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Abstract. Let Fq[t] be the polynomial ring over the finite field Fq, and let GN be the
subset of Fq[t] containing all polynomials of degree strictly less than N . Define D(N)
to be the maximal cardinality of a set A ⊆ GN for which A − A contains no squares
of polynomials. By combining the polynomial Hardy-Littlewood circle method with the
density increment technology developed by Pintz, Steiger and Szemerédi, we prove that
D(N) � qN (logN)7/N .

1. Introduction

In a series of papers, Sárközy [11, 12, 13] investigated the set of differences of a set of
positive density in the integers. He proved the following theorem in [11], confirming a
conjecture of Lovász:

Theorem 1. If B is a subset of positive density of the integers, then there exist two
distinct elements of B whose difference is a perfect square.

For a set H ⊆ N = {1, 2, . . .} and N ∈ N, we denote by D(H,N) the maximal cardinality
of a set B ⊆ {1, 2, . . . , N} such that the difference set B−B does not contain any element of
H. Thus, if T is the set of non-zero squares, the above theorem says that D(T,N) = o(N).
Sárközy indeed gave an explicit upper bound for D(T,N) by showing that

D(T,N)� N
(log logN)2/3

(logN)1/3
.

At about the same time, by using ergodic theory, Furstenberg [2] independently proved
that D(T,N) = o(N), but his result is not quantitative. Recently, Green [3] and Lyall
[8] provided greatly simplified proofs of Sárközy’s theorem with weaker bounds. Even
more recently, Green, Tao and Ziegler [14] gave yet another simple and elementary proof
of Sárközy’s theorem (though with weaker bounds). A sharper quantitative result was
obtained by Pintz, Steiger and Szemerédi in [9], where they proved that

D(T,N)� N(logN)−(1/12) log log log logN .
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This bound was later improved by Balog, Pelikán, Pintz and Szemerédi [1] with 1/12 being
replaced by 1/4.

Various generalizations of Sárközy’s theorem have been investigated. For example, Ka-
mae and Mendès France [4] gave very general criteria for sets enjoying the same properties
as the squares (known as intersective sets). For l ∈ N with l ≥ 2, the aforementioned
bound of Balog, Pelikán, Pintz and Szemerédi was valid with squares replaced by lth pow-
ers. Sárközy’s [12] also estimated D(H,N) with H = {p− 1 : p prime}. His theorem was
later improved by Ruzsa and Sanders [10]. For more results on intersective sets, we refer
the reader to the survey paper [6].

In [7], the first author and Spencer investigated a function field analog of Sárközy’s
theorem for shifted primes. Because of some improved exponential sum estimates, they
obtained a result that is stronger than Ruzsa-Sander’s bound. In this paper, we consider
a function field analogue of Theorem 1. Let Fq[t] be the polynomial ring over the finite
field Fq, and let GN be the subset of Fq[t] containing all polynomials of degree strictly less
than N . We denote by D(N) the maximal cardinality of a set A ⊆ GN for which A − A
contains no squares of non-zero polynomials. Also, for A ⊆ GN , we denote by |A| the
cardinality of A. Define

U(A,N) =
∑

f∈Fq [t]
f 6=0

∣∣{(a, a′) ∈ A2 | a− a′ = f2
}∣∣,

which represents the number of distinct pairs (a, a′) in A2 whose difference is a square.
We first notice that if q is a power of 2, the map f 7→ f2 is linear. This observation allows
us to provide simple estimates for D(N) and U(A,N) in this case. For a real number R,
let dRe be the smallest integer ≥ R and bRc the largest integer ≤ R.

Proposition 2. Suppose that q is a power of 2.
(1) We have

D(N) ≤ qN/2.

(2) Let A ⊆ GN with |A| = δqN and δ > q−N/2. We have

U(A,N) ≥ δ2qd3N/2e − δqN .

Proof: For a, a′ ∈ GN , we have a − a′ = f2 ∈ GN . We first notice that every square
in GN is of the form x0 + x2t

2 + . . . + x2kt
2k, where xi ∈ Fq and k ≤ bN−1

2 c. Let

M = bN2 c. For every x = (x1, x2, . . . , xM ) ∈ FMq , the M -dimensional vector space over

Fq, let Ax be the set of all elements a = a0 + a1t + . . . + aN−1t
N−1 in A such that

(a1, a3, . . . , a2M−1) = (x1, x2, . . . , xM ).
(1) If

|A| > qN−M ≥ qN/2,

by the pigeonhole principle, there exists x such that Ax contains at least two distinct
elements. Then the difference of these two elements is a non-zero square in Fq[t].
(2) Suppose that A ⊆ GN with |A| = δqN and δ > q−N/2. From the above estimate, we
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see that

U(A,N) ≥
∑
x∈FMq

|Ax|2 − |A| ≥
1

qM
|A|2 − |A| = δ2qd3N/2e − δqN .

This completes the proof of the proposition.

Thus, throughout the rest of this paper, we assume that q is odd. By adapting part of
the Pintz-Steiger-Szeméredi argument, we prove that

Theorem 3. Suppose that q is not divisible by 2.
(1) There exists a constant C, depending only on q, such that

D(N) ≤ CqN (logN)7

N
.

(2) Let A ⊆ GN with |A| = δqN and δ > C (logN)7

N . There exists a constant C ′, depending
only on q, such that

U(A,N) ≥ δ2 exp
(
− C ′ 1

δ
(logN)7

)
q3N/2.

The paper is organized as follows. In Section 2, we will introduce basic notation and
Fourier analysis in Fq[t]. In Section 3, we will obtain some exponential sum estimates that
are necessary for our arguments. Then we will prove Theorem 3 in Section 4. We remark
here that since we will not implement the full strength of the Pintz-Steiger-Szemerédi
argument in this paper, the above bound of D(N) is not as strong as its integer analogue.
However, our approach allows us to get a bound on U(A,N), which is not possible using the
method of Pintz-Steiger-Szemerédi. On the other hand, various arguments used to get the
correct order of magnitude of U(A,N), which is q3N/2, give much weaker bounds for D(N)
than the one in Theorem 3. Thus, our bounds of D(N) and U(A,N) are something in
between the two extremes. Also, although we work only with the squares, our approach can
be easily extended to cover lth powers when l < p, the characteristic of Fq, with a bound
of the same strength. The cases when l ≥ p are more difficult. The main obstruction is
that our approach involves the use of Weyl’s differencing (see Lemma 9), which produces
factors of l! on certain exponential sums. Since these factors are zero when l ≥ p, the
standard application of the circle method is ineffective in providing non-trivial estimates.
In our future paper, we intend to apply the recent work of the second author and Wooley
on Vinogradov’s mean value theorem in function fields to overcome the difficulty of small
characteristics. We also plan to apply the approach of Pintz-Steiger-Szemerédi to obtain
a bound of comparable strength to its integer analogue.

2. Preliminaries

We begin this section by introducing Fourier analysis for function fields. Let K = Fq(t)
be the field of fractions of Fq[t], and let K∞ = Fq((1/t)) be the completion of K at ∞.
Each element ξ ∈ K∞ may be written in the form ξ =

∑
i≤w ai(ξ)t

i for some w ∈ Z and

ai(ξ) ∈ Fq (i ≤ w). If aw(ξ) 6= 0, we say that ord ξ = w, and we write 〈ξ〉 for qord ξ. We
adopt the conventions that ord 0 = −∞ and 〈0〉 = 0. Also, we write {ξ} =

∑
i<0 ai(ξ)t

i

as the fractional part of ξ. It is often convenient to refer to a−1(ξ) as being the residue
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of ξ, denoted by res ξ. For a real number R, we let R̂ denote qR. Thus, for x ∈ Fq[t], we

have 〈x〉 < R̂ if and only if ordx < R.

Let T =
{
ξ ∈ K∞ | ord ξ < 0

}
. Given any Haar measure dξ on K∞, we normalize

it in such a manner that
∫
T 1dξ = 1. We are now equipped to define the exponential

function on K∞. Suppose that the characteristic of Fq is p. Let e(z) denote e2πiz and
let tr : Fq → Fp denote the familiar trace map. There is a non-trivial additive character
eq : Fq → C× defined for each a ∈ Fq by taking eq(a) = e(tr(a)/p). This character induces
a map e : K∞ → C× by defining, for each element ξ ∈ K∞, the value of e(ξ) to be eq(res ξ).
For ξ ∈ K∞, the exponential function satisfies the following orthogonal relation [5, Lemma
7]: ∑

〈x〉<N̂

e(xξ) =

{
N̂ , if ord {ξ} < −N ,
0, if ord {ξ} ≥ −N .

(1)

Let Φ : GN → C. The Fourier transform Φ̂ : T→ C of Φ is defined by

Φ̂(α) =
∑
〈x〉<N̂

Φ(x)e(xα).

If Φ,Ψ : GN → C, then the convolution Φ ∗Ψ : GN → C of Φ and Ψ is defined by

Φ ∗Ψ(x) =
∑
〈y〉<N̂

Φ(y)Ψ(x− y).

Let γ ∈ T with ord γ = −N . By (1), we have∑
〈x〉<N̂

Φ̂(xγ)Ψ̂(xγ) = N̂
∑
〈x〉<N̂

Φ(x)Ψ(x), (2)

where Ψ(x) is the complex conjugate of Ψ(x). Then it follows that∑
〈x〉<N̂

|Φ̂(xγ)|2 = N̂
∑
〈x〉<N̂

|Φ(x)|2. (3)

Also, for every α ∈ T, we have

Φ̂ ∗Ψ(α) = Φ̂(α)Ψ̂(α). (4)

For a set A ⊆ GN , we denote by A(x) the characteristic function of x. If |A| = δN̂ , by
(3), we have ∑

〈x〉<N̂

|Â(xγ)|2 = N̂ |A| = δN̂2. (5)

Finally, by (2), we have∑
〈x〉<N̂

A ∗A(−x)Φ(x) =
1

N̂

∑
〈x〉<N̂

|Â(xγ)|2Φ̂(xγ). (6)

Notation For r ∈ R, let f(r) and g(r) be functions of r. If g(r) is positive and there
exists a constant C > 0 such that |f(r)| ≤ Cg(r) for all r, we write f(r) � g(r) or
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f(r) = O
(
g(r)

)
. Throughout this paper, all implicit constants and constants denoted by

C,C ′ or ci depend at most on q.

3. Exponential sum estimates

For η > 0 and a, g ∈ Fq[t], define

Ma,g,η =
{
α ∈ T | 〈α− a/g〉 < η

}
.

Let R,M ∈ N with R < 2M/3. We recall that for all α ∈ T, by Dirichlet’s theorem in
Fq[t] [5, Lemma 3], there exist a, g ∈ Fq[t] with g monic, 〈a〉 < 〈g〉, (a, g) = 1, 〈α− a/g〉 <
R̂〈g〉−1M̂−2 and 〈g〉 ≤ M̂ 2R̂−1. Let Ma,g = M

a,g,R̂〈g〉−1M̂−2 . Then we define the major

arcs M and the minor arcs m as follows:

M =
⋃
〈g〉≤R̂
g monic
〈a〉<〈g〉
(a,g)=1

Ma,g and m = T \M.

Also, we define

SM (α) =
∑
〈x〉<M̂

〈x〉e(x2α).

In this section, we will obtain some estimates of SM on the major and minor arcs. Specific
choices of M and R will be made in Section 4.

Lemma 4. For α ∈Ma,g ⊆M, we have

SM (α) =
1

〈g〉
∑
〈r〉<〈g〉

e(r2a/g)SM (α− a/g) +O
(
〈g〉2

)
.

Proof: Let β = α−a/g. For x ∈ Fq[t], we write x = yg+ r with y, r ∈ Fq[t] and 〈r〉 < 〈g〉.
Since α ∈M, we have 〈g〉 ≤ R̂ < M̂ . Then

SM (α) =
∑
〈x〉<M̂

〈x〉e(x2a/g)e(x2β)

=
∑
〈r〉<〈g〉

∑
〈y〉<M̂〈g〉−1

〈yg + r〉e
(
(yg + r)2a/g

)
e
(
(yg + r)2β)

=
∑
〈r〉<〈g〉

e(r2a/g)〈r〉e(r2β) +
∑
〈r〉<〈g〉

e(r2a/g)

( ∑
1≤〈y〉<M̂〈g〉−1

〈yg + r〉e
(
(yg + r)2β)

)
.

Notice that for 〈y〉 ≥ 1, we have 〈yg + r〉 = 〈yg〉. Also, since R̂ < M̂ 2/3, we have〈
(yg + r)2β − (yg)2β

〉
≤ max

{
〈yg〉, 〈r2〉

}
〈β〉 < max

{
M̂q−1, R̂2q−2

}
R̂〈g〉−1M̂−2 ≤ q−2.



6 THÁI HOÀNG LÊ AND YU-RU LIU

Thus, e
(
(yg + r)2β

)
= e
(
(yg)2β

)
. It follows that∑

1≤〈y〉<M̂〈g〉−1

〈yg + r〉e
(
(yg + r)2β) =

∑
1≤〈y〉≤M̂〈g〉−1

〈yg〉e
(
(yg)2β)

=
1

〈g〉
∑
〈r〉<〈g〉

∑
1≤〈y〉≤M̂〈g〉−1

〈yg + r〉e
(
(yg + r)2β

)
=

1

〈g〉
∑
〈r〉<〈g〉

∑
〈y〉≤M̂〈g〉−1

〈yg + r〉e
(
(yg + r)2β

)
+O

(
〈g〉
)

=
1

〈g〉
SM (β) +O

(
〈g〉
)
.

Combining the above two equalities, we have

SM (α) = O
(
〈g〉2

)
+
∑
〈r〉<〈g〉

e(r2a/g)

(
1

〈g〉
SM (β)+O

(
〈g〉
))

=
1

〈g〉
∑
〈r〉<〈g〉

e(r2a/g)SM (β)+O
(
〈g〉2

)
.

This completes the proof of the lemma.

Lemma 5. (major arcs estimate) For α ∈Ma,g ⊆M, we have

SM (α)� M̂ 2〈g〉−1/2.

Proof: Since
∑
〈r〉<〈g〉 e

(
r2a/g

)
� 〈g〉1/2 [5, Lemma 22] and SM (α − a/g) � M̂ 2, by

Lemma 4, we have

SM (α)� 〈g〉−1〈g〉1/2M̂ 2 + 〈g〉2 � M̂ 2〈g〉−1/2.

The last inequality follows since 〈g〉5/2 ≤ R̂ 5/2 < M̂ 2.

Lemma 6. For α ∈Ma,g ⊆ m, we have

SM (α) = SM (a/g).

Proof: Write α = a/g + β. Then

SM (α) = SM (a/g + β) =
∑
〈x〉<M̂

〈x〉e(x2a/g)e(x2β).

Notice that for α ∈ m, we have 〈g〉 > R̂. Then

〈x2β〉 < M̂ 2q−2R̂〈g〉−1M̂−2 < q−2.

Thus, e(x2β) = 1, and the lemma follows.

Lemma 7. For M̂ < 〈g〉, we have∑
〈x〉<M̂

e(x2a/g)� 〈g〉1/2(ord g)1/2.
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Proof: We have∣∣∣∣ ∑
〈x〉<M̂

e(x2a/g)

∣∣∣∣2 =
∑
〈x〉<M̂

∑
〈y〉<M̂

e
(
(x+ y)(x− y)a/g

)
≤
∑
〈u〉<M̂

∣∣∣∣ ∑
〈v〉<M̂

e(uva/g)

∣∣∣∣.
Since (a, g) = 1 and M̂ < 〈g〉, by (1), it follows that∣∣∣∣ ∑

〈x〉<M̂

e(x2a/g)

∣∣∣∣2 � M̂ +
∑

1≤〈u〉<〈g〉

〈
{ua/g}

〉−1

= M̂ +
∑

1≤〈z〉<〈g〉

〈
z/g
〉−1

� 〈g〉+

ord g−1∑
W=0

Ŵ 〈g〉Ŵ−1

� 〈g〉ord g.

This completes the proof of the lemma.

Lemma 8. (minor arcs estimate) For α ∈Ma,g ⊆ m, we have

SM (α)� M̂ 2M1/2R̂−1/2.

Proof: By Lemma 6, we have SM (α) = SM (a/g). There are two cases:

(1) If 〈g〉 > M̂ , by Abel’s inequality and Lemma 7, we have

SM (a/g) =
∑
〈x〉<M̂

〈x〉e(x2a/g) ≤ max
〈x〉<M̂

〈x〉max
J≤M

∣∣∣∣ ∑
〈x〉<Ĵ

e(x2a/g)

∣∣∣∣� M̂〈g〉1/2(ord g)1/2.

Since 〈g〉 < M̂ 2R̂−1, it follows that

SM (a/g)� M̂ 2M1/2R̂−1/2.

(2) Suppose that 〈g〉 ≤ M̂ . For x ∈ Fq[t], we write x = yg + r with y, r ∈ Fq[t] and
〈r〉 < 〈g〉. Thus,

SM (a/g) =
∑
〈r〉<〈g〉

∑
〈y〉<M̂〈g〉−1

〈yg + r〉e
(
(yg + r)2a/g

)
=

∑
〈r〉<〈g〉

e(r2a/g)
∑

〈y〉<M̂〈g〉−1

〈yg + r〉.

Since
∑
〈r〉<〈g〉 e(r

2a/g)� 〈g〉1/2 [5, Lemma 22] and 〈g〉 > R̂, it follows that

SM (a/g)� 〈g〉1/2M̂ 2〈g〉−1 � M̂ 2R̂−1/2.

Combining the above two cases, the lemma follows.

Lemma 9. For N ∈ N and α ∈ T with −N ≤ ordα < −2M + 2, we have∑
〈x〉<N̂

|SM (xα)|6 � N̂M̂ 10.
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Proof: By [5, Proposition 13], for any ε > 0, we have∫
T

∣∣∣ ∑
〈y〉<M̂

e(y2α)
∣∣∣4dα� M̂ 2+ε.

Then using the argument in [15, Theorem 3], we can derive from the above bound that∫
T

∣∣∣ ∑
〈y〉<M̂

e(y2α)
∣∣∣6dα� M̂ 4.

By [5, Lemma 1], we have∫
T

∣∣∣ ∑
〈y〉<M̂

e(y2α)
∣∣∣6dα = #

{
(y1, y2, y3, z1, z2, z3) ∈ GM

6 | y2
1 + y2

2 + y2
3 = z2

1 + z2
2 + z2

3

}
.

Thus, combining the above estimates with (1), it follows that∑
〈x〉<N̂

∣∣SM (xα)
∣∣6

=
∑
〈x〉<N̂

∑
〈y1〉,〈y2〉,〈y3〉,〈z1〉,〈z2〉,〈z3〉<M̂

〈y1〉〈y2〉〈y3〉〈z1〉〈z2〉〈z3〉e
(
(y2

1 + y2
2 + y2

3 − z2
1 − z2

2 − z2
3)xα

)
= N̂

∑
〈y1〉,〈y2〉,〈y3〉,〈z1〉,〈z2〉,〈z3〉<M̂

y21+y22+y23=z21+z22+z23

〈y1〉〈y2〉〈y3〉〈z1〉〈z2〉〈z3〉

� N̂M̂ 6#
{

(y1, y2, y3, z1, z2, z3) ∈ GM
6 | y2

1 + y2
2 + y2

3 = z2
1 + z2

2 + z2
3

}
� N̂M̂ 10.

This completes the proof of the lemma.

For f ∈ Fq[t], a ∈ Fq and α ∈ T, define

Rf,a(α) =
{
x ∈ Fq[t] | 〈x2α− f − at−1〉 ≤ q−2

}
.

The following lemma says that, in a sense, x2α is uniformly distributed in T.

Lemma 10. Let α ∈ T, a ∈ Fq and f ∈ Fq[t] with f 6= 0.
(1) For x ∈ Rf,a(α) and b ∈ Fq with a 6= b, there exist unique c ∈ Fq and l ∈ N∪ {0} such

that x+ ctl ∈ Rf,b(α).
(2) For any b ∈ Fq, we have |Rf,b(α)| = |Rf,a(α)|.

Proof: (1) For x ∈ Rf,a(α), we have

x+ ctl ∈ Rf,b ⇐⇒
〈
(x+ ctl)2α− f − bt−1

〉
≤ q−2

⇐⇒
〈(

(x+ ctl)2 − x2
)
α− (b− a)t−1

〉
≤ q−2

⇐⇒
〈
ctl(2x+ ctl)α− (b− a)t−1

〉
≤ q−2.

Since 〈x2α−f〉 ≤ q−1,
〈
(x+ ctl)2α−f

〉
≤ q−1 and f 6= 0, we have ordx > ord (ctl). Since

a 6= b, by comparing the orders, we have

l + ordx+ ordα = −1 ⇐⇒ l = −ordα− 1− ordx. (7)
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Thus, l is uniquely determined. Moreover, we see that the leading coefficient of 2cxtlα is
equal to b− a. Thus, c is uniquely determined.
(2) Consider ψa,b : Rf,a(α) −→ Rf,b(α) defined by ψa,b(x) = x+ ctl, where c, l are defined

as in Part (1). Suppose that x1, x1 ∈ Rf,a(α) with x1 + c1t
l1 = x2 + c2t

l2 . Since 〈x2
1α〉 =

〈f〉 = 〈x2
2α〉, we have 〈x1〉 = 〈x2〉. Then by (7), we have

l1 = −ordα− 1− ordx1 = −ordα− 1− ordx2 = l2;

from which it follows that x1 = x2. Thus, ψa,b is injective. Similarly, we can prove that
ψb,a : Rf,b(α) −→ Rf,a(α) is also injective. It follows that |Rf,b(α)| = |Rf,a(α)|.

Lemma 11. For α ∈ T, we have

|SM (α)| ≤ 〈α〉−1.

Proof: We first notice that if 〈α〉 ≤ M̂−2, then

|SM (α)| ≤ M̂ 2 ≤ 〈α〉−1.

Thus, in the rest of the proof, we can assume that 〈α〉 > M̂−2. Let f ∈ Fq[t], a ∈ Fq and
x ∈ Rf,a(α). We have

e(x2α) = e(f + at−1) = eq(a).

Notice that f = 0 if and only if 〈x2α〉 < 1. Then it follows that 〈x〉 < 〈α〉−1/2. If f 6= 0,
then 〈x2α〉 = 〈f〉. Thus, 〈x〉 is independent of a. We have

|SM (α)| =
∣∣∣∣ ∑
〈x〉<M̂

〈x〉e(x2α)

∣∣∣∣
≤
∣∣∣∣ ∑
〈x2α〉<1

〈x〉e(x2α)

∣∣∣∣+

∣∣∣∣ ∑
1≤〈f〉≤M̂2q−2〈α〉−1

∑
a∈Fq

∑
x∈Rf,a(α)

〈x〉e(x2α)

∣∣∣∣
≤ 〈α〉−1/2

∑
〈x2α〉<1

1 +

∣∣∣∣ ∑
1≤〈f〉≤M̂2q−2〈α〉−1

(
〈f〉〈α〉−1

)1/2 ∑
a∈Fq

eq(a)
∑

x∈Rf,a(α)

1

∣∣∣∣
= 〈α〉−1 +

∣∣∣∣ ∑
1≤〈f〉≤M̂2q−2〈α〉−1

〈f〉1/2〈α〉−1/2
∑
a∈Fq

eq(a)|Rf,a(α)|
∣∣∣∣.

By Lemma 10 part (2), the above inner sum is 0. This completes the proof of the lemma.

4. Proof of Theorem 3

For N ∈ N and A ⊆ GN , we define

W (A,N) =
∑

f∈Fq [t]

〈f〉
∣∣{(a, a′) ∈ A2 | a− a′ = f2

}∣∣,
which counts the number of pairs (a, a′) in A2 whose difference is f2 with weight 〈f〉. In
this section, we will prove the following theorem.
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Theorem 12. There exist constants C,C ′ > 0, depending only on q, such that whenever

A ⊆ GN with |A| = δN̂ and δ > C (logN)7

N , we have

W (A,N) ≥ δ2 exp
(
− C ′ 1

δ
(logN)7

)
N̂2.

We notice that since W (A,N) > 0 and W (A,N) ≤ N̂1/2U(A,N), Theorem 3 is a direct
consequence of the above theorem.

Let γ ∈ T with ord γ = −N . For η > 0 and g ∈ Fq[t], let

Mg,η =
⋃
〈a〉<〈g〉
(a,g)=1

Ma,g,η,

where Ma,g,η is defined as in Section 3. We also define

F (g, η) =
1

|A|N̂

∑
〈x〉<N̂
xγ∈Mg,η

|Â(xγ)|2.

The following lemma is about the density increment.

Lemma 13. Let A ⊆ GN with |A| = δN̂ . Let η > 0 and g ∈ Fq[t]. Suppose that

N ′ = − logq η − 2ord g > 0. Then we can find a set A′ ⊆ GN ′ with |A′| = δ′N̂ ′ such that

(1) δ′ ≥ δ + F (g, η),
(2) W (A,N) ≥ 〈g〉2W (A′, N ′).

Proof: Let G = g2G′N . By (3) and (4), we have∑
〈x〉<N̂

|A ∩ (G+ x)|2 =
∑
〈x〉<N̂

|A ∗G(x)|2 =
1

N̂

∑
〈x〉<N̂

|Â ∗G(xγ)|2 =
1

N̂

∑
〈x〉<N̂

|Â(xγ)|2|Ĝ(xγ)|2.

For xγ ∈Ma,g,η and y ∈ GN ′ , we have〈
g2yxγ − gya

〉
<
〈
g2y
〉
η ≤ q−1.

It follows that

Ĝ(xγ) =
∑
〈y〉<N̂ ′

e(g2yxγ) = N̂ ′.

Thus, by the definition of F (g, η), we have

1

N̂

∑
〈x〉<N̂
xγ∈Mg,η

|Â(xγ)|2|Ĝ(xγ)|2 ≥ δF (g, η)N̂N̂ ′
2
.

Also, if x = 0, we have
1

N̂
|Â(0)|2|Ĝ(0)|2 = δ2N̂N̂ ′

2
.
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We notice that 0 6∈ Mg,η as N ′ > 0. Combining the above estimates, we have∑
〈x〉<N̂

|A ∩ (G+ x)|2 ≥ 1

N̂

∑
〈x〉<N̂

xγ∈{0}∪Mg,η

|Â(xγ)|2|Ĝ(xγ)|2 ≥
(
δ2 + δF (g, η)

)
N̂N̂ ′

2
.

We also notice that ∑
〈x〉<N̂

|A ∩ (G+ x)| = |A||G| = δN̂N̂ ′.

Thus, there exists x′ ∈ GN such that |A ∩ (G + x′)| ≥
(
δ + F (g, η)

)
N̂ ′. Let A′ =

{
y ∈

GN ′ : g2y + x′ ∈ A
}

, then the set A′ satisfies both conditions of the lemma.

Proposition 14. There exist constants ci > 0 (0 ≤ i ≤ 3) such that the following hold:

let N ≥ c0, and let a set A ⊆ GN with |A| = δN̂ and δ ≥ N−1. Suppose that W (A,N) ≤
c1δ

2N̂2. Then there exist N ′ and a set A′ ⊆ GN with |A| = δ′N̂ ′ such that

(1) N ′ ≥ N − c2 logN ,
(2) δ′ ≥ δ + c3δ

2(logN)−6,
(3) W (A′, N ′) ≤W (A,N).

Proof: Let Φ : Fq[t]→ C be defined by

Φ(x) =

{
〈f〉, if x = f2 ∈ GN ,

0, otherwise.

By (6), we have

W (A,N) =
∑
〈x〉<N̂

A ∗A(−x)Φ(x) =
1

N̂

∑
〈x〉<N̂

|Â(xγ)|2Φ̂(xγ).

Also, we notice that Φ̂(θ) = SM (θ), where M = bN+1
2 c. Let R = bc4 logNc and K =

bc5 logNc, where c4, c5 are large constants. Since W (A,N) ≤ c1δ
2N̂2 and |Â(0)|2Φ̂(0)�

δ2N̂3, for c1 sufficiently small, we have∑
〈x〉<N̂
x 6=0

|Â(xγ)|2|SM (xγ)| � δ2N̂3. (8)

LetMa,g, M and m be defined as in Section 3. We now divide the sum in (8) into various
cases. Consider those x with xγ ∈ m. By Lemma 8 and (5), for N and c4 sufficiently
large, we have∑
〈x〉<N̂
xγ∈m

|Â(xγ)|2SM (xγ) ≤ max
xγ∈m

|SM (xγ)|
∑
〈x〉<N̂

|Â(xγ)|2 � M̂ 2MR̂−1/2δN̂2 � δ2N̂3. (9)
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Consider those x with Â(xγ) ≤ |A|K̂−1. By Hölder’s inequality, (5) and Lemma 9, for N
and c5 sufficiently large, we have∑

〈x〉<N̂
Â(xγ)≤|A|K̂−1

|Â(xγ)|2SM (xγ)

≤ max
〈x〉<N̂

Â(xγ)≤|A|K̂−1

|Â(xγ)|1/3
( ∑
〈x〉<N̂

|Â(xγ)|2
)5/6( ∑

〈x〉<N̂

|SM (xγ)|6
)1/6

≤ (δN̂K̂−1)1/3(δN̂2)5/6(N̂M̂ 10)1/6

� δ2N̂3. (10)

Thus, it remains to consider those x with x 6= 0, xγ ∈M and Â(xγ) > |A|K̂−1. Let

M(a, g) =
{
x ∈ GN |xγ ∈Ma,g and Â(xγ) > |A|K̂−1

}
.

By (8), (9) and (10), we have

δ2N̂3 �
∑

1≤〈g〉≤R̂
g monic
〈a〉<〈g〉
(a,g)=1

∑
x∈M(a,g)

|Â(xγ)|2|SM (xγ)|

≤
∑

1≤〈g〉≤R̂
g monic
〈a〉<〈g〉
(a,g)=1

max
x∈M(a,g)

|Â(xγ)|2
∑

x∈M(a,g)

|SM (xγ)|. (11)

For x ∈ M(a, g), since
∑
〈r〉<〈g〉 e

(
r2a/g

)
� 〈g〉1/2 [5, Lemma 22], by Lemmas 4 and 11,

we have

SM (xγ) � 〈g〉−1/2
∣∣SM (xγ − a/g)

∣∣+ 〈g〉2 ≤ 〈g〉−1/2〈xγ − a/g〉−1 + 〈g〉2.
Also, by (5), we have

|M(a, g)|
(
|A|K̂−1

)2 ≤ ∑
x∈M(a,g)

|Â(xγ)|2 ≤
∑
〈x〉<N̂

|Â(xγ)|2 = δN̂2.

Thus, for c5 sufficiently large, it follows that

|M(a, g)| ≤ δ−1K̂2 ≤ K̂3. (12)

Let T ∈ N with T̂ − 1 ≤ K̂3 < T̂ . Then for a fixed ξ ∈ K∞ and distinct fi ∈ Fq[t]
(1 ≤ i ≤ K̂3), we have

K̂3∑
i=1

1

〈fi − ξ〉
≤ O(1) +

T∑
W=0

Ŵ + 1

Ŵ
� T � K.

Also, since ord γ = −N , we have 〈xγ − a/g〉 = N̂〈x− a/(gγ)〉−1. Thus, it follows that∑
x∈M(a,g)

|SM (xγ)| �
∑

x∈M(a,g)

(
〈g〉−1/2N̂〈x−a/(gγ)〉−1+〈g〉2

)
� 〈g〉−1/2N̂K+〈g〉2K̂3 � 〈g〉−1/2N̂K.
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Substituting this into (11), we have

δ2N̂2 �
∑

1≤〈g〉≤R̂
(a,g)=1
g monic

max
x∈M(a,g)

∣∣∣Â(xγ)
∣∣∣2 〈g〉−1/2K.

For 1 ≤ r ≤ R and 1 ≤ k ≤ K, let Lr,k be the set defined by

Lr,k =
{
a/g | 〈g〉 = r̂, g monic, 〈a〉 < 〈g〉, (a, g) = 1 and |A|k̂−1 < max

x∈M(a,g)
|Â(xγ)| ≤ |A|k̂ − 1

−1}
.

Then it follows from the above inequality that

δ2N̂2 �
∑

1≤r≤R
1≤k≤K

|Lr,k||A|2k̂−2r̂−1/2K,

which implies that

1�
∑

1≤r≤R
1≤k≤K

|Lr,k|k̂−2r̂−1/2K.

Thus, there exist some r and k such that

|Lr,k| ≥ k̂2r̂ 1/2K−2R. (13)

We now aim to obtain an upper bound for |Lr,k|. For a fixed g ∈ Fq[t], by the definition
of F (g, η), we have

F (g, R̂〈g〉−1M̂−2) =
1

|A|N̂

∑
〈x〉<N̂

xγ∈M
g,R̂〈g〉−1M̂−2

|Â(xγ)|2 ≥ 1

|A|N̂

∑
〈a〉<〈g〉
(a,g)=1
a/g∈Lr,k

|A|2k̂−2.

Summing over all g ∈ Fq[t] with g monic and 〈g〉 = r̂, we have

r̂ max
〈g〉=r̂

F (g, R̂〈g〉−1M̂−2) ≥ 1

|A|N̂
|Lr,k||A|2k̂−2,

which implies that

|Lr,k| ≤ δ−1k̂2r̂ max
〈g〉=r̂

F (g, R̂〈g〉−1M̂−2).

Also, by using the same argument as in (12), we have

|Lr,k| � δ−1k̂2.

Combining the above two inequalities, we have

|Lr,k| � δ−1k̂2r̂ 1/2 max
〈g〉=r̂

F (g, R̂〈g〉−1M̂−2)1/2.

Combining this with (13), we see that there exists g with 〈g〉 ≤ R̂ such that

F (g, R̂〈g〉−1M̂−2)� δ2K−4R−2.

Then by Lemma 13, we see that there exist N ′ ∈ N and a set A′ ⊆ GN ′ with |A′| = δ′N̂ ′

such that



14 THÁI HOÀNG LÊ AND YU-RU LIU

(1) N ′ = − logq(R̂〈g〉−1M̂−2)− 2ord g ≥ N − 2R ≥ N − 2c4 logN ,

(2) δ′ ≥ δ + F (g, R̂〈g〉−1M̂−2) ≥ δ + c2
4c

4
5δ

2(logN)−6,
(3) W (A′, N ′) ≤ 〈g〉2W (A′, N ′) ≤W (A,N).

This completes the proof of the proposition.

Now, we are ready to prove Theorem 12.

Proof of Theorem 12: Suppose that we have a set A ⊆ GN with |A| = δN̂ , δ ≥ 2N−1

and W (A,N) < δ2 exp
(
− c6

1
δ (logN)7

)
N̂2, where c6 is a large constant. By applying

Proposition 14 repeatedly, we can construct a sequence of triples (Ni, Ai, δi)i≥0 such that

Ni ∈ N and Ai ⊆ GNi with |Ai| = δiN̂i which satisfy

(1) (N0, A0, δ0) = (N,A, δ),
(2) Ni+1 ≥ Ni − c2 logNi,
(3) δi+1 ≥ δi + c3δ

2
i (logNi)

−6,
(4) W (Ai+1, Ni+1) ≤W (Ai, Ni).

Claim 1. For N sufficiently large, we can construct a sequence of triples (Ni, Ai, δi)
Z
i=0

satisfying the above conditions (1)–(4) with Z = bc7
(logN)6

δ c and c7 a large constant.
Proof: Notice that when we apply Proposition 14 to construct (Ni+1, Ai+1, δi+1) from

(Ni, Ai, δi), we need Ni ≥ c0, δi ≥ N−1
i and W (Ai, Ni) ≤ c1δ

2
i N̂i

2
. Since the sequence

(Ni)i≥0 is decreasing and the sequence (δi)i≥0 is increasing, it suffices to show that for
N sufficiently large, for any sequence of triples (Ni, Ai, δi)

Z
i=0 satisfying the conditions

(1)–(4), we have NZ ≥ c0, δ ≥ N−1
Z and W (Ai, Ni) ≤ c1δ

2
i N̂i

2
(0 ≤ i ≤ Z). Notice that

NZ ≥ N − c2Z logN ≥ N − c2c7
(logN)7

δ
.

Thus, if δ > c8
(logN)7

N for some sufficiently large constant c8 (in terms of c2 and c7), we

have NZ ≥ N/2 ≥ c0. Since δ ≥ 2N−1, we have δ ≥ N−1
Z . Also, there exists a large

constant c9 (in terms of c1, c2, c7) such that for c6 sufficiently large (in terms of c9),

W (A,N) < δ2 exp
(
− c6

1

δ
(logN)7

)
N̂2 ≤ δ2q−c9

(logN)7

δ N̂2 ≤ δ2c1N̂Z
2
.

Since (Ni)i≥0 is decreasing and (δi)i≥0 is increasing, it follows that

W (Ai, Ni) ≤W (A,N) ≤ c1δ
2N̂Z

2
≤ c1δ

2
i N̂i

2
(0 ≤ i ≤ Z).

This completes the proof of the claim.

Claim 2. We have δZ > 1.
Proof: Suppose that all δi ≤ 1 (0 ≤ i ≤ Z). Let N be sufficiently large such that
c3(logNi)

−6 ≤ 1 (0 ≤ i ≤ Z). Then for 0 ≤ i < Z, we have

1

δi
− 1

δi+1
≥ 1

δi
− 1

δi + c3δ2
i (logNi)−6

=
c3(logNi)

−6

1 + c3δi(logNi)−6
≥ c3(logNi)

−6

1 + c3(logNi)−6
≥ 1

2
c3(logN)−6.

Summing over all i with 0 ≤ i < Z, for c7 sufficiently large (in terms of c3), we have

1

δ
− 1

δZ
≥ Zc3(logN)−6 >

1

δ
,
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which leads to a contradiction. This completes the proof of the claim.

Since it is not possible that δZ > 1, we conclude that if δ > c8
(logN)7

N , then we have

W (A,N) ≥ δ2 exp
(
− c6

1
δ (logN)7

)
N̂2. By taking C = c8 and C ′ = c6, the theorem

follows.

Acknowledgment. The authors are grateful to the referee for valuable suggestions about
this paper.
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[9] J. Pintz, W. L. Steiger & E. Szemerédi, On sets of natural numbers whose difference set contains no

squares, J. London Math. Soc. 37 (1988), 219–231.
[10] I. Z. Ruzsa & T. Sanders, Difference sets and the primes, Acta Arith. 131 (2008), 281–301.
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