( �!

R�

)2k

·
⎡
⎣max
|α|�R

∑
0<γ�T

∣∣ζ(ρ + α)
∣∣2k

⎤
⎦ ,

as claimed.

Proof of Theorem 1.1. Let k ∈ N and set R = (log T )−1. Then, it follows from Theorem 1.2
and Lemma 7.1 that

1
N(T )

∑
0<γ�T

∣∣ζ(�)(ρ)
∣∣2k 
k,�,ε (log T )k(k+2�)+ε (7.5)

for any � ∈ N and for ε > 0 arbitrary. Theorem 1.1 now follows by setting � = 1.
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