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1. Introduction

Given a sequence (xn)∞n=1 ⊂ T = R/Z. The classical van der Corput’s differ-
ence theorem in uniform distribution theory states that if (xn+h − xn)∞n=1 is
uniformly distributed in T for all h ∈ Z+, then (xn)∞n=1 itself is also uniformly
distributed in T.

In [5], Kamae and Mendès France made the important observation that
in order for (xn)∞n=1 to be uniformly distributed in T, it suffices to have the
uniform distribution in T of (xn+h − xn)∞n=1 for h in a certain subset H of
Z+. Such a set H is called a van der Corput set. A prototype result of this
kind had already been proven by Delange, where one can take H to be the
set of all multiples of a positive integer a. Other examples of van der Corput
sets are

H1 = {n2 : n ∈ Z+}
H2 = {p− 1 : p prime}
H3 = {i− j : i, j ∈ I, i > j} where I is any infinite set of integers.

On the other hand, it is known that the set of all odd numbers is not van der
Corput. Also, no lacunary set is van der Corput.

Thanks to works of Kamae-Mendès France [5], Ruzsa [8, 9], Montgomery
[7], Bergelson-Lesigne [1], Ninčević-Rabar-Slijepčević [10], many criteria for
van der Corput sets are known. Extensive accounts of van der Corput sets
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can be found in [1] and [7]. For a modern treatment of van der Corput’s
difference theorem, see [2].

Let G be a compact (not necessarily abelian) group and µG be the
normalized Haar measure on G. We recall that a sequence (xn)∞n=1 is said to
be uniformly distributed in G if

lim
N→∞

µG ({1 ≤ n ≤ N : xn ∈ C}) = µG(C)

for any open set C ⊂ G with boundary measure 0. Van der Corput’s difference
theorem has been generalized to any compact group by Hlawka [4] (see also
[6, Chapter 4, Section 2]), namely that if the sequences (xn+hx

−1
n )∞n=1 are

uniformly distributed in a compact group G for all h ∈ Z+, then the sequence
(xn)∞n=1 is also uniformly distributed in G. Naturally, the notion of van der
Corput sets also makes sense in any compact group. We make the following:

Definition 1. Let G be a compact topological group. We say a set H ⊂ Z+ is
G-van der Corput (G-vdC for short) if the following is true. For any sequence
(xn)∞n=1 ⊂ G, if the sequence (xn+hx

−1
n )∞n=1 is uniformly distributed for each

h ∈ H, then the sequence (xn)∞n=1 is also uniformly distributed in G.

Given this definition, from now on usual van der Corput sets are referred
to as T-vdC sets. Presumably, the property of G-van der Corput depends on
G. We will, however, prove the following:

Theorem 1. If a set H ⊂ Z+ is T-vdC, then it is also G-vdC for any compact
group G.

Kamae and Mendès France [5] found a connection between T-vdC sets
and intersective sets which are much studied in combinatorial number theory
and ergodic Ramsey theory. A set H ⊂ Z+ is called intersective if for any

dense subset A of the integers (that is, limN→∞
|A∩{1,...,N}|

N > 0), there exist
two elements of A whose difference is in H. Alternatively, H is intersective
if and only if it is a set of recurrence, that is, for any probability measure
preserving dynamical system (X,B, µ, T ), for any A ∈ B with µ(A) > 0, there
is h ∈ H such that µ(A ∩ T−hA) > 0. Kamae and Mendès France showed
that any T-vdC set is intersective. The converse is not true: Bourgain [3]
constructed a set that is intersective but not T-vdC. Furthermore, he showed
that the generic density conditions for T-vdC and intersective sets are the
same. We will extend Kamae and Mendès France’s argument to prove the
following.

Theorem 2. If G is a compact, second countable group (that is, its topology
has a coutable base), then every G-vdC set is intersective.

As a consequence of Theorems 1 and 2, if G is a compact, second count-
able group then the class of all G-vdC sets lies in between the class of all
T-vdC sets and the class of all intersective sets. It is an interesting problem to
determine if these two inclusions are strict, even for a specific choice of G, e.g.
G = Z/2Z. This could be a difficult problem since Bourgain’s construction
of a set that is intersective but not T-vdC is difficult.
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In Section 2 we will recall some preliminaries on uniform distribution.
In Section 3 and Section 4 we will prove Theorems 1 and 2.

2. Prelimiaries

We first recall Weyl’s criterion for general compact groups. Let G be a com-
pact group with normalized Haar measure µG. A representation ofG of degree
k is a continuous homomorphism D from G to the multiplicative group GL(k)
of all nonsingular complex matrices of order k. A representation D is called
unitary if D(x) is unitary for all x ∈ G. Two representations D1,D2 of the
same degree k are said to be equivalent if there exists a nonsingular k × k
matrix S such that

D2(x) = SD1(x)S−1

for all x ∈ G.
A representation D of degree k is called reducible if there exists a sub-

space V of Ck of dimension 0 < dim(V ) < k such that D(x)V ⊂ V for all
x ∈ G. D is called irreducible if it is not reducible.

Let {D(λ) : λ ∈ Λ} be a system of representations of G that is ob-
tained by choosing exactly one representation from each equivalence class of
irreducible unitary representation. Let D(0) be the trivial representation. We
then have:

Proposition 1 (Weyl’s criterion, [6, Theorem 4.1.3]). The sequence (xn)∞n=1 ⊂
G is uniformly distributed in G if and only if for any λ ∈ Λ, λ 6= 0, we have

lim
N→∞

1

N

N∑
n=1

D(λ)(xn) = 0.

We will also need the following simple fact, whose proof we will omit:

Lemma 1. If D is a non-trivial irreducible representation of G, then∫
G

D(x)dµG = 0.

Next, we recall some criteria for T-vdC sets. Though we will only need
(A), (C) and (F), we will list all of them for completeness. For a set H ⊂ Z+,
the following conditions are all equivalent to H being T-vdC.

(A) (Ruzsa) For any sequence (un)∞n=1 of bounded complex numbers, if

lim
N→∞

1

N

N∑
n=1

un+hun = 0

for any h ∈ H, then

lim
N→∞

1

N

N∑
n=1

un = 0.
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(B) (Ruzsa) For any sequence (un)∞n=1 of complex numbers satisfying

limN→∞
1
N

∑N
n=1 |un|2 <∞, if

lim
N→∞

1

N

N∑
n=1

un+hun = 0

for any h ∈ H, then

lim
N→∞

1

N

N∑
n=1

un = 0.

(C) (Kamae-Mendès France, Ruzsa) For any nonnegative, finite measure µ
on T, if µ̂(h) =

∫
T
e(−hx)dµ(x) = 0 for any h in H, then µ is continuous

at 0 (that is, µ({0}) = 0).
(D) (Bergelson-Lesigne) For any nonnegative, finite measure µ on T, if∑

h∈H |µ̂(h)| <∞, then µ is continuous at 0.
(E) (Kamae-Mendès France, Ruzsa) For any ε > 0, there exists a nonnega-

tive real trigonometric polynomial

T (x) =
∑
n∈Z

ane(nx)

supported on H ∪ (−H) ∪ {0} (that is, an=0 for n 6∈ H ∪ (−H) ∪ {0})
satisfying T (0) = 1 and a0 ≤ ε.

(F) (Bergelson-Lesigne) For any ε > 0, there exists a finite, positive-definite
sequence (an) (that is,

∑
n,n′∈Z an−n′znzn′ ≥ 0 for any sequence (zn) ⊂

C) supported on H∪(−H)∪{0} (that is, an=0 for n 6∈ H∪(−H)∪{0})
satisfying ∑

n∈Z

an = 1 and a0 ≤ ε.

(G) (Ninčević-Rabar-Slijepčević) H is operator recurrent, that is, for any
Hilbert space H, for any unitary operator U on H, for any x ∈ H whose
orthogonal projection on Ker(U − I) is non-zero, there exists h ∈ H
such that

〈Uhx, x〉 6= 0.

3. Proof of Theorem 1

In proving Theorem 1, we use the following result due to Bergelson-Lesigne,
which is a Hilbert space generalization of criterion (A).

Proposition 2 ([1, Corollary 1.31]). Let H ⊂ Z+ be a T-vdC set. Let (un)∞n=1

be any bounded sequence in a Hilbert space H. If

lim
N→∞

1

N

N∑
n=1

〈un+h, un〉 = 0
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for any h ∈ H, then

lim
N→∞

1

N

N∑
n=1

un = 0.

Bergelson-Lesigne deduced this from a generalized van der Corput in-
equality ([1, Proposition 1.30]) and criterion (F). We remark that in the case
where H is finite-dimensional (which is all we need), this can also be proved
by the method of correlation functions ([6, Section 2, Chapter 4]) and crite-
rion (C).

For each k, GL(k) is naturally a Hilbert space under the inner product

〈A,B〉 = Tr(B
t
A).

Let H be any T-vdC set. Let (xn)∞n=1 ⊂ G be a sequence such that
(xn+hx

−1
n )∞n=1 is uniformly distributed in G for any h ∈ H. Let D be any

unitary representation of degree k of G. By Weyl’s criterion (Proposition 1),

lim
N→∞

1

N

N∑
n=1

D(xn+hx
−1
n ) = 0.

We have

0 = lim
N→∞

1

N

N∑
n=1

〈D(xn+hx
−1
n ), Ik〉 = lim

N→∞

1

N

N∑
n=1

〈D(xn+h),D(xn)〉.

Since D is unitary, the sequence (D(xn)) is bounded. Proposition 2 implies
that

lim
N→∞

1

N

N∑
n=1

D(xn) = 0.

By Weyl’s criterion, this implies that (xn)∞n=1 is uniformly distributed in G
and H is G-vdC.

4. Proof of Theorem 2

Since G is second-countable, it follows from the Peter-Weyl theorem that the
system of representatives {D(λ) : λ ∈ Λ} of unitary representations of G is
countable (since, in this case, L2(G) is separable).

In proving Theorem 2, we will generalize Kamae-Mendès France’s proba-
bilistic argument in [5]. Suppose H ⊂ Z+ is G-vdC but not intersective. Then
there is a set A ⊂ Z+ of positive upper density such that A∩ (A−h) = ∅ for
all h ∈ H.

Let {un}n∈Z+ be a sequence of random variables taking values in G
as follows. Put un = 1G for all n ∈ A. For n ∈ Z+ \ A, we select un ∈ G



6 Michael Kelly and Thái Hoàng Lê

uniformly and independently (with respect to µG). Fix h ∈ H. We have

un+hu
−1
n =


1, if n ∈ A and n+ h ∈ A;
un+h, if n ∈ A and n+ h 6∈ A;
u−1n , if n 6∈ A and n+ h ∈ A;
un+hu

−1
n , if n 6∈ A and n+ h 6∈ A.

Since A ∩ (A − h) = ∅, the first case does not occur. From here it can
be shown using standard probablistic arguments that the random variables
un+hu

−1
n are independent and uniform in G. Indeed, uniformity is immediate.

As for independence, one only needs to verify independence of families of
random variables {uni+hu

−1
ni
}Ii=1 where the pairs of indices {ni, ni + h} are

not pairwise disjoint. We leave the details to the reader.
By the law of large numbers and Lemma 1, for any non-trivial λ ∈ Λ,

we have

lim
N→∞

1

N

N∑
n=1

D(λ)(un+hu
−1
n ) =

∫
G

D(λ)(x)dµG = 0

almost surely.
Since Λ is countable, the above equation in conjunction with Weyl’s

criterion (Proposition 1) almost surely implies that for any h ∈ H, the se-
quence (un+hu

−1
n )∞n=1 is uniformly distributed in G. Since H is G-vdC, we

have almost surely, (un)∞n=1 is uniformly distributed in G.
Let D be any non-trivial irreducible unitary representation of G. On

the one hand, by Weyl’s criterion, we have almost surely

lim
N→∞

1

N

N∑
n=1

D(un) = 0. (1)

On the other hand, by the law of large numbers, and Lemma 1

lim
N→∞

1

N − |AN |

N∑
n=1,
n6∈A

D(un) =

∫
G

D(x)dµG = 0 (2)

almost surely, where AN = A ∩ {1, 2, . . . , N}. From (1) and (2) and the

fact that un = 1G for all n ∈ A, we see that limN→∞
|AN |
N = 0, which is a

contradiction since A has positive upper density.

References

[1] V. Bergelson, E. Lesigne, Van der Corput sets in Zd, Colloq. Math. 110 (2008),
no. 1, 1–49.

[2] V. Bergelson, J. Moreira, Van der Corput’s difference theorem: some modern
developments, Indag. Math. (N.S.) 27 (2016), no. 2, 437–479.

[3] J. Bourgain, Ruzsa’s problem on sets of recurrence, Israel J. Math. 59 (1987),
no. 2, 150–166.

[4] E. Hlawka, Zur formalen Theorie der Gleichverteilung in kompakten Gruppen,
Rend. Circ. Mat. Palermo (2) 4 (1955), 33–47.



Van der Corput sets with respect to compact groups 7

[5] T. Kamae, M. Mendès France, Van der Corput’s difference theorem, Israel J.
Math. 31 (1978), no. 3-4, 335–342.

[6] L. Kuipers, H. Niederreiter, Uniform distribution of sequences, John Wiley &
Sons Inc. (1974), reprinted by Dover Publishing (2006).

[7] H. L. Montgomery, Ten Lectures on the Interface Between Analytic Number
Theory and Harmonic Analysis, CBMS Reg. Conf. Ser. Math. 84, Amer. Math.
Soc., 1994.

[8] I. Ruzsa, Uniform distribution, positive trigonometric polynomials and differ-
ence sets, Seminar on Number Theory, 1981/1982, Exp.No. 18, 18 pp., Univ.
Bordeaux I, Talence, 1982.

[9] I. Z. Ruzsa, Connections between the uniform distribution of a sequence and
its differences, Topics in Classical Number Theory, Vol. I, II (Budapest, 1981),
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