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Abstract. We extend results on Diophantine approximation modulo 1 to intersective poly-
nomials, and by applying Schmidt’s lattice method, we obtain results on simultaneous Dio-
phantine approximation modulo 1 for systems of jointly intersective polynomials. We also
study prime analogues of these topics.

1. Introduction

In 1927, Vinogradov [21] proved the following result, confirming a conjecture of Hardy and
Littlewood [8].

Theorem 1. For every positive integer k, there exists an exponent θk > 0 such that

min
1≤n≤N

‖αnk‖ �k N
−θk

for any positive integer N and real number α, where ‖ · ‖ denotes the distance to the nearest
integer.

Vinogradov showed that one could take θk = k
k2k−1+1

− ε for any ε > 0. In particular one can

take θ2 = 2/5− ε. Heilbronn [11] improved this to θ2 = 1/2− ε. The best result to date is due
to Zaharescu [25], who showed we can take θ2 = 4/7− ε, though his method is not applicable
to higher powers. It is an open conjecture that we can choose θ2 (and more generally, θk) to
be 1− ε.

Natural generalizations of Vinogradov’s result have been made. Davenport [7] obtained an
analog of Theorem 1 when αnk is replaced by a polynomial f(n) of degree k without constant
term (the corresponding bound being uniform in the coefficients of f and depending only on
k). Danicic [6] was the first to address the question of simultaneous approximation. He showed
that

min
1≤n≤N

max(‖αn2‖, ‖βn2‖)� N−1/9+ε,

uniformly in N,α and β. This was generalized by Cook [5] to a system of polynomials without
constant terms.

Theorem 2. There is an exponent θ = θ(k, l) > 0 such that whenever f1, . . . , fl ∈ R[x] are
polynomials without constant terms of degree at most k, we have

min
1≤n≤N

max
1≤j≤l

‖fj(n)‖ � N−θ

for every positive integer N .
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This problem was also addressed by Schmidt in [17]. Though he only worked with quadratic
polynomials, his methods provided a very general framework for this type of problem, which
we utilize in this paper.

Conjecturally, θ(k, l) = 1/l− ε, but again this is wide open. On the quantitative side, quite
a lot of effort has been put into obtaining explicit and optimal values of θ under different
circumstances. There are various bounds for θ of different qualities, depending on extra
conditions imposed on the system f1, . . . , fl (e.g., when each fi is a monomial, or when k or
l is in a certain range). We refer the reader to Baker’s book [1] which discusses in depth
techniques and results for this kind of problem. Notably, when l = 1, the best bound is due
to Wooley, who showed that we can choose θk = 1

4k(k−2) − ε for k ≥ 4, as a consequence of his

recent breakthrough [22, 23] on Vinogradov’s mean value theorem.

In contrast, the emphasis in this paper will be put on the qualitative side. We are interested
in generalizing Theorems 1 and 2. For instance, can we replace nk in Theorem 1 with a
polynomial h ∈ Z[x]? That is, for which polynomials h ∈ Z[x] do we have

min
1≤n≤N

‖αh(n)‖ �h N
−θ

for some θ = θ(h), uniformly in α and N? By Theorem 2, this is the case if h is without
constant term, but apparently these are not all the polynomials enjoying this property. By
considering α = 1/q, we see that in order for such a bound to exist, h must have a root
modulo q for every q ∈ Z+. It turns out that this condition is also sufficient. We will prove
the following theorem.

Theorem 3. Let h be a polynomial with the property that for every q 6= 0, there exists an
n ∈ Z such that h(n) ≡ 0 (mod q). Then there is an exponent θ > 0 depending only on the
degree of h such that

min
1≤n≤N

‖αh(n)‖ �h N
−θ

for any positive integer N and real number α.

In the same spirit, we come up with the following generalization of Theorem 2 under a
similar hypothesis.

Theorem 4. Let l be a positive integer and h1, h2, . . . , hk be polynomials of distinct degree

satisfying the following property: if fi =
∑k

j=1 cijhj for i = 1, . . . , l are any l linear combina-
tions of h1, . . . , hk with coefficients cij ∈ Z, and q is any non-zero integer, there exists n ∈ Z
such that fi(n) ≡ 0 (mod q) for every i = 1, . . . , l. Then there is an exponent θ > 0 depending
only on l and the polynomials hi such that the following holds. Let A be an arbitrary l × k

matrix with real entries. Write A

h1(n)
...

hk(n)

 =

v1(n)
...

vl(n)

. Then

min
1≤n≤N

max
1≤i≤l

‖vi(n)‖ �h1,...,hk N
−θ,

where the bound is uniform in N and A.

Remark 1.1.

• Theorem 2 is a special case of Theorem 4 when hi = xi for all i = 1, . . . , k.
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• One can see that θ depends at most on k, l and max
1≤i≤k

deg hi, but not on the coefficients

of hi.
• The divisibility condition on the polynomials h1, h2, . . . , hk is necessary. This can be

seen by taking A to be 1
q times an integral l × k matrix.

• The dependency of the implied constants in Theorem 3 and 4 on h and h1, . . . , hk is
necessary. For example, in Theorem 3, consider the case when h(n) = (n + M)k and
α = 1

2Mk . By taking M large compared to N , we can ensure that min
1≤n≤N

‖αh(n)‖ is

greater than 1
3 .

• The assumption that h1, . . . , hk are of distinct degree is by no means necessary. This
assumption makes the details of the proof easier. In the general case, any family of
polynomials can be reduced to a family of polynomials of distinct degree by applying
a suitable linear transform.

Polynomials h satisfying the hypothesis of Theorem 3 are known as intersective polynomials
in the literature. If a polynomial has an integer root, then it is necessarily intersective, but
there are examples of intersective polynomials without rational roots, such as (x3 − 19)(x2 +
x+ 1) [2]. A system of polynomials (h1, . . . , hk) is called jointly intersective if for every q 6= 0,
there exists an n ∈ Z such that hi(n) ≡ 0 (mod q) for i = 1, . . . , k.1 Thus the condition
in Theorem 4 says that any l linear combinations with integral coefficients of h1, . . . , hk are
jointly intersective. This is quite a strong requirement. It turns out (Proposition 1) that if
l ≥ 2, then this condition implies that h1, . . . , hk are jointly intersective themselves, but this
is not necessary in the case l = 1.

The notions of intersective polynomials and jointly intersective polynomials also come up
naturally when studying related problems in combinatorial number theory. Let h, h1, . . . , hk ∈
Z[x] be polynomials. It follows from the work of Kamae and Mendès France [12] that con-
figurations {a, a + h(n)} exist in any set of positive relative density2 A if and only if h is
intersective. Bergelson, Leibman, and Lesigne proved in [4] that configurations {a+h1(n), a+
h2(n), . . . , a + hk(n)} exist in any set of positive relative density if and only if h1, . . . , hk are
jointly intersective. For any α1, . . . , αk and ε > 0, the Bohr set B(α1, . . . , αk; ε) = {m ∈ Z :
‖αim‖ < ε for all i = 1, . . . , k} is a set of positive relative density, and Theorem 4 implies that
configurations {a + h1(n), a + h2(n), . . . , a + hk(n)} can be found in such sets. Thus Theo-
rem 4 may be regarded as a qualitative step towards the Bergelson-Leibman-Lesigne theorem.
Obtaining a bound for the Bergelson-Leibman-Lesigne theorem in the general case is a very
difficult problem.

We note that the techniques used to prove Theorem 1 can be adapted to study the set
{p− 1 : p prime} in place of {nk}. One has a corresponding bound

min
1≤p≤N
p prime

‖α(p− 1)‖ � N−θ,

1In the journal version of this paper, the definition of joint intersectivity is not correctly stated.

2That is, lim
N→∞

|A ∩ {1, . . . , N}|
N

> 0.
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uniformly in α and N , for some exponent θ > 0. Curiously enough, this doesn’t seem to have
been observed before in the literature. Slijepcevic [18] obtained a weaker bound

min
1≤p≤N
p prime

‖α(p− 1)‖ � (logN)−1+o(1)

as a consequence of his construction of special trigonometric polynomials (the “van der Cor-
put” property of the set {p − 1}). We prove a generalization of this fact, which is similar to
Theorem 3.

Theorem 5. Let h be a polynomial with the property that for every q 6= 0, there is an n ∈ Z
such that h(n) ≡ 0 (mod q) and furthermore q is coprime to n. Then there is an exponent
θ > 0, depending only on the degree of h, such that

min
1≤p≤N
p prime

‖αh(p)‖ � N−θ

for any positive integer N and real number α.

Again, the condition on h is easily seen to be necessary. In [13], we call such polynomials
intersective of the second kind. Examples of intersective polynomials of the second kind include
p − 1, (p − 3)(p − 5), and it is interesting to give examples of intersective polynomials of
the second kind without rational roots. Note that much work has been done to show that
Diophantine inequalities of the form∥∥∥∥∥η +

s∑
i=1

νip
k
i

∥∥∥∥∥ < (max pi)
−σ or ‖η + νpk‖ < p−σ

have infinitely many solutions, where the variables pi and p are prime. See, for example,
[9, 20]. However, the techniques used when studying such problems frequently have implicit
constants depending on the constants η, ν, and νi.

A prime analog of Theorem 4 should certainly exist, and we will return to this topic in a
future paper. It follows from the work of Vinogradov that if we have a large exponential sum
N∑
n=1

e(f(n)), where e(x) = e2πix and f ∈ R[x], then there is a good simultaneous approximation

to all the coefficients of f (except the constant term). This is one of the main ingredients of
the proof of Theorem 4. In order to have a prime analog of Theorem 4, we need a similar
result for exponential sums over primes, e.g.∑

1≤p≤N
p prime

(log p) e(f(p)).

Such a result is plausible, but not explicitly available in the literature. However, we do have
an approximation to the leading coefficient of f , and this enables us to prove Theorem 5.

In the proofs of our results, we do not obtain the best exponents possible with the given
methods. On the one hand, this gives a clean exposition of the methods used. The proof of
Theorem 4 gives a bound θ ≤ C−lh1,...,hk , and there are reasons to expect that it may be very

hard to obtain bounds for θ in the general case that are of the same quality as the special
case hi(x) = xi. Indeed, suppose that h is a polynomial of degree k and that we want to find
n such that h(n) is divisible by a modulus qk (which naturally occurs when we look at the
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values of h along a congruence class modulo q). If h(x) = xk, then we can simply choose n to
be a multiple of q. However, if h is a general intersective polynomial, we are only guaranteed
to find an n in a congruence class modulo qk.

The structure of the paper is as follows: In Section 2, we gather some general facts, espe-
cially on intersective polynomials. In Section 3, we prove Theorems 3 and 5. While Theorem
3 is superseded by the one-dimensional version of Theorem 4 (Theorem 6), we provide the
relatively short proof since it demonstrates some themes that occur in the proof of Theorem 4.
Theorem 4 is proved in Section 5 by induction on the dimension, and the base case is proved
in Section 4.

Acknowledgement. We would like to thank the referee for detailed comments which helped
improve the presentation of the paper.

2. Preliminaries

2.1. On intersective polynomials. A polynomial h ∈ Z[x] is intersective if and only if it
has a root in Zp for any prime p, where Zp is the ring of p-adic integers. We can fix, for
each d ∈ Z+, an integer −d < rd ≤ 0 such that h(n) ≡ 0 (mod d) whenever n ≡ rd (mod d).
Moreover, rdq ≡ rd (mod d) for any d, q ∈ Z+ (see [16, p. 82]).

By [4, Proposition 6.1], polynomials h1, . . . , hk ∈ Z[x] are jointly intersective if and only
if they are all multiples of an intersective polynomial h ∈ Z[x]. Thus h1, . . . , hk ∈ Z[x] are
jointly intersective if and only if they have a common root in Zp for any prime p. Also,
corresponding to any system of jointly intersective polynomial (h1, . . . , hk), we can associate
a sequence (rd)d∈Z+ such that

−d < rd ≤ 0, rdq ≡ rd (mod d) for any d, q ∈ Z+, and hi(n) ≡ 0 (mod d) for all i = 1, . . . , k.
(1)

We now turn to the claim made in the introduction regarding the condition in Theorem 4.

Proposition 1. Let h1, . . . , hk ∈ Z[x] be polynomials such that any two linear combinations of
h1, . . . , hk with coefficients in Z are jointly intersective. Then h1, . . . , hk are jointly intersective
themselves.

Proof. Let us induct on k. If k = 2, then the conclusion follows immediately. Suppose we
have proved the statement for an integer k ≥ 2 polynomials, and h1, . . . , hk+1 ∈ Z[x] are
such that any two linear combinations of them are jointly intersective. For any integer t, the k
polynomials h1, . . . , hk−1, hk+thk+1 also have the property that any two linear combinations of
them are jointly intersective. By the induction hypothesis, h1, . . . , hk−1, hk + thk+1 are jointly
intersective. That is, for each prime p, the polynomials h1, . . . , hk−1, hk+thk+1 have a common
root xt in Zp. Clearly, the number of possible values of xt is finite, thus there are distinct
integers t, t′ such that xt = xt′ . Therefore xt is a common root in Zp of h1, . . . , hk−1, hk, hk+1.
It follows that h1, . . . , hk−1, hk, hk+1 are jointly intersective. �

Conversely, for any l ≥ 1, it is trivially true that for any jointly intersective polynomials
h1, . . . , hk, any l linear combinations of h1, . . . , hk with coefficients in Z are jointly intersective.
Curiously enough, when l = 1, Bergelson and Lesigne [3, Appendix] gave an example of two
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polynomials that are not jointly intersective, but any integral linear combination of them
is intersective. Motivated by their construction, we show that this can be extended to any
number of polynomials.

Proposition 2. For any natural number k ≥ 2, there exist polynomials h1, . . . , hk ∈ Z[x] such
that any two of them are not jointly intersective, but any linear combination of h1, . . . , hk with
coefficients in Z is intersective.

Proof. It suffices to show this when k = p is prime. Let G(x) = (x+ 1) · · · (x+ p), and let

hi(x) = (px+ 1)(xi−1G(x) + p) (1 ≤ i ≤ p).
Clearly, any two of the hi do not have a common root in Zp; thus they are not jointly
intersective. Given any integers a1, . . . , ap, we will show that the polynomial f(x) = a1h1(x)+
. . .+aphp(x) is intersective. Since f is divisible by px+1, f has a root in Zq for any prime q 6= p.
Thus it suffices to show that f has a root in Zp. We may assume that gcd(a1, . . . , ap) = 1
and, in particular, that the ai are not all divisible by p.

For any x ∈ Z/pZ, we have G(x) ≡ 0 (mod p), implying that f(x) ≡ 0 (mod p). By
Hensel’s lemma, it suffices to find x ∈ Z/pZ such that f ′(x) 6≡ 0 (mod p). For any x ∈ Z/pZ,

h′i(x) ≡ (xi−1G(x))′ ≡ xi−1G′(x) ≡ −xi−1 (mod p)

by Wilson’s theorem. Hence

f ′(x) ≡ −
p∑
i=1

aix
i−1 (mod p).

Since the ai are not all divisible by p, there exists x ∈ Z/pZ such that f ′(x) 6≡ 0 (mod p), and
the proposition follows. �

Two questions naturally arise from this construction.

Question 1. If two (or more) polynomials are such that any integral linear combination of
them is intersective, must they have a common factor?

Question 2. Is there an infinite sequence of polynomials such that any two of them are not
jointly intersective, but any integral linear combination of them (where only finitely many
coefficients are non-zero) is intersective?

In view of Proposition 1, throughout this paper, we will work with a fixed intersective
polynomial h and a fixed system of polynomials h1, . . . , hk, where h1, . . . hk have the property
that any integral linear combination of them is intersective if l = 1, and that they are jointly
intersective if l ≥ 2. Also, in the latter case, we can fix a sequence (rd) such that (1) holds.
We can assume furthermore that h1, . . . , hk are linearly independent and that our deg hi = di
satisfy d1 < d2 < · · · < dk. For a polynomial h, let us denote by lead(h) the leading coefficient
of h.

We say that a system of polynomials (g1, . . . , gk) is nice if deg g1 < deg g2 < · · · < deg gk
and the coefficient of xdeg gi in gj is 0 for i 6= j (it is obviously 0 if j < i). Such a definition is
useful when we want to apply results about simultaneous approximation to all the coefficients,
in the spirit of Vinogradov, to a linear combination of the gi. The following lemma is useful
when one needs to convert a system of polynomials into a nice one. Basically, it says that
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given a system of polynomials (fi)
k
i=1, if we are looking at the polynomials along an arithmetic

progression dx+r, we can change them in such a way to have a nice system while the involved
coefficients can grow but are still in control.

Lemma 1. Suppose r, d ∈ Z and f1, . . . , fk ∈ Z[x] with deg f1 < deg f2 < · · · < deg fk. There
exists a k × k matrix T and polynomials g1, . . . , gk ∈ Z[x], depending on d and r, satisfying
the following properties:

(1) T

f1(dx+ r)
...

fk(dx+ r)

 =

g1(x)
...

gk(x)

 .

(2) T is lower triangular with integer entries. All its diagonal entries are equal to c, where
c is an integer constant (depending only on the coefficients of fi). Actually, the (i, j)
entry of T is cijr

deg fj−deg fi if i ≤ j and 0 otherwise, where cij is an integer depending
only on the coefficients of f1, . . . , fk.

(3) g1, . . . , gk form a nice system. Also, lead(gi) = cddeg fi lead(fi) for all 1 ≤ i ≤ k.

Proof. Let A = (aij) be a lower triangular matrix with all entries on the main diagonal equal
to 1. For each 1 ≤ j ≤ k, one can successively select rational numbers aj,j−1, . . . , aj,1 so that
in the polynomial

aj1f1(dx+ r) + aj2f2(dx+ r) + · · ·+ aj,j−1fj−1(dx+ r) + fj(dx+ r),

the coefficient of xdi is 0 for every i < j. Let c be the common denominator of the entries in
A; the matrix T = cA satisfies the desired properties. �

Thus for any real numbers (α1, . . . , αk), we can write

α1f1(dx+ r) + · · ·+ αkfk(dx+ r) = β1g1(x) + · · ·+ βkgk(x)

where

(β1 · · ·βk) = (α1 · · ·αk)T−1. (2)

2.2. Notation. We will use Vinogradov’s notation �,�. Throughout the paper, ε stands
for a positive number, which can be made arbitrarily small and may change from line to line
(at the cost of changing the implied constants).

3. The case of a single polynomial

In this section we prove Theorems 3 and 5. Our main tool is the following (weighted version
of a) lemma due to Montgomery.

Lemma 2 (Theorem 2.2, [1]). Let M and N be a positive integers. Consider a sequence of real
numbers x1, . . . , xN and weights c1, . . . , cN ≥ 0. Suppose ‖xj‖ ≥ M−1 for all j = 1, . . . , N .
Then there exists 1 ≤ m ≤M such that∣∣∣∣∣

N∑
n=1

cne(mxn)

∣∣∣∣∣ ≥ 1

6M

N∑
n=1

cn.
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Before proving Theorem 3, we also recall Weyl’s inequality, a theorem due to Harman [9],
and Linnik’s Theorem [14, 15].

Lemma 3 (Weyl’s inequality). Let f be a polynomial of degree k with leading coefficient c.
Suppose that q ∈ N and ‖qc‖ < q−1. Then,

N∑
n=1

e(f(n))� N1+ε
(
q−1 +N−1 + qN−k

)21−k

.

Lemma 4. Let f be a polynomial of degree k with leading coefficient c. Suppose that q ∈ N
and ‖qc‖ < q−1. For k > 1,∑

1≤p≤N
p is prime

(log p) e(f(p))� N1+ε
(
q−1 +N−1/2 + qN−k

)41−k

,

and for k = 1, ∑
1≤p≤N
p is prime

(log p) e(f(p))� N1+ε
(
q−1/2 +N−1/5 +N−1/2q1/2

)
.

Proof. This is a combination of [9, Theorem 1] due to Harman and [19, Theorem 3.1] due to
Vinogradov. �

Lemma 5 (Linnik’s Theorem). There exist positive real numbers U and V such that for any
relatively prime positive integers q and r, the smallest prime congruent to r (mod q) is less
than UqV .

The current record is V = 5.2 [24], but we are not concerned in this paper with optimal
constants.

Proof of Theorem 3. Let M = bN θc, where θ is a sufficiently small exponent to be chosen

later. We will show that for N sufficiently large, min
1≤n≤N

‖αh(n)‖ ≤M−1 � N−θ. Suppose for

a contradiction that ‖αh(n)‖ ≥ M−1 for all n = 1, . . . , N . Then, by Lemma 2, there exists
1 ≤ m ≤M such that ∣∣∣∣∣

N∑
n=1

e(mαh(n))

∣∣∣∣∣� N

M
.

Let c be the leading coefficient of h, and let τ > 2k−1, where k is the degree of h. We assume
that θ < 1

τ , so that M τ < N . By Dirichlet’s theorem on Diophantine approximation and

Weyl’s inequality, there exists 1 ≤ q � M τ such that ‖qmαc‖ � Mτ

Nk . Since h is intersective,
there exists 1 ≤ n ≤ qmc such that h(n) is divisible by qmc. On the one hand, we have
1 ≤ n�M τ+1 ≤ N if θ < 1

τ+1 . We have

‖αh(n)‖ ≤
∣∣∣∣h(n)

qmc

∣∣∣∣ ‖qmαc‖ � (qm)k−1‖qmαc‖ � Mkτ+k−1

Nk
.

If θ is sufficiently small and N is sufficiently large, ‖αh(n)‖ < M−1, which is a contradiction.
�

Remark 3.1. From a careful analysis of the argument above, one finds that for a polynomial
h of degree k, Theorem 3 holds for any value θ < (2k−1 + 1)−1.
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Proof of Theorem 5. Let M = bN θc, where θ is a sufficiently small exponent to be chosen
later. We will show that for N sufficiently large,

min
1≤p≤N
p is prime

‖αh(p)‖ ≤M−1 � N−θ.

Suppose for a contradiction that ‖αh(p)‖ ≥ M−1 for all primes p ≤ N. Then, by Lemma 2
and the Prime Number Theorem, there exists 1 ≤ m ≤M such that∣∣∣∣∣∣∣∣

∑
1≤p≤N
p is prime

(log p) e(mαh(p))

∣∣∣∣∣∣∣∣�
1

M

∑
1≤p≤N
p is prime

log p� N

M
.

Let c be the leading coefficient of h, and let η > 4k−1 (k > 1) or η > 2 (k = 1), where k is the
degree of h. Let U and V be given by Lemma 5. For θ sufficiently small depending on η, by
Dirichlet’s theorem on Diophantine approximation and Lemma 4, there exists 1 ≤ q � Mη

such that ‖qmαc‖ � Mη

Nk . By the hypothesis on the polynomial h, there exists 1 ≤ n ≤ qmc
with (qmc, n) = 1 such that h(n) is divisible by qmc. By Linnik’s Theorem, there exists
a prime p̃ ≤ U(qmc)V with p̃ ≡ n (mod qmc). Note that h(p̃) is divisible by qmc. If θ is

sufficiently small, we have 1 ≤ p̃�M (η+1)V ≤ N . Then

‖αh(p̃)‖ ≤
∣∣∣∣h(p̃)

qmc

∣∣∣∣ ‖qmαc‖ � (qm)V k−1‖qmαc‖ � MV kη+V k−1

Nk
.

If θ is sufficiently small and N is sufficiently large, ‖αh(p̃)‖ < M−1, which is a contradiction.
�

Remark 3.2. From a careful analysis of the argument above, one finds that for a polynomial
h of degree k, Theorem 5 holds for any

θ <

{
min

(
(3V )−1, 5−1

)
, if k = 1,

min
(
(4k−1V + V )−1, 21−2k

)
, if k > 1,

where V is given by Lemma 5. It is reasonable to conjecture that in Theorem 5, θ can be
made arbitrarily close to 1. However, we cannot expect to improve vastly on our value of θ.
Indeed, in the case h(p) = p− 1, if we have an inequality of the form

min
1≤p≤N
p prime

‖α(p− 1)‖ � N−θ,

then by taking α = 1/q and N � q1/θ, this implies that the least prime congruent to 1 modulo

q is � q1/θ. This gives a value of 1/θ for Linnik’s constant V (at least in the case r = 1), but
it is presumably very difficult to show that V = 2 + ε, which has only been established under
the generalized Riemann hypothesis [10].

4. The one-dimensional case

In this section, we prove the one-dimensional case of Theorem 4.

Theorem 6. Suppose the polynomials h1, . . . , hk of distinct degree are such that any linear
combination of them with integer coefficients is intersective. Then there is an exponent θ > 0
(depending at most on h1, . . . , hk) such that

‖α1h1(n) + · · ·+ αkhk(n)‖ � N−θ
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uniformly in α1, . . . , αk, N .

We need the following result due to Wooley, in place of Weyl’s inequality.

Lemma 6. [22, Theorem 1.6] Let l be an integer with l ≥ 2, and let τ and δ be real numbers
with τ−1 > 4l(l − 1) and δ > lτ . Suppose that N is a sufficiently large integer in terms of l,
δ, and τ and that ∣∣∣∣∣∣

∑
1≤x≤N

e
(
α1x+ · · ·+ αlx

l
)∣∣∣∣∣∣ ≥ N1−τ .

Then, there exist an integer 1 ≤ q ≤ N δ satisfying ‖qαj‖ ≤ N δ−j (1 ≤ j ≤ l).

The current record is τ(l) = 1
4l(l−2) for l ≥ 4 in [23], but we are not concerned in this paper

with optimal exponents.

Proof of Theorem 6. By Theorem 3, we may assume that k ≥ 2. Suppose for a contradiction
that for every 1 ≤ n ≤ N , we have

‖α1h1(n) + · · ·+ αkhk(n)‖ ≥M−1,

where M = bN θc and θ is a sufficiently small exponent to be chosen later. Let the matrix T
and polynomials g1, . . . , gk be obtained by applying Lemma 1 for the polynomials h1, . . . , hk
with d = 1 and r = 0, and let β1, . . . , βk be given by (2). Then for all 1 ≤ n ≤ N , we have

‖β1g1(n) + · · ·+ βkgk(n)‖ ≥M−1.

By Lemma 2, there exists 1 ≤ m ≤M with∣∣∣∣∣
N∑
n=1

e (mβ1g1(n) + · · ·+mβkgk(n))

∣∣∣∣∣� N

M
.

Recall that deg(gi) = deg(hi) = di (1 ≤ i ≤ k). Applying Lemma 6 with τ = θ − ε and
δ = dkτ + ε, for N sufficiently large, there exists 1 ≤ q ≤ N δ with ‖qmβilead(gi)‖ ≤ N δ−di

(1 ≤ i ≤ k).

Let R = qm
∏k
i=1 lead(gi), then R � qm ≤ N δM ≤ N if θ is sufficiently small and N is

sufficiently large. We have ‖Rβi‖ � N δ−di for all i. It follows that we can find integers ai
such that |βi − ai

R | � N δ−diR−1 for all i. Let us now choose 1 ≤ n ≤ R such that

a1g1(n) + · · ·+ akgk(n) ≡ 0 (mod R),

which is possible because each gi is a linear combination of the hi. Then we have∥∥∥∥∥
k∑
i=1

βigi(n)

∥∥∥∥∥ ≤

∣∣∣∣∣
k∑
i=1

βigi(n)− 1

R

k∑
i=1

aigi(n)

∣∣∣∣∣ ≤
k∑
i=1

∣∣∣(βi − ai
R

)
gi(n)

∣∣∣
�

k∑
i=1

N δ−diRdi−1 � N δ−1.

If θ is sufficiently small and N is sufficiently large, then this is smaller than M−1, which is a
contradiction. �
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For the remainder of the paper, we will study jointly intersective polynomials h1, . . . , hk,
and we will prove Theorem 4 by induction under this hypothesis. For technical reasons, we
work with these polynomials along arithmetic progressions dx + rd, where the sequence (rd)
is given by (1), and the modulus d may be as large as a small power of N .

Theorem 7. Let h1, . . . , hk be jointly intersective polynomials of distinct degree. There are
exponents θ, σ > 0 (depending on the hi) such that the following holds. If d is a modulus
smaller than Nσ and α1, . . . , αk are arbitrary real numbers, then there exists 1 ≤ n ≤ N such
that n ≡ rd (mod d) and

‖α1h1(n) + · · ·+ αkhk(n)‖ � N−θ,

where the implied constant does not depend on α1, . . . , αk, N, d.

Proof of Theorem 7. Let θ and σ be small positive real numbers to be chosen later. Suppose
for a contradiction that for every 1 ≤ x ≤M = bN1−σc − 1, we have

‖α1h1(dx+ rd) + · · ·+ αkhk(dx+ rd)‖ ≥ N−θ > M−2θ.

Let the matrix T and polynomials g1, . . . , gk be obtained by applying Lemma 1 to the polyno-
mials h1, . . . , hk for d and r = rd, and let β1, . . . , βk be given by (2). Then for all 1 ≤ x ≤M ,
we have

‖β1g1(x) + · · ·+ βkgk(x)‖ > M−2θ.

By Lemma 2, there exists 1 ≤ m�M2θ with∣∣∣∣∣
M∑
n=1

e (mβ1g1(n) + · · ·+mβkgk(n))

∣∣∣∣∣� M

M2θ
.

Recall that deg(gi) = deg(hi) = di (1 ≤ i ≤ k). Applying Lemma 6 with τ = 2θ − ε and
δ = dkτ + ε, for M sufficiently large, there exists 1 ≤ q ≤ M δ with ‖qmβilead(gi)‖ ≤ M δ−di

(1 ≤ i ≤ k).

Let R = qm
∏k
i=1 lead(gi), then R � qmdC � M2θ+δdC , where C =

∑k
i=1 di. If θ and σ

are sufficiently small, then we have R ≤ N . We also have ‖Rβi‖ ≤ dCM δ−di (1 ≤ i ≤ k). Let
us now choose 1 ≤ n ≤ R such that whenever

n ≡ rR (mod R)

then hi(n) is divisible by R for any 1 ≤ i ≤ k. We also have n ≡ rd (mod d), since R is
divisible by d. If we write n = dx + rd for some 1 ≤ x ≤ R, then gi(x) is divisible by R for
any 1 ≤ i ≤ k, since each gi(x) can be written as a linear combination of the hi(dx+ rd).

Then we have∥∥∥∥∥
k∑
i=1

βigi(x)

∥∥∥∥∥ ≤
k∑
i=1

‖βigi(x)‖ ≤
k∑
i=1

‖Rβi‖
∣∣∣∣gi(x)

R

∣∣∣∣
�

k∑
i=1

dCM δ−diRdi−1 �
k∑
i=1

dCM δ−di(M2θ+δdC)di−1

� dC
2

k∑
i=1

M−2θ+di(2θ+δ−1)
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If θ and σ are sufficiently small and N is sufficiently large, then this is smaller than M−2θ,
which is a contradiction. �

5. The general case

In this section, we prove Theorem 4. Following Schmidt [17], we reformulate the problem
in the language of lattices and prove a more general statement that allows us to perform
induction. Precisely, we will prove the following theorem.

Theorem 8. Let h1, . . . , hk be polynomials satisfying the conditions in Theorem 4. For every
natural number l, there are exponents θl, σl such that the following holds. If Λ is a lattice with
determinant det(Λ) ≤ N θl, d is a modulus with d ≤ Nσl, and A is any real l× k matrix, then
there exists 1 ≤ n ≤ N such that

A

h1(n)
...

hk(n)

 ∈ Λ +Bl,

where Bl is the unit ball in Rl. Furthermore, n ≡ rd (mod d).

It is easy to see that Theorem 8 implies Theorem 4 (where θ can be taken to be θl/l) by

setting Λ = N θl/lZl and replacing the matrix A in Theorem 4 by N θl/lA. Before proving
Theorem 8, let us first recall the following lemma, which is reminiscent of Lemma 2 and can
be found in the proof of [17, Lemma 14A].

Lemma 7. Suppose Λ is a lattice of full rank in Rl such that Λ ∩ Bl = {0}. Suppose
~x1, . . . , ~xN ∈ Rl are vectors not in Λ +Bl. Let ε > 0 and

S~p =

N∑
n=1

e(~xn · ~p).

Then, provided N is sufficiently large in terms of ε, there is a primitive point ~p in the dual
lattice Π of Λ such that |~p| ≤ N ε and an integer 1 ≤ t ≤ Nε

|~p| such that

|St~p| ≥ N1−ε det(Λ)−1.

Proof of Theorem 8. We prove this theorem by induction on l. The case when l = 1 follows
from Theorem 7. Suppose that l ≥ 2 and that we have determined appropriate values for θl−1

and σl−1. Let θl and σl be two exponents, which will be selected later, and suppose that

A

h1(dn+ rd)
...

hk(dn+ rd)

 /∈ Λ +Bl

for all 1 ≤ n ≤ M = bN1−σlc − 1. Let T be the matrix and g1, . . . , gk be the polynomials
resulting from an application of Lemma 1 for the polynomials h1, . . . , hk with respect to d and
r = rd. Then

B

g1(n)
...

gk(n)

 /∈ Λ +Bl (3)
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for all n = 1, . . . ,M , where B = AT−1. Let ε > 0 be any number, and assume that N is

sufficiently large in terms of ε. Let ~b1, . . . ,~bk be the columns of B. Applying Lemma 7 to the

vectors ~xn = g1(n)~b1 + · · · + gk(n)~bk, we find a primitive point ~p in the dual lattice Π of Λ
with |~p| ≤M ε and an integer 1 ≤ t ≤ Mε

|~p| such that∣∣∣∣∣
M∑
n=1

e(tg1(n)~b1 · ~p+ · · ·+ tgk(n)~bk · ~p)

∣∣∣∣∣ ≥M1−ε det(Λ)−1.

Let τ < 1
4dk(dk−1) be a parameter to be chose later, and let δ = dkτ + ε. Applying Theorem 6

(in the case that k = 1 and dk = 1, one could instead apply Weyl’s inequality), provided M is
sufficiently large and M τ−ε ≥ det(Λ), we can find 1 ≤ q ≤M δ such that

‖qtlead(gi)~bi · ~p‖ < M δ−di

for all i = 1, . . . , k, since (g1, . . . , gk) is a nice system with di being the degree of gi.

There are integers ni such that ‖qtlead(gi)~bi ·~p‖ = |qtlead(gi)~bi ·~p−ni|. Since ~p is a primitive

point in Π, there are vectors ~vi ∈ Λ such that ni = ~p ·~vi. Thus we have |(qtlead(gi)~bi−~vi) ·~p| <
M δ−di . Roughly speaking, this means that the vectors ~ui = qtlead(gi)~bi − ~vi almost lie in the
orthogonal complement of ~p, and we will exploit this fact to move to a space of smaller

dimension. Before proceeding, let us state our goal. Let R = cqtddk
∏k
i=1 lead(hi), where c is

the constant in Property (3) of Lemma 1. Then R is divisible by qtlead(gi) for every i.

Claim: There exists 1 ≤ m ≤
√
N ≤M such that gi(m) are all divisible by R and

g1(m)

qtlead(g1)
~u1 + · · ·+ gk(m)

qtlead(gk)
~uk ∈ Λ +Bl. (4)

Since

g1(m)

qtlead(g1)
~u1 + · · ·+ gk(m)

qtlead(gk)
~uk = g1(m)~b1 + · · ·+gk(m)~bk−

g1(m)

qtlead(g1)
~v1−· · ·−

gk(m)

qtlead(gk)
~vk

and the ~vi are in Λ, this immediately implies that g1(m)~b1 + · · · + gk(m)~bk ∈ Λ + Bl, which
contradicts (3). (The claim makes it clear why we need to include the extra divisibility
requirement in our induction hypothesis.)

Let Λ′ be the intersection of Λ and the (l − 1)-dimensional space V = ~p⊥. Since ~p is a
primitive point in the dual lattice of Π, Λ′ is a sublattice of Λ of dimension l− 1. In order to
achieve (4), we want to have

g1(m)

qtlead(g1)
~w1 + · · ·+ gk(m)

qtlead(gk)
~wk ∈ Λ′ +

1

2
Bl, (5)

where ~wi is the orthogonal projection of ~ui onto V , and

g1(m)

qtlead(g1)
(~u1 − ~w1) + · · ·+ gk(m)

qtlead(gk)
(~uk − ~wk) ∈

1

2
Bl. (6)

Since |~p| � det(Λ)−1 (see [17, p. 28]), we have |~ui− ~wi| = |~ui·~p|
|~p| ≤

Mδ−di
|~p| � det(Λ)M δ−di ≤

N θlM δ−di . It is easy to see from Lemma 1 that we also have the bound gi(m) � (dm)di .
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Hence for every 1 ≤ m ≤
√
N ,∣∣∣∣ g1(m)

qtlead(g1)
(~u1 − ~w1) + · · ·+ gk(m)

qtlead(gk)
(~uk − ~wk)

∣∣∣∣ ≤ k∑
i=1

N θlM δ−di(dm)di

�
k∑
i=1

N θlM δ−diNdi(1/2+σl),

which can be made smaller than 1/2 if, say, θl + 2σl + δ < 1/2. Thus (6) is achieved.

Let us now turn our attention to (5). This is satisfied if we can find 1 ≤ x ≤
√
N such that

x ≡ rR (mod R) and

h1(x)~s1 + · · ·+ hk(x)~sk ∈ Λ′ +
1

2
Bl, (7)

where

(~s1~s2 · · ·~sk) =

(
~w1

qtlead(g1)

~w2

qtlead(g2)
· · · ~wk

qtlead(gk)

)
T.

Once such an x is found, upon setting m = x−rd
d , (5) holds. (Note that R is divisible by d.)

We are working in the (l − 1)-dimensional space V with a lattice of full rank Λ′. By our

induction hypothesis, we can find 1 ≤ x ≤
√
N satisfying x ≡ rR (mod R) and (7) provided

that R ≤ Nσl−1/2 and det(Λ′)� N θl−1/2. By definition,

R� qtddk �M δ+εNdkσl ,

so the first condition is always satisfied if δ+dkσl ≤ σl−1/3. As for the second condition, note
that det(Λ′) = |~p|det(Λ) � N θl+ε, implying that the condition is satisfied if θl ≤ θl−1/3. In
summary, if we choose τ , θl, and σl sufficiently small in terms of σl−1 and θl−1, then (5) is
achieved, and the theorem holds. �
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