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MULTIPLICATIVELY BADLY APPROXIMABLE MATRICES

IN FIELDS OF POWER SERIES

THÁI HOÀNG LÊ AND JEFFREY D. VAALER

Abstract. We study the notion of multiplicatively badly approximable matrices in the field of Lau-
rent series with coefficients in a field K. We prove a transference principle in this setting, and show

that such matrices exist when K is infinite.

1. Introduction

Let K be a field and let L = K((x−1)) be the field of formal Laurent series with coefficients in K.
That is, the nonzero elements of L consist of all formal Laurent series

(1) F (x) =

M∑
m=−∞

a(m)xm,

where each coefficient a(m) is in K, a(M) 6= 0K , and M is an arbitrary integer. We write 0L for the
identically zero Laurent series, which is also in L. Addition and multiplication in L are defined in the
obvious way. Then we define | | : L→ [0,∞) by |0L| = 0, and

(2) |F | = eM ,

where F (x) 6= 0L in L is given by (1). It follows that | | : L → [0,∞) is a discrete, non-archimedean
absolute value on L, and the resulting metric space

(
L, | |

)
is complete. In this situation we define the

subring of L-adic integers

OL =
{
F ∈ L : |F | ≤ 1

}
,

and its unique maximal ideal

ML =
{
F ∈ OL : |F | < 1

}
.

Clearly the residue class field OL/ML is isomorphic to K. We recall that OL is compact if and only
if the residue class field OL/ML is finite (see [5, Chapter 4, Corollary to Lemma 1.5].) Obviously
ML ⊆ OL is the principal ideal generated by the element x−1.

It is clear that the polynomial ring K[x] can be embedded in L by simply regarding a polynomial

P (x) =

M∑
m=0

ξ(m)xm
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as a Laurent series with ξ(m) = 0K for integers m ≤ −1. In what follows we will always identify K[x]
with its image in L. Let ϕ : L → ML be the map defined by ϕ(0L) = 0L, and defined on nonzero
elements F in L by

ϕ(F ) = ϕ

( M∑
m=−∞

a(m)xm
)

=

−1∑
m=−∞

a(m)xm.

It is easy to check that ϕ is a surjective homomorphism of additive groups, and

(3) ker{ϕ} = K[x].

We put T = L/K[x]. Then ϕ induces an isomorphism of additive groups

(4) ϕ : T→ML.

The subset K[x] ⊆ L is clearly discrete with respect to the metric topology induced by the absolute
value | |. In particular, if P (x) 6= Q(x) are polynomials in K[x], then we have

(5) 1 ≤ |P −Q|.

Next we define ‖ ‖ : T→ [0, 1) on the additive group T by

‖F‖ = min
{
|F − P | : P ∈ K[x]

}
.

Alternatively, ‖F‖ is the distance in L from F to the nearest polynomial. It is trivial to check that
‖ ‖ : T→ [0, 1) is a norm on T in the sense of Kaplansky [9, Appendix 1]. Therefore the map

(F,G) 7→ ‖F −G‖

defines a metric in T, and so induces a metric topology in this quotient group.

There is a natural K[x]-module structure on the additive group T. If
(
P (x), F (x)+K[x]

)
is an element

of K[x]×T we define the product

(6) P (x)
(
F (x) +K[x]

)
= P (x)F (x) +K[x].

Again it is easy to check that (6) does give the additive group T the structure of a K[x]-module.

We can formulate Diophantine approximation problems in this setting, with K[x], K(x), L, and T,
playing roles analogous to Z, Q, R, and the quotient group R/Z, respectively. Indeed, Davenport and
Lewis [6] studied the analog of Littlewood’s conjecture in L and proved that this analog is actually
false when K is infinite. Explicit counterexamples were later given by Baker [2]. In the case where K
is finite, the analog of the Littlewood conjecture in L is believed to be true, but still remains an open
problem (see [1]).

In [3] Bugeaud introduced the notion of multiplicatively badly approximable matrices, which is a
strengthening of the usual notion of badly approximable matrices. Let A = (αmn) be an M×N matrix
with entries in R/Z. Recall that A is badly approximable if there exists a positive constant β(A) such
that

(7) β(A) ≤

(
max

1≤m≤M

∥∥∥∥∥
N∑
n=1

αmnξn

∥∥∥∥∥
)M (

max
1≤n≤N

|ξn|
)N

for all ξ ∈ ZN \ {0}. Here ‖α‖ denotes the distance from α to the nearest integer. It is known that
a matrix A is badly approximable if and only if its transpose At is badly approximable. Furthermore,
badly approximable matrices abound: the set of all M × N badly approximable matrices has full
Hausdorff dimension in (R/Z)MN , (see [12]).
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We say that A is multiplicatively badly approximable if there exists a positive constant γ(A) such that

(8) γ(A) ≤

(
M∏
m=1

∥∥∥∥∥
N∑
n=1

αmnξn

∥∥∥∥∥
)(

N∏
n=1

(|ξn|+ 1)

)
for all ξ ∈ ZN \{0}. Clearly if A is multiplicatively badly approximable, then it is badly approximable.
If M = N = 1 and A = (α), then A is multiplicatively badly approximable if α is a badly approximable
number. If M = 2, N = 1 and A = (α β), then A is multiplicatively badly approximable if and only if
there is a positive constant γ such that

γ ≤ ‖kα‖‖kβ‖(|k|+ 1)

for all k ∈ Z \ {0}. That is, (α, β) is a counterexample to Littlewood’s conjecture. Since Littlewood’s
conjecture is widely believed to be true, it is likely that 2×1 (and a fortiori, M×N for all M +N ≥ 3)
multiplicatively badly approximable matrices do not exist.

Bugeaud [3, Section 2.2] suggested a transference principle for multiplicatively badly approximable
matrices, namely that A is multiplicatively badly approximable if and only if its transpose At is
multiplicatively badly approximable. This transference principle was proved by German [7]. In [10],
we gave another proof of the transference principle. We also found a connection between multiplicatively
badly approximable matrices and certain inequalities involving sums of fractional parts of linear forms.

In this note, we consider the notion of multiplicatively badly approximable matrices with entries in T.
We prove an explicit criterion for multiplicatively badly approximable matrices in this setting, from
which the transference principle readily follows. We also show that if K is infinite, then multiplicatively
badly approximable matrices do exist.

Consider an M × N matrix A = (αmn) with entries in T. We say that A is multiplicatively badly
approximable if there exists a constant C1 = C1(A) > 0 such that

(9) e−C1 <

(
M∏
m=1

∥∥∥∥∥
N∑
n=1

αmnξn

∥∥∥∥∥
)(

N∏
n=1

max(|ξn|, 1)

)
for all ξ = (ξ1, . . . , ξN ) ∈ K[x]N \ {0}. As ‖F‖ ≤ e−1, it is clear that if C1 exists then it is necessarily
greater than M .

For each nonnegative integer U we denote the set of all elements ξ ∈ K[x] with |ξ| < eU by GU .
Obviously GU is a vector subspace of K[x] of dimension U . Given nonnegative integers U1, . . . , UN ,
and V1, . . . , VM , let us consider the set of all ξ = (ξ1, . . . , ξN ) in K[x]N satisfying the conditions

|ξn| < eUn for each n = 1, . . . , N, and(10) ∥∥∥∥∥
N∑
n=1

αmnξn

∥∥∥∥∥ < e−Vm for each m = 1, . . . ,M.(11)

Clearly the solutions to the systems (10) and (11) form a vector subspace of

GU1 × · · · ×GUN
⊂ K[x]N ,

which we denote by V(U1, . . . , UN ;V1, . . . , VM ). Furthermore, the conditions (11) determine V1 +
· · ·+ VM equations whose unknowns are the coefficients of ξ1, . . . , ξN . Thus we immediately have the
inequality

(12) dimV(U1, . . . , UN ;V1, . . . , VM ) ≥ max(0, U1 + · · ·+ UN − V1 − · · · − VM ).



4 THÁI HOÀNG LÊ AND JEFFREY D. VAALER

One may regard this as a generalization of Dirichlet’s theorem.

2. A first characterization

We now prove our first characterization of multiplicatively badly approximable matrices in T.

Proposition 1. Let A = (αmn) be an M×N matrix with entries in T, where m = 1, 2, . . . ,M indexes
rows and n = 1, 2, . . . , N indexes columns. Then A is multiplicatively badly approximable if and only
if there exists a constant C2 ≥ 0 such that for all nonnegative integers U1, . . . , UN and V1 . . . , VM , we
have

(13) dimV(U1, . . . , UN ;V1, . . . , VM ) ≤ max(0, U1 + · · ·+ UN − V1 − · · · − VM ) + C2.

In other words, A is multiplicatively badly approximable if and only if the inequality (12) is essentially
best possible. One could regard Proposition 1 as an analog of [10, Lemma 4.2].

Proof. Suppose A is multiplicatively badly approximable. That is, there is a constant C1 such that (9)
holds for all ξ ∈ K[x]N \ {0}. We first claim that

V(W1, . . . ,WN ;V1, . . . , VM ) = {0}

whenever

W1 + · · ·+WN ≤ V1 + · · ·+ VM +M − C1.

Indeed, suppose there is ξ in V(W1, . . . ,WN ;V1, . . . , VM ), and ξ 6= 0. By definition of
V(W1, . . . ,WN ;V1, . . . , VM ), we have

max (|ξn|, 1) ≤ eWn for each n = 1, . . . , N, and(14) ∥∥∥∥∥
N∑
n=1

αmnξn

∥∥∥∥∥ ≤ e−Vm−1 for each m = 1, . . . ,M.(15)

Therefore,

(16)

(
M∏
m=1

∥∥∥∥∥
N∑
n=1

αmnξn

∥∥∥∥∥
)(

N∏
n=1

max(|ξn|, 1)

)
≤ eW1+···+WN−V1−···−VM−M

This contradicts (9) if W1 + · · ·+WN ≤ V1 + · · ·+ VM +M − C1.

We now show that (13) holds for

(17) C2 := C1 −M,

(note that C2 > 0). If U1 + · · · + UN ≤ V1 + · · · + VM − C2, then (13) is automatically true by what
we have just proved. Suppose that

U1 + · · ·+ UN ≥ V1 + · · ·+ VM − C2.

We can find integers 0 ≤Wn ≤ Un such that

W1 + · · ·+WN = max(V1 + · · ·+ VM − C2, 0).
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Then GW1
× · · · ×GWN

and V(U1, . . . , UN ;V1, . . . , VM ) are two vector subspaces of GU1
× · · · ×GUN

,
whose intersection is V(W1, . . . ,WN ;V1, . . . , VM ) = {0}. It follows that

dimV(U1, . . . , UN ;V1, . . . , VM ) ≤ U1 + · · ·+ UN − (W1 + · · ·+WN )

= U1 + · · ·+ UN −max(V1 + · · ·+ VM − C2, 0)

≤ U1 + · · ·+ UN − V1 − · · · − VM + C2

≤ max(0, U1 + · · ·+ UN − V1 − · · · − VM ) + C2

as desired.

For the reverse direction, let us assume that (13) holds for some constant C2. Let ξ be an arbitrary
element in K[x]N \ {0}. Our goal is to find a lower bound for

P =

(
M∏
m=1

∥∥∥∥∥
N∑
n=1

αmnξn

∥∥∥∥∥
)(

N∏
n=1

max(|ξn|, 1)

)
.

Put max(|ξn|, 1) = eUn for n = 1, . . . , N . First we observe that
∥∥∥∑N

n=1 αmnξn

∥∥∥ 6= 0 for each m =

1, . . . ,M . Indeed, suppose for a contradiction that
∥∥∥∑N

n=1 αi,nξn

∥∥∥ = 0 for some 1 ≤ i ≤ M . Let

W be an integer greater than C2. Then for V ≥ 0, the vector space V(U1 + W + 1, . . . , UN + W +
1; 0, . . . , 0, V, 0 . . . , 0) (where V is in the i-th position) has dimension at least W (since it contains
fξ, for each f ∈ GW ). On the other hand, in view of (13), its dimension cannot exceed C2 if V is
sufficiently large.

Let us put
∥∥∥∑N

n=1 αmnξn

∥∥∥ = e−Vm , where Vm are nonnegative integers. Then we want to find a lower

bound for

(18)

N∑
n=1

Un −
M∑
m=1

Vm.

We can assume that (18) is negative, otherwise, we are already done. Let W be the smallest integer
such that

(19)

N∑
n=1

(W + Un)−
M∑
m=1

max(0, Vm −W ) ≥ 0.

Clearly W exists, and W ≥ 1. From (19) we immediately have

(20)

N∑
n=1

Un −
M∑
m=1

Vm ≥ −(M +N)W.

By minimality of W , we get

N∑
n=1

(W − 1 + Un)−
M∑
m=1

max(0, Vm −W + 1) < 0.

Upon observing that max(0, Vm −W + 1) ≤ max(0, Vm −W ) + 1, we find that

N∑
n=1

(W + Un)−
M∑
m=1

max(0, Vm −W ) < M +N.

Let us now consider the space

V(W + U1, . . . ,W + UN ; max(0, V1 −W ), . . . ,max(0, VM −W )).
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On the one hand, by hypothesis, its dimension is at most

max

(
0,

N∑
n=1

(W + Un)−
M∑
m=1

max(0, Vm −W )

)
+ C2 < (M +N) + C2.

On the other hand, its dimension is at least W , since it contains fξ for each f ∈ GW . Therefore,

(21) W < (M +N) + C2.

Combining (20) and (21), we see that (9) holds with

(22) C1 := (M +N)2 + (M +N)C2.

�

Remark 2.1. One can contrast the values of C1 and C2 given by (17) and (22). It is an interesting
problem to determine if these values are tight.

3. A matrix interpretation

The pleasantness of working in L is that we can write out each element of L in terms of its coordinates
and express Diophantine inequalities in terms of linear equations. For each element α =

∑∞
i=1 aix

−i ∈
T, and nonnegative integers U and V , let us denote by MU,V (α) the matrix

(23) MU ;V (α) =


a1 a2 · · · aU
a2 a3 · · · aU+1

...
...

. . .
...

aV aV+1 · · · aU+V−1

 .

In particular, when U = 0 or V = 0, MU ;V (α) is the empty matrix.

Given nonnegative integers U1, . . . , UN , V1, . . . , VM and an M × N matrix A = (αmn) with entries in
T, the conditions (10) and (11) represent a system of V1 + · · ·+ VM linear equations in U1 + · · ·+ UN
variables, which can be written out explicitly as follows. Suppose that

(24) αmn =

∞∑
i=1

a
(mn)
i x−i (1 ≤ m ≤M, 1 ≤ n ≤ N).

Let us write

(25) ξn =

Un−1∑
j=0

t
(n)
j xj (1 ≤ n ≤ N)

where we regard the t
(n)
j as variables. Then the conditions (10), (11) amount to the system

N∑
n=1

Un−1∑
j=0

t
(n)
j a

(mn)
i+j = 0

for all i = 1, . . . , Vm and m = 1, . . . ,M . It is straightforward to see that the matrix of this system is

(26) MU1,...,UN ;V1,...,VM
(A) =


MU1;V1

(α11) MU2;V1
(α12) · · · MUN ;V1

(α1N )
MU1;V2

(α21) MU2;V1
(α22) · · · MUN ;V1

(α2N )
...

...
. . .

...
MU1;VM

(αM1) MU2;VM
(αM2) · · · MUN ;VM

(αMN )

 .
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We thus arrive at a further characterization of multiplicatively badly approximable matrices.

Proposition 2. The M×N matrix A is multiplicatively badly approximable if and only if there is a con-
stant C2 ≥ 0 such that for all nonnegative integers U1, . . . , UN , V1, . . . , VM , the matrixMU1,...,UN ;V1,...,VM

(A)
defined in (26) has rank at least

(27) min

(
N∑
n=1

Un,

M∑
m=1

Vm

)
− C2.

Proof. This follows from Proposition 1, the rank-nullity theorem, and the fact that

(28)

N∑
n=1

Un −max

(
0,

N∑
n=1

Un −
M∑
m=1

Vm

)
− C2 = min

(
N∑
n=1

Un,

M∑
m=1

Vm

)
− C2.

�

It is easy to see that the transpose of MU1,...,UN ;V1,...,VM
(A) is MV1,...,VM ;U1,...,UN

(At). Thus from
Proposition 2, we immediately have the following transference principle:

Theorem 1. A matrix A with entries in T is multiplicatively badly approximable if and only if its
transpose At is multiplicatively badly approximable.

Remark 3.1. Propositions 1 and 2 show that, if A is multiplicatively badly approximable, we can choose
C1(At) = (M +N)2 + (M +N)C1(A), where C1(A) is the constant defined in (9). One can compare
this to the bound (8.30) in [10].

Given Proposition 2, we will establish the existence of multiplicatively badly approximable matrices
when K is infinite. This follows from the following stronger statement.

Theorem 2. Suppose K is infinite. Then for each M and N , there exists an M×N matrix A = (αmn)
with entries in T satisfying the following property.

(∗) For all nonnegative integers U1, . . . , UN , V1, . . . , VM with
∑N
n=1 Un =

∑M
m=1 Vm, the square

matrix MU1,...,UN ;V1,...,VM
(A) is non-singular.

For 1×N matrices, this is a result of Bumby [4]. Our argument is a generalization of his.

Proof. We prove Theorem 2 by induction on M +N . When M = 0 or N = 0, the theorem is vacuously
true. Suppose M,N ≥ 0 and we know already the existence of an M ×N matrix A′ satisfying (∗). We
will show how to add one column to A′ such that the new M × (N + 1) matrix retains this property.
By symmetry, we can also add one row to A′. In this way we can create M × N matrices satisfying
(∗) for each M and N . (Note that when M = N = 0, then this process creates badly approximable
elements in L.)

Suppose the M × N matrix A′ = (αmn) satisfies (∗). We will find αm,N+1 ∈ T (1 ≤ m ≤ M) such
that the M × (N + 1) matrix A = (αmn) satisfies (∗).

Suppose

αmn =

∞∑
i=1

a
(mn)
i x−i (1 ≤ m ≤M, 1 ≤ n ≤ N + 1).
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Our goal is to construct M sequences(
a

(m,N+1)
i

)∞
i=1

, (1 ≤ m ≤M),

such that for integers U1, . . . , UN , UN+1 and V1, V2, . . . , VM , with

U1 + · · ·+ UN + UN+1 = V1 + · · ·+ VM ,

the square matrix

MU1,...,UN ,UN+1;V1,V2,...,VM
(A)

=



a
(11)
1 · · · a

(11)
U1

· · · a
(N+1,1)
1 · · · a

(N+1,1)
UN+1

...
. . .

...
...

. . .
...

a
(11)
V1

· · · a
(11)
U1+V1−1 · · · a

(N+1,1)
V1

· · · a
(N+1,1)
UN+1+V1−1

...
...

...
...

...
...

a
(M1)
1 · · · a

(M1)
U1

· · · a
(N+1,M)
1 · · · a

(N+1,M)
UN+1

...
. . .

...
...

. . .
...

a
(M1)
VM

· · · a
(M1)
U1+VM−1 · · · a

(N+1,M)
VM

· · · a
(N+1,M)
VM+UN+1−1


is non-singular.

To this end, we will construct the M -tuples
(
a

(m,N+1)
L

)
1≤m≤M

indexed by L recursively. Let us refer

to the quantity max1≤m≤M (UN+1 + Vm − 1) as the order of the matrix

MU1,...,UN ,UN+1;V1,V2,...,VM
(A).

Suppose all the tuples
(
a

(m,N+1)
`

)
1≤m≤M

, with 1 ≤ ` ≤ L − 1, are already determined in such a way

that all matrices of order smaller than L are non-singular. We want to find
(
a

(m,N+1)
L

)
1≤m≤M

such

that all the matrices MU1,...,UN ,UN+1;V1,V2,...,VM
(A) satisfying

(i) U1 + · · ·+ UN+1 = V1 + · · ·+ VM , and
(ii) max1≤m≤M (UN+1 + Vm − 1) = L,

have non-zero determinant.

It is clear that the number of such matrices is finite. For all such matrices, by expanding along the last
column, the non-zero determinant condition corresponds to an equation of the form

(29)

M∑
m=1

rma
(m,N+1)
L + r0 6= 0

where r0, . . . , rM ∈ K. For each 1 ≤ m ≤M , rm is either 0 or the determinant of a matrix of lower order

(it is 0 if a
(m,N+1)
L is not present inMU1,...,UN ,UN+1;V1,V2,...,VM

(A)), but at least one of them is nonzero.

The number of equations of type (29) is finite. Since K is infinite, a choice of
(
a

(m,N+1)
L

)
1≤m≤M

is

certainly possible. �
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4. Explicit examples of multiplicatively badly approximable matrices

In this section, we consider the problem of giving explicit examples of multiplicatively badly approx-
imable matrices. We also assume in this section that K has characteristic zero. As mentioned earlier,
Baker [2] gave explicit counterexamples to Littlewood’s conjecture in this case. He also pointed out
that the same method can be used to show that each 1×N matrix of the form

A =
(
eλ1/x eλ2/x · · · eλN/x

)
,

where λ1, . . . , λN are distinct elements of K, is (in our terminology) multiplicatively badly approx-
imable. Here for each λ ∈ K, eλ/x is the formal Laurent series

eλ/x =

∞∑
i=0

λi

i!
x−i.

In a different context, Jager [8] studied the notion of perfect systems of power series (see the definition
in [8, p. 196]). This notion was developed by Mahler [11] and inspired by Hermite’s proof of the
transcendence of e. By examining the underlying linear equations, it is easy to see that if the system

(f1(x), . . . , fM (x)) is perfect (where each fi is a power series of the form fi(x) =
∑∞
j=0 a

(i)
j xi), then

the matrix

A =


f1

(
x−1

)
f2

(
x−1

)
...

fM
(
x−1

)


is multiplicatively badly approximable.

Jager then gave some examples of perfect systems. If λ1, . . . , λN are distinct elements of K, then the
system (eλ1x, eλ2x, . . . , eλNx) is perfect. Coupled with the transference principle, this recovers Baker’s
result with a simpler proof. He also showed that if w1, . . . , wN are elements of K, no two of which
differ by an integer, then the system ((1− x)w1 , . . . , (1− x)wN ) is also perfect. Here (1 − x)w is the
formal power series

(1− x)w =

∞∑
i=0

(−1)i
(
w

i

)
xi.

This gives another example of 1 × N (hence N × 1) multiplicatively badly approximable matrices.
However, it seems to us that neither Baker nor Jager’s method can be extended to give explicit examples
of M × N for some M,N > 1. It is therefore an interesting problem to give explicit examples of
multiplicatively badly approximable matrices for arbitrary dimensions.

Acknowlegements. We would like to thank Yann Bugeaud for informing us about the paper [3], and
the referee for suggestions which help to improve the presentation of our paper.
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