ESSENTIAL COMPONENTS IN VECTOR SPACES OVER FINITE FIELDS

ZHENCHAO GE AND THAI HOANG LE

ABSTRACT. A subset H of non-negative integers is called an essential component, if d(A+ H) > d(A)
for all A C N with 0 < d(A) < 1, where d(A) is the lower asymptotic density of A. How sparse
can an essential component be? This problem was solved completely by Ruzsa. Here, we generalize
the problem to the additive group (Fp[t], +), where p is prime. Our result is analogous to but more
precise than Ruzsa’s result in the integers. Like Ruzsa’s, our method is probabilistic. We also
construct an explicit example of an essential component in Fj[t] with small counting function, based
on a construction of small-bias sample space by Alon, Goldreich, Hastad, and Peralta.

1. INTRODUCTION

1.1. Essential components in N. Let N denote the set of nonnegative integers. If A C N, the lower
asymptotic density of A is defined as

o ]AN{L,2,... N}
A=l =y

and the Shnirelmann density of A is

. |AN{L,2,... N}
o(A) = ]%anfl N .
For two subsets A, B of an abelian group, we define the sumset A+ B ={a+b:a € Ajb € B}. If
n € N, then nA denotes the n-fold sumset of A. If A C N, let A(z) := #{1 <n <z :n € A} denote

the counting function of A.

A set H C N is called an essential component if for any A C N with 0 < d(A) < 1, we have
d(A) < d(A+ H). The notion of essential components was introduced by Khinchin [§], though instead
of d he used o. For a detailed account of essential components, see [7, Chapter I, $5]. As was proved
by Pliinnecke [12, Theorem 77, p. 116], H is an essential component with respect to o if and only if H
is an essential component with respect to d and {0,1} C H.

Shnirelmann’s inequality [13, Theorem 4.2.1] implies that if o(H) > 0 and 0 € H, then H is an essential
component. Khinchin [8] proved that the set {n? : n € N} is an essential component and Erdds [4]
proved that if H is an additive basis of N, i.e. kH = N for some k € Z, then H is an essential
component. If kH = N then clearly H(x) > 2% Tt is natural to ask if H is an essential component,
then how small can H(z) be. Linnik [II] constructed an example of an essential component H such

that H(x) = O(exp(logT90 x)). For any given n > 0, Wirsing [I8] constructed an essential component

H such that
H(x)=0 (exp (n\/@log loga:)) . (1)

Finally, Ruzsa [I4] gave a complete answer to this question by proving the following theorems.
1
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Theorem 1. For any ¢ > 0, there exists an essential component H such that H(zx) < log'*¢ x.

Theorem 2. Suppose H C N is such that for any e > 0, |H(x)| < log' ™z infinitely often. Then there
is a set A C N such that
0<d(A)=d(A+ H) < 1. (2)

Consequently, there does not exist an essential component H such that H(z) < 10g1+o(1) T.

The construction in Theorem [1| is probabilistic and no deterministic construction of H is known.
Wirisng’s bound remains the best explicit construction to date.

1.2. Essential component in vector spaces. In view of the influential finite field model in additive
combinatorics, it is natural to study the analog of essential components when N is replaced by a vector
space over a finite field.

Let F = IF,, be the finite field over p elements, where p is prime. Let
G .= @F = {(x0,1,...) : x; € F,z; # 0 for finitely many i}.
i=0

Additively, G is isomorphic to the group F[¢] of polynomials over F. We will write F[t] and G inter-
changeably and refer to elements of G as both vectors and polynomials, though no arithmetic structure
of F[t] is involved. Let G,, = {z € F[t] : degz < n}, then as an additive group, G,, = F". We also
define Gy = {0}. If A is a subset of G, then by A,, we denote AN G,,. We define the lower asymptotic
density of A to be

d(A) = liminf ‘Anl

n—oo p

The upper asymptotic density d and asymptotic density d are defined similarly. We say a set H C G
is an essential component if whenever 0 < d(A4) < 1, we have

A, + H,
d(A) < liminf An ol
n— 00 pn
Note that liminf,,_ o [AntHal jg 10t necessarily the same as d(A + H) = liminf, Lf””'. In

contrast to N, G is a group and in general we have A, + H,, C (A+ H),. Since A and H are both
infinite sets, little else can be said about (A + H),, in terms of A, and H,. This observation, made
precise by the following Proposition, shows that d(A+ H) is of little interest and our notion is a natural

analog of the notion of essential components in N.

Proposition 3. If H C G is infinite, then there is a set A C G such that d(A) =0 and A+ H =G.

Proof. Since H is infinite, we can find a sequence (h,, )52, C H such that deg(h,) > max(deg(h,_1),2n)
for any n > 1. Let
A:=U2 (G — hy).
Then for any n, A+ H D (G,, — hy) + hy, = Gy, showing that A + H = G. On the other hand, notice
that every element in G,, — h,, has degree equal to deg(h,). Thus
- | Ui (G5 — Ry Yiar

d(A) = nll)ngo pdcg(hn) - nlglgo png(hn) -

0.
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The problem of essential components in [F[t] was already studied by Burke [3], who proved the following
analog of Erdés’ theorem: If H is a basis of order < k, that is, kH,, = G,, for any n € Z™*, then H is
an essential component. Clearly, if H is a basis of order < k then |H,,| > p/k.

In this paper, we prove the following analogs of Theorems [I] and [2]
Theorem 4. For any ¢ > 0, there exists an essential component H C G such that |H,| < n'*c.

Theorem 5. Suppose H C G is such that for any € > 0, |H,| < n'™¢ infinitely often. Then for any
0<d <1, there is a set A C G such that

H,
5 = d(A) = liminf Aot il

n—oo p

3)

Consequently, there does not exist an essential component H such that |H,| < pitod),

We remark that our conclusion is more precise than Ruzsa’s in that the density of A can be
any prescribed number §. The proofs of Theorems [ and [5] will parallel those of Theorems [I] and
In our proofs many details are cleaner thanks to the vector space structure of G,,, but some of the
arguments don’t carry to G, in a straightforward way, not least because of the fact that there is no
linear ordering on G. In proving Theorem [5] we adapt Ruzsa’s idea of “niveau sets”, namely the set of
points at which the Fourier transform of a function is large. The idea was first introduced by Ruzsa in
proving Theorem |2 and has found applications in other problems (see [I5], [9], [19]) and in particular
in vector spaces ([I9]). In the context of vector spaces, niveau sets are particularly pleasant.

Similarly to Theorem [1} the construction in Theorem [4]is probabilistic. It is therefore desirable to have
an explicit example of an essential component with small counting function. It turns out that there is
a connection between essential components in F[t] and small-bias sample spaces, an important notion
in theoretical computer science. Using a construction of small-bias sample space by Alon-Goldreich-
Hastad-Peralta [1], we prove the following:

Theorem 6. There exists an essential component H C G with counting function |H,| = Op(n?).

Note that this bound is better than the bound given by Wirsing’s construction in N.

The organization of the paper is as follows. In Section [2] we will recall some tools that are used in the
proofs. Theorems are proved in Sections respectively. In Section [B] we will discuss explicit
constructions of essential components in Fp[t] and prove Theorem @

Acknowledgements. The second author is supported by National Science Foundation Grant DMS-
1702296.

2. PRELIMINARIES

2.1. Notation. Recall that we use G and F[t] interchangeably and an element of G can be viewed as
both a vector and a polynomial. An element x = (zg,x1,...) of G is identified with the polynomial
Z;}io x;t'. In particular, by degx, we mean the largest n such that x,, # 0. We define the support of =
as supp(z) = {i : x; # 0}. We say that z is supported on a set I if supp(x) C I. We define e(z) = €7@
for € R and e,(z) = e(z/p) for x € F (so e, is an additive character on ). We will often make use
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of the following fact (where - denotes the scalar product):

Y e f) = {p"’ if supp(x) N [0,n) = 0 "

fec, 0, otherwise.

2.2. Probability tools.

Lemma 7 (Berry-Esseen inequality [20, Chapter 7, Theorem 6.1]). Let X,{X;}}_; be independent,
identically distributed random variables. Let

Z?:l X; —nE(X) <
nVar(X) )

F(z) =P ( (5)

and let ®(z) = \/% ffoc e=t*/24dt be the cumulative distribution function of the standard normal dis-
tribution. Suppose E(]X — E(X)|?) < K < co. Then
C-K
Slip |F(.Z') — @(l‘)‘ < W (6)

where C is a constant less than 0.8.

Our next tool is Bernstein’s inequality. For real random variables, this can be found in [2, Corollary
2.11]. The complex case follows easily from applying the real case to the real and imaginary parts of
Zj.
Lemma 8 (Bernstein’s inequality). Let {Z;}]_; be independent bounded complex random variables
such that BE(> Z;) = A and |Z; —E(Z;)| <k forallj =1,--- ,n. Suppose Z;Lzl Var(Z;) < o?. Then
for all A > 0,

" 2
P (| Zj:l Zy— Al > )‘) < dexp (4(0’2+>;c)\/3)) :

We also need the following version of the law of large numbers.

Lemma 9 (Kolmogorov’s strong law of large numbers [21, p. 12]). Let {X,,} be a sequence of inde-
pendent random variables with E(X,,) = 0 for all n. Let {a,} be a non-decreasing unbounded sequence

of positive numbers. If >0, %{1‘2) < 00, then
X
lim 2= X 0 a.s. (7)
n— oo Qn,

2.3. Fourier analysis tools. We need the following lemma of Ruzsa which relates essential compo-
nents to the Fourier transform. Ruzsa proved it for general abelian groups, though we only need it for
the case of G,,.

Lemma 10 ([I4, Corollary 7.3]). Let K C G, and arbitrary complex numbers (ci)rer such that
Y ke €k = 1. Define

@)=Y creplk- )
keK
for any x € G,,. Suppose there is n > 0 such that

|€(z)| < nfor all x € G,z # 0. (8)
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Then for any set A C G,,, we have
2 4]
A+ K| = |A]+ (1 —n7)|A] )

Remark 1. Lemma [10] says that, if there is a trigonometric polynomial supported on K, all of whose
values (except the one at 0) are small, then K serves as an essential component in G,. The most
obvious choice for (c) is ¢, = ﬁ; however, in our application we will have to choose a different
function.

Remark 2. Let S C G, be a multiset whose underlying set is K. For k € K, let ¢;, = (multiplicity of k in S)/|S].
It is easy to see that the condition is satisfied if we have

1 1

Ve e F,Vo € G,z # 0, |S‘#{865:x~s:c}—5 <e (9)

with € = %. A multiset S satisfying @D is called an e-biased sample space, or an e-biased sample set

(see e.g. [6]). (In the usual definition in the literature, one has p = 2, but clearly () makes sense for
any p.) Thus if a multiset S C G, is an e-biased, then its underlying set K is an essential component

in G,,.

For completeness we reproduce Ruzsa’s proof of Lemma [10] here.

Proof of Lemma[I0. Let B := (A+ K)¢, then BN (A+ K) = (). Therefore,

0 = Z Z ep(—x - b) Z ep(z-a) Z crep(k - x)

zcG, bEB acA keK
= Z &(x) Z ep(—z-b) Z ep(x - a).
zeG, beB acA

By separating the contribution of x = 0, we have

IBIIAI == &@) ) ep(—a-b) Y eplz-a)

z€Gp beB acA
z#0

< Z Zep(—x~b)26p(;v-a)

zeG, |bEB acA

z#0

1/2 1/2
2 2
<n Z Z ep(—x - b) Z Z ep(z - a) by Cauchy-Schwarz’s inequality
beB a€A

$€Gn QCEGn
x#£0 z#0
. n 1/2 n 1/2 , .
=n(|A|(p" — |A])"" (|B|(p" — |B])) by Plancherel’s identity
Therefore, |A||B] < n*(p™ — |A])(p"™ — | B]) and

Bl < et = |A) o (1= 9)
~ A+ 2 — |A]) §+n*(1—9)
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where § := |p7|~ Since |B| = p" — |A + K|, we have
|A+ K| S 0
pr T o+n*(1-6)
(1 —n*)6(1 —9)
N d+n%(1-19)
> 6+ (1 - 1)0(1 - o),
where we applied § +7%(1 — ) <5+ (1 —6) = 1. O

2.4. Combinatorics tools.

Lemma 11. Letn € ZT and C C G,, be a subset of G,, with |C| = dp™ > 0. Then exists x € Gy, such
that

(C—z)NGm| > 5p™ (10)
for all0 < m < n. In particular, z € C.

The proof of this lemma can be found in [I0, p. 12]. For completeness we include the proof here.

Proof. We prove the lemma by induction on n. When n = 1 we can take x to be any element of C.
Suppose the lemma is true for subsets of G,,_1. Since we have the partition
Gn = Uaer(Gn_1 + at™ 1),

there must be o € F such that |CN(Gy—1+at™ 1) > §p"~ L. Therefore, |(C —at" )NG,_1| > dp™~ L.
Applying the induction hypothesis to the set (C' — at" 1) N G,,_1, we see that there is y € G,,_; such
that

[(C— at" 1t — Y) NG| > 0p™ (11)
for all 0 < m < n — 1. Therefore, is true with = at™ ! +y. The assertion = € C follows from
applying with m = 0. O

3. PROOF oF THEOREM []

In this section, we fix 0 < ¢ < 1. Let (Xy)see be a family of independent random variables taking
values in {0,1} and

_ _ gy _ deg(f)*
by =P(X; =1) =~ (12)
if deg(f) > 1; by =1 if deg(f) < 0. Then the X;’s are Bernoulli and
E(Xy) =by,  Var(Xy) =bs(1—by). (13)
Now we define
He={feG:X;=1}. (14)

On the one hand, we claim that |H,| < n'™¢ holds almost surely. In order to see this, we apply Lemma
to the independent random variables Y, = 37y, 5y, Xy —n°(1 — p~') and the sequence a, =n'**

for n > 1. Since E(Y;)) = 0 for alln > 1 and Y07, a, 2E(|Y,]?) < 30, n727¢ < oo, Lemmaly|implies

n=1"n
that N
po Host| = B(Hpnl) XY

n—oo nltc n—soo plte

0 a.s. (15)
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Thus, as n — oo, ||H,| — E(|H,|)| = o(n'*¢) and |H, | < E(|H,|) < n'*¢ holds almost surely.

On the other hand, we will prove that H is an essential component of G almost surely. This is the
purpose of the remaining of this section.

The strategy is to use Lemma and produce a trigonometric polynomial supported on H,, all of
whose values are small except the one at 0. A first step is the following, which guarantees that the
trigonometric polynomial is small on a set S, as long as |S| is not too big.

Lemma 12. Let 0 < ¢ < 1 and n be sufficiently large depending on c. For f € G, define
1

= ].
U/o(f) p”bf ( 6)
(recall that by = E(Xy)). Let
fo(w) = Y wolf)Xsep(f - @) (17)
fEGR
for x € G,,. Then for any subset S C Gy, \ {0} with |S| < exp(zn—oco), we have
1 1 —nc
— z z >1-— )
P ({lo-11< g {maxleotol < 3 }) =1 - e () (18)
Proof of Lemma[13 By the definition of wy(f), for every z € G,,, we have
1 0, ifx#£0
E(&o(z) = — > epla-f)= oD (19)
p feo. 1, if x =0.

For every x € Gy, we have

Var(§o(z)) = Var(Re(§o(z))) + Var(Im(§o(2)))

n—1 o5
<QZU}0 bf 1—bf) p2n Z %<lzplj. (20)

2n c
fea, feamayt P i= Y

. G 2 . _

Note that since %/zﬁ > % > 2, it is easy to show that Z?le 1;.20 <
the variance is

Var(&(z)) < 2n™¢. (21)

Moreover, since |wo(f)e,(f - z)(X; — E(Xf))| < 2wo(f) < 2n~°, Bernstein’s inequality (Lemma
implies that

P ([¢o(z)] > %) < dexp (Z2) for z # 0, (22)

P (|6(0) = 1] > 3) < dexp (55) -

Since 4(|S]|+1) < 4exp( 200) +4 < exp(75 ) holds for all sufficiently large n depending on ¢, using
and the union bound, we obtain that

P ({mariaol> ¢ fv {6012 1}) <051+ vew () <o (55 ) e ().

In other words,
_nc
P\ 200 )

P ({maxleato)l < 3} {lo@ ~11< 3 }) 2 1o (0 Y exw (G ) = 1-

as desired. O
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The trigonometric polynomial &y given by Lemma [12| covers only a set S whose size is small compared
to G,,. In the next Lemma, we will produce different trigonometric polynomials &,, each covering a
different set S,,, then “glue” these trigonometric polynomials together. We can do this as long as |S,|
is not too big, and no element of S, is supported on [n — u,n).

Lemma 13. Let 0 < ¢ < 1 and n be sufficiently large depending on c. Let u be an integer with
1<u<n'=¢3. For f € G, we define

CJw=(@-p )X 07 ifn—u < deg(f) <n,
wu(f) = {0, otherwise. (23)

Further, for x € G,, we define

Eul@) = Y wu()Xgep(f - ). (24)

feGn

Then for any subset S, C {z € G, : supp(z) N [0,n —u) # O} with |S,| < exp(zuo—’f;)), we have

P ({le - 11< g pa{mwisol < 3 }) 21— e (G0 ) (25)

Proof of Lemma[13 We first see that E(£,(0)) = > o, wu(f)by = Z] n—u Ddeg(f)=j Wor = 1.

For supp(z) N [0,n — u) # 0, we have

EG@)=v Y EXel-H=uv Y L 3 o2
n—u<dcg(f)<n j=n—u deg(f)=J

w]; LS (fa) =0,

u fEGHl\G

(26)

For n > 23/¢ we have u < n/2 and w = ((1 —-p Y — GO < 2(u(n/2)0)7t < 4(unc) T
Therefore,

32
Vi 2 - = .
ar(&,(z)) < 2w? Z Var(X;) < 2w Z (1 ) < 2w?un® < - (27)
n—u<deg(f j=n—u
Moreover, for each f, |w,(f)e,(f - a:)(Xf —E(X¢))| < 2w < 8(un®)~!. By Bernstein’s inequality, for
supp(z) N [0,n — u) # 0, we have
P (|6u(@)] = 5) < 4exp (T555)
P (|€u(0) =1 = 5) < 4exp (555 -
Note that 4(|1Su|+1) < 4(exp(2000) +1) < exp( 1“5’6;)) holds for all sufficiently large n depending on c.
From , we hence can deduce that

1 1 un® un® —un®
P({ggjﬁu( Iz g v fle® -1 3 b) < aisuenen () <o (a0 ) oo (T )

Therefore, we obtain that

1 1 un® —un® —un®
P — -1 — >1- =1-
({?éasx Sul@)] < 3} " {'5“(0) < 3}) =T (1500) oxp ( 1200 ) oxp ( 6000 ) ’

which completes the proof. O

)
o (28)
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As promised we will now glue different £,’s together. The point is that we need only O.(1) of them.

Lemma 14. Let 0 < ¢ < 1 and n be sufficiently large depending on ¢ and p. Let H be the set defined
m . There exists a (random) trigonometric polynomial

Un(x) = > vpep(f - o)

feG,
supported on H, with 1,,(0) =1 and
P ( max ()] 21— 5 | < Jexp (1 (29)
sechy, =T ) S P Gooo )
z#0
Proof. We first take
uj = |nt=ie/3] for j=1,2,...,k (30)

where k = |2| — 1. Let &;(z) = &, (2), wj(f) = wy, (f), where &,,(z) and w,,(f) are defined as in
Lemma [I3] Let
Ay = {o: supp(z) 1[0, — uy) # 0}. (31)

uin®
2000

Since nlogp < % for sufficiently large n, we note that |A;| < exp(nlogp) < exp( ) and hence

A; satisfies the condition of Lemma[I3] In general we let

A; ={z :supp(z) C [n — u;_1,n) and supp(z) N [n — uj_1,n —u;) # 0} (32)
for 2 < j < k. By the definition of u;, we note that u;_qlogp < gég; for large n and hence |4;| <
phi-1 < exp(gg)gg ). Thus, all the sets A; satisfy the condition of Lemma |13|and we obtain

1 1 —u,;n®
P({maig@l<gbr{ls-11<3}) 21— (FE5) (33)
for j =1,2,...,k. Finally, we let
Ag = (G \ {0}) \ (U1 4) = {z = supp(w) C [n — uy,n)}. (34)
Since uy logp < n?/3logp < % for all sufficiently large n, |4g| = p** — 1 < exp(%) holds and hence

Ay satisfies the condition of Lemma [I2] Thus, for & (z) defined in Lemma[I2] we have

P ({maxtool < 3 pa {leot0) — 11 < 3} ) = 1o () (35)

We now define the trigonometric polynomial

Yio&i@)
0 &i(0)

Then clearly v,,(0) = 1 and 1), is supported on H,, because all the &; are supported on H,. Also, all
the &;(0) are real and positive.

Yn(x) = (36)

If all the events on the left hand sides of and occur, then Z?:o &(0) < 4(k+1)/3. If
x € Gy \ {0} then there is at least one ¢ € [1, k] such that z € A; and consequently |¢;(x)] < 1/3 <
&i(0) — 1/3. For all other j € [1, k] we bound trivially |£;(z)| < £;(0). Thus

‘Zfzoﬁj(ﬂc)’ 1/3 1/3 ¢
N T N S R R (S TE R ) (7
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Consequently,

P | max |[¢n(z)] >1— B P({there exists a j € [1, k] s.t. fails} v {inequality fails})

2€Gn, 12
z#0
u —u;n’ —nf 3 —nf
< ¥ <= .
;GXP ( 6000 ) +exp (400) ¢ P (6000)
This completes the proof. |

Proof of Theorem[}] By Lemma [I4] for a sufficiently large number M, we have

> c =3 —nf
> P(?%Wn(x)y—m) <> = exp (6000> < oc. (38)
n>M n>M

Therefore, by the Borel-Cantelli Lemma, the events {max,cq,,, [¢¥n ()| > 1 — 15} occur for only finitely
z#0

many n, almost surely.

Let A be any subset of F[t] with d(A) = ¢ € (0,1). Using Lemma |10 with 7 = 1 — {5, we obtain that

2
lim inf w > lim inf {'An + (C C> [4n] (1 — |A">} almost surely. (39)

The right-hand side of is easily seen to be > §+(§ —1%)5(1—5), since the function  — z+az(l—1x)
for with a = & — % is continuous and increasing on (0, 1). Thus lim inf,, _, W > ¢ almost surely,
which finishes the proof. O

4. PROOF OF THEOREM

We first begin with the following Lemma, which says that if |H,| < n'*¢/? infinitely often, then we
can find a subsequence of n such that the elements of H are well-spaced in G,,.

Lemma 15. Suppose H C G and ¢ > 0 are such that |H,| < n'te/2 infinitely often. Then there are
infinitely n such that

|H,| < n'te and |Hp| — |Hm| < nf(n—m) for any 1 <m <n. (40)

Proof. Suppose for a contradiction that there exists Ny > 0 such that for all u > Ny, if |H,| < u!™¢
then there is 1 < v < u such that

|H,| — |Hy| > uf(u —v). (41)
By the hypothesis, there exists n > max{2Np, 4'*/¢} such that
|H,| < nte/2, (42)

Since n > 4111/¢ we have
n1+e/2 < (n/2)1+e'
Note that for any n/2 < m < n, we have

|Hy| < |Hyp| < 02 < (n/2)1e < mlte. (43)
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We apply to u = n and find my € [1,n) such that |H,| — |Hp,| > n(n —my). We put mg = n.
Suppose we have found m;_;. Aslong as m;_1 > n/2, thanks to , we can apply with u =m;_4
to find m; =wv € [1,m;—1). Let k be the greatest integer such that my_; > n/2, then m; < n/2 and

[ Hu, o | = [Hn, | > mi_y (mior —mi) > (n/2)(m; —mi—1) (44)

for all 1 <4 < k. Summing these inequalities over 1 < i < k, we get
[Hu| > (n—m)(n/2)° > (n/2)" . (45)
This inequality contradicts (42)). This completes the proof. O

Lemma 16. Suppose n and H satisfy the property . Let k = LfeJ If n is sufficiently large, then
there are ry,...,r, € G, of disjoint supports such that for any 1 < j < k, supp(r;) C [n— [y/n],n)
and

H, C () Und=h ), (46)
were (r;)* is the orthogonal complement in G,, of r;. Consequently, for any h € H,, we have h-r; =0
foralli=1,... k with at most one exception.

Proof. First let d; := 1 and r1 be any vector supported on {n — 1}. Since (7”1)J- = G,,_1, all elements
in H, \ (r1)* are not in H,_ ;. By inequality we hence have that |H, \ (r1)*| < n. Let
dy := |n¢] + dy + 2. We shall find ro with supp(rz) C [n — da,n — dy) such that H, \ (ri)* C (r2)=*.
The subspace (H,, \ (r;)*)* has dimension at least n— |n€] — 1 and the subspace spanned by {t € G,, :
supp(t) C [n — do,n — d1)} has dimension d; — d2 = [n¢] + 2. The sum of these dimensions is greater
than n, which implies that the two subspaces has nonzero intersection. Thus we can find a vector ro
supported on [n — dg,n — dy) satisfying h -7 = 0 for all h € H, \ {r)*.

In general, suppose we have found {rl}i;ll and {dl}f;ll such that supp(r;) € [n — d;,n — di—1). We
next want to find r; satisfying
Hy \ N2y (o)t € ()™ (47)
Since Hn\ﬂg;ll (r;)* is supported on [0,n—d;_1), by property , we have |Hn\ﬂz;11 (riyt] <ndj_q
and hence (H, \ n?_} (r;)1)" has dimension at least n — [n°d;_1| — 1. Further by letting
dj = Lnedj_lj + dj—l + 27 (48)
the dimension of the subspace spanned by {t € G,, : supp(t) C [n —dj,n —d;_1)} is dj —dj—1 =
[n°dj_1| + 2. Thus the sum of the dimensions of these two subspaces is greater than n and their

intersection must be nonzero, which yields a r; such that supp(r;) € (n —d;,n —d;_1] and h-r; =0
for all h € Hy, \ ﬂf;ll (ri)*.

We can continue this process as long as d; < n. From we obtain that d; < (n€+ 3)d;_1 for all j.
For k = | L], we have

di, < (n° +3)* < n?** < |Vn] <n,
which means that we can construct k vectors {r;}5_, of disjoint supports and supp(r;) C (n—[y/n],n)
forall j=1,--- k.

Now it remains to show that for every h € H,,, h-r; = 0 holds for all 1 < j < k with at most one
exception. On rewriting , we obtain the formula forall 1 < j < k. Take h € H, and let £
be the first index such that h & (r,)*. If £ = k, then 7 could be the exception. If £ < k, by taking
(<j<kin , we know h has to be in (r;)* for all £+ 1 <4 < k, in which case 7 is the exception.
This completes the proof. O
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Proposition 17. Let 0 < 0 < 1 and € > 0. Suppose H C G s such that for any € > 0, |H,| < nlte/?
infinitely often. Then for each sufficiently large n satisfying , there exists a subset B, satisfying
the following four properties:

p
‘B”QLG"L‘ > |BIJ| for all0 < m <n;
p p

) »

(ii) Bl <54 O(el/?);
)
)

Proof. Let k = |5-]. For any sufficiently large n satisfying (40), let {r; ;?:1 be vectors of disjoint
supports and supported on (n — [y/n],n) given by Lemma

For f € Gy, we define X;(f) = Re(ep(f - r;)). Since r; is supported on (n — [y/n|,n), X; is constant
on translates of G,,_| /|- Since the 7;’s have disjoint supports, we can regard the X;’s as independent
random variables from G,, to R. It is easy to see that

B(X;) =0, Var(X;) = {1/ PUPTE md B(X RGP <1 (49)
) up=
Now we define
k
X=>X; (50)
j=1

and

P(/1/kX <z) ifp=2.

By the Berry-Esseen inequality (Lemma [7]), we have

Pla) = {P(\/ﬂx <z) ifp#£2

2v2
sup |F(x) — @(x)| < i (51)

where ®(z) is the cumulative distribution function of the standard normal distribution. For each
m € Z, define the niveau set

Sm = {f 1 fe G'mX(f) > m} (52)
Then Gn—L\/ﬁJ =S, C Skg_1 C ---. Since X is constant on translates of Gn_L\/ﬁJ, if x € S,,, then
x + Gn_\_\/m C S

For any h € H, and f € G, we have

k
X (f+h) = X (I =D Relep(f - 75)(ep(h 1) —1))| <2 (53)

j=1
since h - r; = 0 with at most one exception. From the definition of 5, this implies that

Sm + H, C Sm_z (54)
for any m.

Let M be the largest integer such that |Sys| > dp”, then M < k if n is sufficiently large. We let
B,, = Sy;. By the definition of M, we have |Syr41] < dp™ and G"—L\/ﬂ C B,.
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From we have B,, + H,, C S);—2 and

B+ Hu| _ Svra| | [Snr—2\ Sared
Gl 7 |Gyl |Gyl
HfeGn:M—-2<X(f)<M+1}
<é+ TeN (55)

_ O+ F(V2/R(M +1)) = F(\/2/k(M = 2))  ifp#2,
0+ F(V/1/k(M +1)) — F(\/1/k(M —2))  ifp=2.

The triangle inequality and imply that for all @ > b

|F(a) = F(b)| < |®(a) — @(b)| +4v/2/k. (56)

Further, we note that

1 b e
®(a) — (b :—/e—“/2du<a—b. 57
|[®(a) — (b)| 7|/ <la—b| (57)
Combining this inequality with (56)) and (55)), we have
B, + Hy,
;;' <5+ 72/k =6 + O(Ve). (58)

Recall that by Lemma there exists a vector x,, € B, such that Mﬁw > ‘f—fj‘ for all
0 < m < n. Since Gn*LﬁJ C B,  — x,, Proposition follows by taking the shifted set as our new
B,,. O

Proof of Theorem[5 Fix 0 < 6 < 1, and suppose that for any € > 0, |[H,| < n'* holds for infinitely
many n. By Lemma for each k > 1, there are infinitely many n such that |H,| < n'*'/* and
holds with € = 1/k. Let ny be such an n, and since there are infinitely many choices for ng, we may
require that ny — [/nx] > 2ny_; for any k& > 0.

Let B,, C Gy, be the set provided by Proposition with € = 1/k. Our goal is to glue the sets By,
together. Set

A= U (Bnk \G"k—l) (59)
k=1

where we define G,,, = 0. (A simple union U° , B,,, won’t work; this is where our construction differs
from Ruzsa’s.) Note that by Proposition (17| (iv), B, D Gapn,_, D Gn,_,, so the union in is a
disjoint union.

For any m > 0, we have

A = |J GunBu \Gu))U | (G (B, \Gn))
n;>m n<m
= U (Gm N (Bm+1 \ Gm)) (60)
ny<m
Claim 1: liminf,_,., Azl <5
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Indeed, from we have A, = U, (Gn, N (Bn, \ Gn,_y)) C UL, (G, N By,) and
k—1
G Gl T2 Gl
k=1 _141/k_n,
< §+0(e )y = e P
p"r

< 540(e, )+ Oy Epmres2)

where on the second line we use Proposition [17] (ii) and the trivial bound |By, + Hy, | < |Hn, ||Bn,| <

|Hp,, |p™. Letting k — oo, the claim follows.
[An] > J. Indeed, we will show that for any m with ny < m < ngy1, we have

Claim 2: liminf,,_ o
Al 1

pm

We distinguish two cases:
Case 1: When 2n; < m < ngy1, from we have

|Am‘ > |(Bnk+1 \Gnk) N Gm| _ ‘(Bnk+1 N Gm) \ Gnk|
p p pm
> |(Bnk+1 N Gm)| - |Gnk| (62)
pm
1

>6— >0 5
pm—nk - pnk

by Proposition [17] (i), (iii), and the fact that m > 2n;,.
Case 2: When ng < m < 2ny, then again from we have

Am D ((Bnk+1 nG ) \G”k) U ((Bnk n Gm) \Gnk—l) = (Gm \ Gnk) U (Bnk \Gnk—1)7

neyl- Hence,

where we have used the fact that B,,, C G, C G, C Gap,, C B

Am| 1 51
pm Z 1 pm—nk + pm—nk pmfnk_l
| (63)
> 45— ,

- N —
pkl

since m > ng > 2ngp_1 and 1 — % —1—2 > ¢ for a := p™ ™ > 1. Thus in any case (61]) is true, and

liminf,, ;é"‘l > 0.

Putting everything together, we have
A [An + Ha
< < — <
d<limintig <imb e <0 oy

which implies § = d(A4) = liminf,,_, o ‘A"gj["‘, as desired.
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5. CONSTRUCTION OF AN EXPLICIT ESSENTIAL COMPONENT

Recall (Remark [2)) that a multiset S C G,, is e-biased if

1 1
—H#lseS:x-s=c}t——| <e
57 FoulEe

Lemma [I0] implies that if S C G,, is e-biased, then its underlying set K is an essential component of
G. In theoretical computer science, it is desirable to construct such a multiset S that has a small
size relative to both n and e. The current record (at least when p = 2) is due to Ta-Shma [17], who
constructed a multiset S with [S| = O(74y). For our purpose, we only need to work with any small,

fixed € (say € = i), so the dependence on € is unimportant.

VCEF,vaGna‘T%Ov

It turns out that we cannot simply use constructions of e-biased sample spaces as a “blackbox”. Nat-
urally, in order to construct an essential component H in F[t], one would like to take H to be the
union of K,,, where K, is an essential component of G,,. This, however, does not guarantee that
H has small counting function, since H,, = G, N (Upr—; Kim) = Uy (K N Gy,), and K,,, may have
nonempty intersection with G,, for m > n. Thus one needs information on the supports of elements
of K,,. Alon-Goldreich-Hastad-Peralta’s construction [I, Section 3] (see also [6, Theorem 2] for an
exposition) is very simple and suits well our purpose. This construction gives |S| = O,(n?), which is
why our essential component has counting function Op(ng). We will now describe their construction
and also sketch the proof for the sake of completeness (Alon-Goldreich-Hastad-Peralta only worked

with p = 2, but the construction works for any p).

Let £ = [log,n + C,] for some constant C,. Let P, be the set of all irreducible polynomials poly-
nomials in F[¢] with degree ¢ and leading coefficient —1. For each s = (sg,...,s¢—1) € G, and
f=fo, f1,---, fo—1,—1) € Py, we define an element r = r(s, ) = (ro,...,rn-1) € G, as follows

S; for0<i</{-—1,

—1

T, = .

Z ijTi—13+j for{ <i<n-1
j=0

Claim: The multiset S = {r(s, f) : s € Go, [ € Py} is Op(57)-biased.
By adjusting C},, we can make the quantity Op(z%) less than 2—1}7. Clearly |S| < p* = 0,(n?).

It remains to prove the claim. Let us fix x € G, \ {0} and ¢ € F. We want to estimate Pscq, rep, (2 -
r(s,f) = ¢). Without loss of generality we may assume ¢ # 0. For each fixed f € P, the map
s r(s, f) from G¢ to Gy, is linear, and we denote its matrix by M. We have

PsEGz,fEPg (x : T'(S, f) = C) = PSEGz,fEPg (.1' . MfS = C) = PSEGe,fEPg (M]‘T‘r 8= C)

where MJT is the transpose of My. For each f, we have Psege(fo -5 = c¢) is exactly 1% if M;;Fx #0,
and 0 if M}z = 0. Thus the probability above is equal to %(1 —Pjep,(Mfz=0)).

On the other hand, by the construction of My, we can see that Mfo is actually the reduction of x

modulo f (it suffices to verify this for x = t1<i<n-— 1). Hence if Mfo =0, then f divides z. But =
cannot have more than % irreducible factors of degree £. Therefore, P s p, (fo =0) < % = Op(p%).

We are now ready to prove Theorem [6}
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Proof of Theorem[6, For each m, let S,,, C Gy, be the ﬁ—biased set given by the construction above
and K, be its underlying set. In particular |K,,| < |S,,| = O,(m?). We now define

H = [j (K —t™h).
m=0

Let A C G be a subset with d(A) = ¢ € (0,1). Then for any n sufficiently large, we have
A, +H, A, + K, —t"1 A, + K, A, A, A,
An+ Hal _ [An+ Lot fol Lol ] (L)
p" " " " " "
for some constant ¢ € (0,1). Taking liminf of both sides, we have
A, + H, Ay Ay Ay,
liminf|+n|>lm1nf(| ‘—&-Cl—nl (1—|n>>>5—|—05(1—(5)

since the function x — x+cx(1—2) is increasing on (0,1). This shows that H is an essential component
in G.

It remains to estimate |H,|. We have
e}
H,=HNGp= | J(En—t""")NG,).

m=1

Claim: If (K,, —t" 1) NG, # 0 and n is sufficiently large, then m < 2n.

Indeed, suppose for a contradiction that m > 2n. Let x = (20, 71,...,Zm_1) € K N (" +G,).
Then ,,—1 = 1, while z; = 0 for any n < ¢ < m — 1. By the construction of S,,, we have x = r(f,s)
for some s € Gy and f € Py, where £ = |log, m + Cp]. If n is sufficiently large, then m —1 — £ > n.

This yields the desired contradiction since 1 = z,—1 = Ef;é fi®m—1—e4+j = 0.

Hence, we have
o0

Hal = | | (Km + ™) NG <Z|Km|— n?)
m=1

as desired. 0

By using a similar idea, and by using an isoperimetric inequality in F” ([5, Theorem 1.2]) one can prove
that for any n > 0, the set

H=U2, {e+1,:2€q,,|supp(z)| < nv/n}

is an essential component in G, where 1, := 1+t + --- 4+ t"~ 1. This essential component has the
advantage of being simpler, but its counting function is |H,| = exp (O, (nv/nlogn)). This set is the
analog of Wirsing’s example (|1).

Erdés [16], p. 147] asked whether the set {2"3™ : m,n € N} is an essential component in N. This is
in keeping with the principle that multiplicative and additive structures don’t mix well, as exemplified
by sum-product estimates. Note that the counting function of this set is O(log2 x). Erdés’ question
remains open. The following question is perhaps more tractable.

Problem. Can one prove or disprove a similar statement in Fy[t]¢ For example, is the set {t"(t+1)™
m,n € N} an essential component in Fa[t]?
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