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Abstract. The Bergelson-Leibman theorem states that if P1, . . . , Pk ∈ Z[x], then any

subset of the integers of positive upper density contains a polynomial configuration x +

P1(m), . . . , x + Pk(m), where x,m ∈ Z. Various generalizations of this theorem are known.

Wooley and Ziegler showed that the variable m can in fact be taken to be a prime minus

1, and Tao and Ziegler showed that the Bergelson-Leibman theorem holds for subsets of the

primes of positive relative upper density. Here we prove a hybrid of the latter two results,

namely that the step m in the Tao-Ziegler theorem can be restricted to the set of primes

minus 1.

1. Introduction

Roughly twenty years after the ergodic theoretic proof of Szemerédi’s theorem on long

arithmetic progressions in dense subsets of the integers by Furstenberg [4], Bergelson and

Leibman [1] proved the following celebrated polynomial generalization.

Theorem 1 (Bergelson-Leibman). Let P1, . . . , Pk be polynomials in Z[x] such that Pi(0) = 0

for i = 1, . . . , k. Then any subset of the integers of positive relative upper density contains a

configuration of the form a+ P1(d), . . . , a+ Pk(d), where a, d are integers, d 6= 0.

More recently, Tao and Ziegler [11] proved Theorem 1 for dense subsets of the primes, using

the general transference strategy of Green and Tao [5].

Theorem 2 (Tao-Ziegler). Let P1, . . . , Pk be polynomials in Z[x] such that Pi(0) = 0 for

i = 1, . . . , k. Then any subset of the primes of positive relative upper density contains a

configuration of the form a+ P1(a), . . . , a+ Pk(a), where a, d are integers, d 6= 0.

Here for any subset A of the set of primes P, the relative upper density dP(A) of A in P
is defined as

dP(A) = limN→∞
|A ∩ [N ]|
|P ∩ [N ]|

In a recent preprint, Wooley and Ziegler [12] showed that the step d of the polynomial

progression in Theorem 1 can be taken to be a shifted prime.

Theorem 3 (Wooley-Ziegler). Let P1, . . . , Pk be polynomials in Z[x] such that Pi(0) = 0 for

i = 1, . . . , k. Then any subset of the integers of positive relative upper density contains a

configuration of the form a + P1(p − 1), . . . , a + Pk(p − 1), where a is an integer and p is

prime. The same is true if we replace p− 1 with p+ 1.
1
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A generalization to polynomials in several variables, with a simpler proof, was subsequently

obtained by Frantzikinakis, Host and Kra [3].

Our goal in this paper is to establish the following hybrid of Theorems 2 and 3.

Theorem 4. Let P1, . . . , Pk be polynomials in Z[x] such that Pi(0) = 0 for i = 1, . . . , k. Then

any subset of the primes of positive relative upper density contains a configuration of the form

a+P1(p− 1), . . . , a+Pk(p− 1), where a is an integer and p is prime. The same is true if we

replace p− 1 with p+ 1.

In other words, we claim that the step d in Theorem 2 can be restricted to be of the form

p− 1 (or p+ 1). In fact, our proof shows that there are infinitely many such configurations,

and we are able to give a lower bound on their number which is of the order of magnitude

predicted by the Bateman-Horn conjecture. Previously, the question about the existence of

such configurations has also been posed as Conjecture 1.2 in [9].

Our method is very similar to that employed in [3], in the sense that we compare an average

over the integers to an average along the shifted primes using multiple applications of van

der Corput’s lemma and a PET induction scheme. However, we proceed quantitatively in the

spirit of [11], and rely on a refined analysis of the correlation properties of the pseudorandom

measure from that paper.

The rest of the article is structured as follows. In Section 2 we set up our notation, and

in Section 3 we reduce Theorem 4 to the more technical Propositions 1 and 2. We study a

simple example of Proposition 1 in Section 4, and follow it up in Section 5 with a discussion of

a modified polynomial forms condition that arises from the example, together with an outline

of the proof of Proposition 2. The technical details of the proof of Proposition 2 can be found

in an appendix. Finally, the general case of Proposition 1 is proved in Section 6 using the

now standard PET induction scheme.

Acknowledgements. Work on this project began during the first author’s visit to École

polytechnique, and he would like to thank the Centre de Mathématiques Laurent Schwartz

for its hospitality. The authors would also like to thank Terence Tao for helpful discussions.

2. Preliminaries

We assume some familiarity with the work of Green and Tao [5] and Tao and Ziegler [11],

as well as with the definition and basic properties of the Gowers uniformity norms. Here

we only briefly remind the reader of the most important definitions, lemmas and parameter

settings from those papers. The experienced reader is encouraged to skip this section and

consult it later as the need arises.

Landau’s O, o and Vinogradov’s �,� notation are given their usual asymptotic meaning.

That is, for two quantities X,Y , we write X � Y, Y � X, or X = O(Y ) if we have a bound

|X| ≤ CY for some constant C. If C depends on other parameters such as k, then this

dependence is indicated as X �k Y, Y �k X, or X = Ok(Y ). By o(1) we denote a quantity
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that goes to 0 as N →∞. If this quantity depends on other parameters such as k, then this

dependence is sometimes indicated as ok(1).

Throughout the paper, we fix a system of polynomials P1, . . . , Pk with integer coefficients,

each vanishing at 0. We can certainly assume that these polynomials are distinct. We also

fix a subset A ⊆ P satisfying dP(A) = δ0 > 0. All implicit constants are allowed to depend

on δ0, P1, . . . , Pk.

To get around the fact that the primes are not equidistributed with respect to small moduli,

we let w � log log logN be any sufficiently slowly growing function in N , and let W =
∏
p<w p

be the product of the primes less than w, so that W � log logN . Eventually, just as in [5]

and [11], we will be able to take w be a sufficiently large constant, see the discussion in Section

7.

It follows from the assumption on the density of A that there is an infinite sequence of

integers N ′ going to infinity such that

|A ∩ [N ′]| > 1

2
δ0

N ′

logN ′
.

We set N = bN ′/2W c, and observe that the asymptotic limit as N → ∞ is equivalent to

the asymptotic limit as N ′ → ∞. By the pigeonhole principle, we can find b = b(N) ∈ [W ]

coprime to W such that

|{x ∈ [N/2] : Wx+ b ∈ A}| � W

φ(W )

N

logN
,

where φ is Euler’s totient function.

The expression Ey∈Y f(y) denotes the average of a function f over a finite set Y . Borrowing

notation from ergodic theory, we also write
∫
X for Ex∈Xf(x) and Tf(x) = f(x − 1). For

convenience we set X equal to the cyclic group ZN . The fact that the elements x we consider

are restricted to lie in the interval [N/2] ensures that there is no problem with wrap-around

in X.

For a modulus W and a residue 1 ≤ b ≤W coprime to W , let us define

(1) ΛW,b;N (n) =

{
φ(W )
W log(Wn+ b), if Wn+ b is prime and 1 ≤ n ≤ N ,

0 otherwise.

For the purposes of this paper, a measure is a non-negative function ν : X → [0,∞) satisfying∫
X ν = 1 + o(1) and the pointwise bound ν = Oε(N

ε) for any ε > 0. The measures we will be

working with are of the form

(2) νW,b(n) =
φ(W )

W
logR

 ∑
m|Wn+b

µ(m)χ

(
logm

logR

)2

,
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where µ is the Möbius function and χ is an even smooth function supported on [−1, 1] satis-

fying ∫ 1

0
|χ′(t)|2dt = 1.

In [11], Tao and Ziegler defined a pseudorandom measure to be a measure satisfying two

technical conditions known as the polynomial forms condition and the polynomial correlation

condition, and they showed that νW,b as defined in (2) satisfies both of these. We refer the

reader to the precise definitions of the polynomial forms and the polynomial correlation con-

dition in [11, Definitions 3.6 and 3.9]. In this paper, we will need a variant of the polynomial

forms condition for pairs of pseudorandom measures, which we call the extra condition. It

will be given in Section 5, where we also verify that this extra condition is satisfied by a pair

νW,b1 , νW,b2 for potentially distinct b1, b2.

Let us list the important remaining parameters.

• Let d0 = max1≤i≤k degPi denote the maximal degree of the polynomials.

• Let M = Nη0 be the “coarse scale”, which serves as a bound for the step of the

polynomial progression. We can take η0 to be any positive number less than 1/2d0.

• Let 0 < η1 � η0 be a tiny parameter, depending on P1, . . . , Pk, which controls the

degree of pseudorandomness of a measure ν.

• Let 0 < η2 � η1/d0, and R = Nη2 be the sieve level which is used in the construction

of ν.

We do not explicitly specify the parameters η1, η2, but insist that they depend only on the

system P1, . . . , Pk and are chosen sufficiently small to accommodate all our estimates (notably

those arising from the PET induction). Note that Tao and Ziegler also needed the “fine scale”

H = Nη7 , but we shall not need it here. In this sense our work is much simpler than [11].

For completeness, we state two basic and well-known inequalities we shall use repeatedly.

Lemma 1 (Cauchy-Schwarz). Let A,B be sets, let f, F be functions on A and let g be a

function on A×B. If |f | ≤ F pointwise, then

|Ea∈A,b∈Bf(a)g(a, b)|2 ≤ Ea∈AF (a)Ea∈AF (a) |Eb∈Bg(a, b)|2 .

Lemma 2 (van der Corput). Let (xm)m∈Z be a real-valued sequence satisfying xm = 0 outside

the interval [M ]. Then ∣∣Em∈[M ]xm
∣∣2 � E|h|<MEm∈[M ]xmxm+h.

This lemma follows by simply expanding out the square, and is reminiscent of [11, Lemma

A.1]. Note that, in contrast with [11, Lemma A.1] where m and h are on different scales, in

our situation h and m are on the same scale. This fact is important for us since it will make

the Gowers norms appear.
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3. Overview of the proof

The main result of Tao and Ziegler is the following [11, Theorem 2.3]. We shall use it as a

black box in the sequel, although we will need to delve into the details of the proof in a later

part of the argument.

Theorem 5 (Uniform polynomial Szemerédi theorem in the primes). Let ν be a pseudoran-

dom measure on X. If f is a function on X such that 0 ≤ f ≤ ν,
∫
X f ≥ δ, then

Em∈[M ]

∫
X
TP1(Wm)/W f . . . TPk(Wm)/W f ≥ c(δ)− o(1)

for some constant c(δ) > 0 depending on δ.

Just as in [3], we will also need the following deep result from Green and Tao’s programme

of counting linear patterns in primes (see [6, 7, 8], but also [3, Theorem 2.2]).

Theorem 6 (Green-Tao, Green-Tao-Ziegler). For every d ∈ Z+, we have

lim
N→∞

max
1≤b<W,
(b,W )=1

‖ΛW,b;N − 1[N ]‖Ud(Z(2d+1)N ) = 0.

Our main result will be deduced from two statements, the first of which is analogous to [3,

Lemma 3.5]. The “extra condition” mentioned in the hypotheses of Proposition 1 below is

quite technical, and will be defined in Section 5 (Definition 2).

Proposition 1. Let ν1, ν2 be a pair of pseudorandom measures on X satisfying the extra

condition. Suppose that f1, . . . , fk are functions on X with |fi| ≤ ν1 for i = 1, . . . , k, and that

a is a weight on X with support in [M ] such that |a| ≤ 1 + ν2. Then

Em∈[M ]

∫
X
a(m)TP1(Wm)/W f1 · · ·TPk(Wm)/W fk = O(‖a‖Ud(Z(2d+1)M )) + o(1),

where d is an integer depending only on the system of polynomials.

We shall also show that a pair of measures satisfying the hypotheses of Proposition 1

actually exists.

Proposition 2. For any b 6= 0 coprime to W , the pair ν1 = νW,b, ν2 = νW,1 of pseudorandom

measures satisfies the extra condition.

Remark 3.1. If we were only interested in configurations inside the full set of primes (rather

than subsets of positive relative density), this proposition and the needed extra condition

would be slightly simpler to state, and to prove. However, we need to be able to take

potentially distinct distinct residue classes for the pseudorandom measures governing a and

the fis since the residue class b mod W on which the set A is dense was chosen by the

pigeonhole principle.

To conclude this section, we show how Theorem 4 follows from Propositions 1 and 2.
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Proof of Theorem 4 assuming Propositions 1 and 2: Suppose that we are given a subset

A ⊆ P of relative upper density δ0. We shall let f1 = · · · = fk = f , where

(3) f(x) =

{
φ(W )
W logR if R ≤ x ≤ N/2 and Wx+ b ∈ A,

0 otherwise.

As remarked in Section 2, by the pigeonhole principle we can choose b such that
∫
X f � δ0

provided that N is sufficiently large. Set ν1 = νW,b so that 0 ≤ f ≤ ν1. Let

g(x) =

{
φ(W )
W log(Wx+ 1) if R ≤ x ≤M and Wx+ 1 is prime,

0 otherwise.

(in other words, g is the same function as ΛW,1;M except on [R]), then there is a constant α

such that 0 ≤ αg ≤ ν2 = νW,1.

Set a = α(g − 1[M ]), so that |a| ≤ 1 + ν2. Proposition 2 states that the pair ν1, ν2 satisfies

the extra condition.

Applying Proposition 1 with these choices yields

Em∈[M ]

∫
X
a(m)TP1(Wm)/W f · · ·TPk(Wm)/W f = O(‖g − 1[M ]‖Ud(Z(2d+1)M )) + o(1).

Since g and ΛW,1;M differ on a negligible subset of Z(2d+1)M , Theorem 6 tells us that the

right-hand side can be made arbitrarily small if N is sufficiently large. By Theorem 5 we also

have

Em∈[M ]

∫
X
TP1(Wm)/W f · · ·TPk(Wm)/W f ≥ c(δ0)− o(1).

Since Pi(Wm) is much less than N/2 for m ∈ [M ] and the progressions therefore cannot wrap

around the group ZN , we can replace the average over X with the average over [N] and find

that

(4) Em∈[M ]Ex∈[N ]g(m)f(x+ P1(Wm)/W ) · · · f(x+ Pk(Wm)/W ) ≥ c(δ0)− o(1).

It remains to replace g by a suitable indicator function for the primes congruent to 1 mod W .

Since we are only looking for a lower bound, this is straightforward to accomplish. Indeed,

we see that the left-hand side of (4) is bounded above by

1

MN

φ(W )

W
log(WM + 1) ·

(
φ(W )

W

)k
(logR)k

times the number of pairs (m,x) ∈ [M ]× [N ] such that Wm+1 ∈ P, x+Pi(Wm)/W ∈ [N/2]

and Wx+b+Pi(Wm) ∈ A for all i = 1, . . . , k. This is equivalent to saying that for sufficiently

large N , the number of pairs (p, x) ∈ [WM + 1] × [N ] satisfying p ∈ P, p ≡ 1(W ) such that

x+ Pi(p− 1)/W ∈ [N/2] and Wx+ b+ Pi(p− 1) ∈ A for all i = 1, . . . , k is at least

(c(δ0)− o(1))
MN

(logM)(logR)k

(
W

φ(W )

)k+1

.
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But the right-hand side tends to infinity with N , concluding the proof of Theorem 4. �

It thus suffices to prove Propositions 1 and 2.

4. A toy example

In this section we will study the toy example of the configuration x, x+ (p− 1)2, and use it

to motivate the definition of the extra condition in the subsequent section. (Note, however,

that the existence of this particular configuration in the primes already follows from the work

of Li and Pan [9]. A more general result was recently proved by Rice [10].) For simplicity we

assume here that W = 1.

Let ν1, ν2 be a pair of pseudorandom measures. Suppose that f0, f1 are positive functions

satisfying f0, f1 ≤ ν1 and suppose further that the weight a, which is supported on [M ],

satisfies |a| ≤ ν2. We shall show that, under an additional assumption on ν1, ν2, we can prove

the estimate

(5) E =

∫
X

Em∈[M ]a(m)f0(x)Tm
2
f1(x) = O(‖a‖U3(Z7M )) + o(1).

Let us first eliminate f0 from the average E. By Cauchy-Schwarz, we have

E2 ≤
∫
X
ν1(x)

∫
X
ν1(x)

∣∣∣Em∈[M ]a(m)Tm
2
f1(x)

∣∣∣2 .
Recalling that

∫
X ν1 = 1 + o(1) and using van der Corput, we have

E2 � (1 + o(1))

∫
X

Em∈[M ],
|h|<M

a(m)a(m+ h)ν1T
m2
f1T

(m+h)2f1 + o(1)

= (1 + o(1))

∫
X

Em∈[M ],
|h|<M

a(m)a(m+ h)T−m
2
ν1f1T

2mh+h2f1 + o(1),

where in the second line we shift the variable x by R1(m) = −m2, thus making the term f1

appear, rather than a shift of f1. Let

E1 =

∫
X

Em∈[M ],
|h|<M

a(m)a(m+ h)TR1(m)ν1f1T
2mh+h2f1.

Note that the system of shifts of f1 appearing in E1, namely 0, 2mh + h2, is “simpler” than

the system in E in the sense that the polynomials are now linear in m. Next, we want to

eliminate the new shift of f1 from E1. Again, by Cauchy-Schwarz, we have

E2
1 ≤

∫
X
ν1(x)

∫
X
ν1(x)

∣∣∣∣∣Em∈[M ],
|h|<M

a(m)a(m+ h)TR1(m)ν1T
2mh+h2f1

∣∣∣∣∣
2

,

and by van der Corput this is

� (1 + o(1))

∫
X
ν1E m∈[M ],

|h|,|k|<M
a(m)a(m+ k)a(m+ h)a(m+ h+ k)

×TR1(m)ν1T
R1(m+k)ν1T

2mh+h2f1T
2(m+k)h+h2f1 + o(1).
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Let the last integral be E2. Shifting x by R2(m,h) = −(2mh + h2) to make f1 appear, we

obtain

E2 =

∫
X

E m∈[M ],
|h|,|k|<M

a(m)a(m+ k)a(m+ h)a(m+ h+ k)

×TR2(m,h)ν1T
R1(m)+R2(m,h)ν1T

R1(m+k)+R2(m,h)ν1f1T
2khf1.

Again, the system of shifts of f1 is now simpler than the previous one, in that it does not

depend on m at all. (Tao and Ziegler deduced from this step their generalized von Neumann

inequality, which bounds E in terms of an averaged local Gowers norm of f1.) We repeat

the same process one more time to eliminate f1 completely from the average. Indeed, by

Cauchy-Schwarz, E2
2 is less than or equal to(

E|h|,|k|<M

∫
X
ν1T

2khν1

)(
E|h|,|k|<M

∫
X
ν1T

2khν1

∣∣∣Em∈[M ]a(m)a(m+ k)a(m+ h)a(m+ h+ k)

×TR2(m,h)ν1T
R1(m)+R2(m,h)ν1T

R1(m+k)+R2(m,h)ν1

∣∣∣2).
Since ν1 satisfies the polynomial forms condition [11, Definition 3.6], the first factor is 1+o(1).

By van der Corput, the second factor is at most

E m∈[M ],
|h|,|k|,|l|<M

∏
ω∈{0,1}3

a(m+ ω · (l, k, h))

∫
X
TR2(m,h)ν1T

R1(m)+R2(m,h)ν1T
R1(m+k)+R2(m,h)ν1

×TR2(m+l,h)ν1T
R1(m+l)+R2(m+l,h)ν1T

R1(m+k+l)+R2(m+l,h)ν1.

If it were not for the presence of the integral, then this would be equal to

E m∈[M ],
|h|,|k|,|l|<M

∏
ω∈{0,1}3

a(m+ ω · (l, k, h)),

which would give us the desired estimate, since the latter quantity is bounded above by a

constant times ‖a‖8U3(Z7M ). Indeed, we trivially have

‖a‖8U3(Z7M ) �
1

M4

∑
m,h,k,l∈Z7M

∏
ω∈{0,1}3

a(m+ ω · (l, k, h)).

Identifying Z7M with the integers in (−3M, 4M ], we see that since a is supported on [M ], the

term
∏
ω∈{0,1}3 a(m+ ω · (l, k, h)) is non-zero only if m ∈ [M ] and |h|, |k|, |l| < M . For these

m,h, k, l, the representative of m+ ω · (l, k, h) in (−3M, 4M ] is m+ ω · (l, k, h) itself, for any

ω ∈ {0, 1}3. Thus

‖a‖8U3(Z7M ) �
1

M4

∑
m∈[M ],

|h|,|k|,|l|<M

∏
ω∈{0,1}3

a(m+ ω · (l, k, h)),

where m,h, k, l are now elements of Z, and the claimed bound follows after renormalization.
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To continue, let us write ~m = (m,h, k, l) ∈ Z4, the integral as
∫
X

∏6
i=1 T

Qi(~m)ν1, where

Qi ∈ Z[~m] for i = 1, . . . , 6, and the weight in front of the integral as
∏8
j=1 a(Lj(~m)), where

for j = 1, . . . , 8 the Lj are linear forms defining the eight vertices of the parallelepiped in the

U3 norm. Also, let ΩM = {(m,h, k, l) ∈ Z4 : m ∈ [M ], |h|, |k|, |l| < M}. We want to show

that

(6) F = E~m∈ΩM

8∏
j=1

a(Lj(~m))×

(∫
X

6∏
i=1

TQi(~m)ν1(x)− 1

)
= o(1).

Recalling that |a| ≤ ν2, by Cauchy-Schwarz we have that

|F |2 � ‖ν2‖8U3(Z7M )E~m∈ΩM

8∏
j=1

ν2(Lj(~m))×

(∫
X

6∏
i=1

TQi(~m)ν1(x)− 1

)2

.

Since ν2 is pseudorandom, we have ‖ν2‖U3(Z7M ) = 1 + o(1). (Note that a priori ν2 is a

pseudorandom measure with respect to N , but by choosing R, the sieve level in the definition

of ν2, sufficiently small, we can ensure that ν2 is also pseudorandom with respect to M .)

By squaring out
(∫

X

∏6
i=1 T

Qi(~m)ν1(x)− 1
)2

, we see that it suffices to show that

(7) E~m∈ΩM

8∏
j=1

ν2(Lj(~m))×

(∫
X

6∏
i=1

TQi(~m)ν1(x)

)k
= 1 + o(1)

for k = 0, 1, 2. But it is precisely expressions of this type that will be governed by our new

“extra condition”, which we shall formally introduce in the next section.

Remark 4.1. It is well known that if ν2 is a pseudorandom measure, then so is (ν2 + 1)/2. It

will be easy to see that if the pair ν1, ν2 satisfies the extra condition, then so does the pair

ν1, (ν2 + 1)/2. The above result therefore also applies to the case where |a| ≤ ν2 + 1, which

is what we need in the proof of Theorem 4.

5. A discussion of the polynomial forms condition

Let us recall Tao and Ziegler’s definition of the polynomial forms condition [11, Definition

3.6], of which the extra condition will be a variant.

Definition 1 (Polynomial forms condition). A measure ν : X → R+ is said to satisfy the

polynomial forms condition if for any family of polynomials Qj ∈ Z[m1, . . . ,mD], j ∈ J ,

satisfying

• the difference Qi −Qj is not constant for i 6= j;

• the number of polynomials |J | and the number of variables l are bounded by 1/η1;

• the total degree of each Qj for j ∈ J is at most d0, and all coefficients are at most

CW d0 , where C is a constant (depending on P1, . . . , Pk);
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we have

(8) E~h∈Ω∩ZD

∫
X

∏
j∈J

TQj(~h)ν(x) = 1 + oε(1)

for any convex body Ω ⊂ RD of inradius at least N ε and contained in the ball B(0,M2).

Inequality (7) does not exactly follow from Definition 1, but we still can deduce it using

Tao and Ziegler’s machinery. We make the following general definition.

Definition 2 (Extra condition). A pair of measures ν1, ν2 : X → R+ is said to satisfy the

extra condition if for any family of polynomials Qj ∈ Z[m1, . . . ,mD], j ∈ J1, and any family

of linear forms Lj : ZD → Z, j ∈ J2, satisfying

• the difference of polynomials Qi −Qj is not constant for i 6= j;

• the number of polynomials |J1| and the number of variables D are bounded by 1/η1;

• the total degree of each Qj for j ∈ J1 is at most d0, and all coefficients are at most

CW d0 , where C is a constant (depending on P1, . . . , Pk);

• the linear forms Lj , j ∈ J2 are pairwise linearly independent;

• the number of linear forms |J2| is bounded by 1/η1;

• the coefficients of each Lj are 0 or 1;

we have

(9) E~m∈ΩM,D

∏
j∈J2

ν2(Lj(~m))

∫
X

∏
j∈J1

ν1(x+Qj(~m))

k

= 1 + o(1)

for k = 0, 1, 2, where ΩM,D = {(m,h1, . . . , hD−1) ∈ ZD : m ∈ [M ], |hi| < M for any i =

1, . . . , D − 1)}.

Remark 5.1. The extra condition is tailor-made to suit our needs. One could merge it with the

polynomial forms condition to obtain a more general statement, but this appears unnecessary.

Let us now show that for any b 6= 0 coprime to W , the pair ν1 = νW,b, ν2 = νW,1 given by

(2) satisfies the extra condition. That is, we shall turn to proving Proposition 2. To begin

with, let us recall some more definitions from [11].

Definition 3 (Good, bad and terrible primes). Let Pj ∈ Z[x1, . . . , xD], j ∈ J , be a family of

polynomials. We say a prime p is good with respect to the family Pj , j ∈ J , if

• the polynomials Pj (mod p), j ∈ J , (considered as elements of Fp[x1, . . . , xD]) are

pairwise coprime;

• for each j ∈ J , there is a variable xi such that Pj can be expressed as Pj = Pj,1xi+Pj,0

where Pj,1, Pj,0 ∈ Fp[x1, . . . , xi−1, xi+1, . . . , xD] are such that Pj,1 is non-zero and

coprime to Pj,0.
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We say p is bad if it is not good. We say p is terrible if at least one of the Pj vanishes

identically mod p.

We shall need the following slight variant of the basic correlation estimate [11, Proposition

10.1], in which we now have a pair of pseudorandom measures.

Proposition 3 (Correlation estimate). Write ν1 = νW,b1 and ν2 = νW,b2 with b1, b2 6= 0 and

coprime to W . Let J1, J2 ⊂ N be two disjoint indexing sets, and let J = J1 ∪ J2. For j ∈ J ,

let Pj ∈ Z[x1, . . . , xD] have degree at most d. Let Ω be a convex body in RD of inradius

at least R4|J |+1. Let Pb be the set of primes w ≤ p ≤ RlogR which are bad with respect to

((WPj + b1)j∈J1 , (WPj + b2)j∈J2), and suppose that there are no terrible primes in the same

range. Then

(10)

Ex∈Ω∩ZD

∏
j∈J1

ν1(Pj(x))
∏
j∈J2

ν2(Pj(x)) = 1 + oD,J,d(1) +OD,J,d

Exp

OD,J,d
∑
p∈Pb

1

p

 .

Here we have written Exp(x) = max(ex − 1, 0), so that Exp(x)� x when 0 ≤ x� 1.

The proof of [11, Proposition 10.1] generalizes readily to yield Proposition 3. However,

since it is relatively complex and buried in various appendices of a long paper, we give the

details for the convenience of the reader in the appendix to this paper.

To conclude, let us deduce the extra condition from the above correlation estimate.

Proof of Proposition 2 assuming Proposition 3: Recall that we want to show that

(11) E~m∈ΩM,D

∏
j∈J2

ν2(Lj(~m))

∫
X

∏
j∈J1

ν1(x+Qj(~m))

k

= 1 + o(1)

for k = 0, 1, 2, where ν1, ν2 are defined as in Proposition 3. If k = 0, then the integral

disappears, and we are left to show that

E~m∈ΩM,D

∏
j∈J2

ν2(L2(~m)) = 1 + o(1).

If we choose R sufficiently small in terms of M , then ν2 is pseudorandom with respect to M ,

and (11) simply follows from Green and Tao’s linear forms condition in [5, Definition 3.1] in

this case.

Let us now discuss the case k = 2 (the case k = 1 is even simpler). First we make

a reduction, replacing the integral on X with the average Ex∈[N ], thus regarding ν1 as a

function on Z rather than X. The values of ν1(x + Qj(~m)) may be different when ν1 is

regarded as a function on Z because of the wrap-around effect, but they must agree whenever

1 ≤ x ≤ N −O((WM)d0). Recall that we also have the bound ν1 �ε N
ε for any ε > 0. Thus

(12)

∫
X

∏
j∈J1

ν1(x+Qj(~m))−Ex∈[N ]

∏
j∈J1

ν1(x+Qj(~m))�ε (WM)d0N ε−1,
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for any ε > 0, and (11) follows if we can show that

(13) E~m∈ΩM,D

∏
j∈J2

ν2(Lj(~m))

Ex∈[N ]

∏
j∈J1

ν1(x+Qj(~m))

2

= 1 + o(1).

Expanding out (13), we see that it is equivalent to

(14) E~m∈ΩM,D,x,x′∈[N ]

∏
j∈J2

ν2(Lj(~m))
∏
j∈J1

ν1(x+Qj(~m))ν1(x′ +Qj(~m)) = 1 + o(1).

Now this expression falls within the scope of Proposition 3: the polynomials in question are

Li(~m), x+Qj(~m), x′+Qj(~m), in variables ~m, x, x′. For this system, there is no terrible prime

greater than w, and the only bad primes greater than w are those dividing Qj −Qj′ for some

j 6= j′. Therefore, the left hand side of (14) equals 1 + o(1) + O
(

Exp
(
O
(∑

p∈Pb
p−1
)))

,

where Pb denotes the set of primes dividing Qj −Qj′ for some j 6= j′.

But just as in the proof of [11, Corollary 11.2], if a prime p divides Qj−Qj′ for some j 6= j′,

then p must divide a non-zero difference of the coefficients of the Qjs (recall that Qj − Qj′
are not constant for any j 6= j). These coefficients are bounded by O(W d0), so that the total

product of such p is at most O(WO(1)). As a result, the number of p ∈ Pb (which are greater

than w) is at most log(O(WO(1)))/ logw = o(logW ). But then
∑

p∈Pb
p−1 <

∑
p∈Pb

w−1 =

o(1), since logW � w. �

Remark 5.2. The extra condition is in a sense simpler than Tao and Ziegler’s full polynomial

forms condition, in that all the variables are at scale M , whereas the polynomial forms

condition ([11, Theorem 11.1]) makes a statement about convex bodies of inradius as small

as N ε. This explains why Tao and Ziegler had to do some extra work to prove the polynomial

forms condition from the correlation estimate, while for us it is almost immediate.

6. The general case

As is to be expected, we proceed by PET induction to prove Proposition 1 in the general

case. We follow the notation in [3] with the simplification that the dimension is equal to 1.

Given a family of polynomials Q = (q1, . . . , qk) in a variable n (and possibly in other

variables), the maximum of the degrees of the qi (with respect to n) is called the degree of

the family Q. We work with families of polynomials whose degree is smaller than or equal to

a fixed number s.

For i = 1, . . . , k, define Q′ to be the possibly empty set

Q′ = {qi ∈ Q : qi is constant in n }.

Two polynomials are said to be equivalent if they have the same degree and the same leading

coefficient (in n). For j = 1, . . . , s, let wj denote the number of distinct non-equivalent classes

of polynomials of degree j in Q\Q′. Finally, define the type of the family Q to be the vector
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(w1, . . . , ws). A family is said to be of type zero if all the wj are zero, in which case all

the polynomials are constant (in n). The set of types can be ordered lexicographically, by

stipulating that w = (w1, . . . , ws) < w′ = (w′1, . . . , w
′
s) if there exists d such that wd < w′d

and wj = w′j for all j > d.

It follows that any decreasing sequence of types of families of polynomials is eventually

stationary, and thus any inductive process that reduces the type must eventually stop.

Given a family Q = (q1, . . . , qk), q ∈ Z[t] and h ∈ N, define following [2] the van der Corput

operation (q, h)-vdC(Q) by setting

(q, h)-vdC(Q) = (ShQ− q,Q− q),

where Shq(n) = q(n+ h), ShQ = (Shq1, . . . , Shqk) and Q− q = (q1 − q, . . . , qk − q).
The crucial observation is the following [1, 3].

Lemma 3. Let Q be a family of polynomials of non-zero type. Then there exists q ∈ Q \ Q′

such that for all h ∈ N, the family (q, h)-vdC(Q \ Q′) has strictly smaller type than Q.

For example, in the toy example in Section 4, we passed from type (1, 0, 1) to (1, 1, 0) to

(2, 0, 0).

In the van der Corput operation, we focus on a single variable n. However, we also need

to keep in mind that the polynomials in Q and (q, h)-vdC(Q) are multivariate, with a new

variable being introduced at each step of the van der Corput operation. This is important

when verifying the hypotheses of the (polynomial forms or extra) condition as we apply them

to the averages arising throughout.

Proof of Proposition 1: Let us recall that we have functions fi, i = 1, . . . , k satisfying |fi| ≤ ν1,

and a weight a supported on [M ] satisfying |a| ≤ ν2. We start with the average

E = Em∈[M ]

∫
X
a(m)

∏
qi∈Q

T qifi,

where the family Q initially consists of the polynomials qi(m) = Pi(Wm)/W , j = 1, . . . , k.

Define Q′ ⊆ Q to be the subset of polynomials which are constant in the variable m. (By

hypothesis on the Pi, this actually means that the q ∈ Q′ are identically 0, but later on, with

additional variables, this is not necessarily the case.)

We first apply the Cauchy-Schwarz inequality to obtain

|E|2 ≤

∫
X

∏
q∈Q′

T qν1

∫
X

∏
q∈Q′

T qν1|Em∈[M ]a(m)
∏

qi∈Q\Q′
T qifi|2

 .

By the properties of ν1, the first integral is 1+o(1) (if Q′ = ∅, we interpret the empty product

as equal to 1), and we can bound the second factor by van der Corput by a constant times∫
X

∏
q∈Q′

T qν1Em∈[M ],
|h1|<M

a(m)a(m+ h1)
∏

qi∈Q\Q′
T qi(m)fiT

qi(m+h1)fi + o(1)



14 THÁI HOÀNG LÊ AND JULIA WOLF

Now by Lemma 3, there exists q1 ∈ Q\Q′ such that for all h1, the familyQ1 := (q(1), h1)-vdC(Q\
Q′) has strictly smaller type than Q. We also write Q†1 := Q′ − q(1) for the recently deceased

nodes. With this notation, shifting by q(1) gives, up to an error term, the expression

E1 =

∫
X

Em∈[M ],
|h1|<M

a(m)a(m+ h1)
∏
q∈Q†1

T qν1

∏
qi∈Q1

T qifji ,

where the fji belong to the set {f1, . . . , fk}. There is no need to keep track of them, so we

shall simply write f with no subscript in the sequel.

Write Q′1 for those polynomials in Q1 of degree 0 in m. By Cauchy-Schwarz,

|E1|2 ≤

∫
X

∏
q∈Q′1

T qν1


∫

X

∏
q∈Q′1

T qν1

∣∣∣∣∣∣∣Em,h1∈[M ]a(m)a(m+ h1)
∏
q∈Q†1

T qν1

∏
q∈Q1\Q′1

T qf

∣∣∣∣∣∣∣
2 .

By the polynomial forms condition, the first factor is 1+o(1), and the second can be bounded

above by van der Corput as a constant times∫
X

E m∈[M ],
|h1|,|h2|<M

a(m)a(m+ h1)a(m+ h2)a(m+ h1 + h2)∏
q∈Q†1

T q(m)ν1T
q(m+h2)ν1

∏
q∈Q1\Q′1

T q(m)fT q(m+h2)f.

Of course the dependence of the polynomials on h1 is suppressed here. By Lemma 3, there is

q(2) ∈ Q1 \ Q′1 such that the family Q2 := (q(2), h2)-vdC(Q1 \ Q′1) has strictly smaller type.

Define also Q†2 := (Q′1 − q(2)) ∪ (Q†1 − q(2)), leading after rearranging to

E2 =

∫
X

E m∈[M ],
|h1|,|h2|<M

a(m)a(m+ h1)a(m+ h2)a(m+ h1 + h2)
∏
q∈Q†2

T qν1

∏
q∈Q2

T qf.

Continuing in this vein, we set at step s Qs+1 := (q(s+1), hs+1)-vdC(Qs \ Q′s) and Q†s+1 :=

(Q′s− q(s+1))∪ (Q†s− q(s+1)), all the while reducing the type. We also set Q0 = Q,Q†0 = ∅, so

that the above recursive definition is valid for all s ≥ 0. By Lemma 3 we reach a point, at step

t say, where Qt = Q′t. In other words, the system is of zero type and all active polynomials

are of degree 0 in m.

In order to be able to use the polynomial forms condition at every step, we need to ensure

that no two polynomials in Q′s differ by constants. We will in fact prove a slightly stronger

statement, which we shall need later.

Claim 1. For any 0 ≤ s ≤ t, no two polynomials in Qs ∪Q†s differ by constants.

Proof of Claim 1: It is easy to see that all our polynomials are 0 when all the variables are 0.

Therefore, it suffices to show that all the polynomials in Qs ∪Q†s are distinct as multivariate

polynomials. We prove this by induction on s. When s = 0, this follows from our assumption

that the polynomials Pi are distinct. Suppose we know already that all the polynomials in
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Qs ∪Q†s are distinct. By definition, the family Qs+1 ∪Q†s+1 is obtained by subtracting q(s+1)

from all the polynomials in the family Shs+1(Qs \ Q′s) ∪ (Qs \ Q′s) ∪Q′s ∪Q
†
s. Thus it suffices

to show that all polynomials in the latter family are distinct. Recall that the polynomials

in Qs \ Q′s are distinct and non-constant in m. Thus the polynomials in Shs+1(Qs \ Q′s) are

distinct from each other and from the rest, since they have a new variable, namely hs+1, and

are non-constant in this variable. The remaining polynomials from (Qs \ Q′s) ∪ Q′s ∪ Q
†
s are

distinct by induction hypothesis since (Qs \ Q′s) ∪Q′s = Qs. �

Claim 1 shows that our calculations so far have been valid. Returning to step t, we have

Et = E m∈[M ],
|h1|,...,|ht|<M

∏
ω∈{0,1}t

a(m+ ω · (h1, . . . , ht))
∏
q∈Q†t

T qν1

∏
q∈Q′t

T qf,

and we apply Cauchy-Schwarz one more time to get

|Et|2 ≤

∫
X

E|h1|,...,|ht|<M
∏
q∈Q′t

T qν1



×

∫
X

E|h1|,...,|ht|<M
∏
q∈Q′t

T qν1

∣∣∣∣∣∣∣Em∈[M ]

∏
ω∈{0,1}t

a(m+ ω · (h1, . . . , ht))
∏
q∈Q†t

T qν1

∣∣∣∣∣∣∣
2 .

A final van der Corput gives

E m∈[M ],
|h1|,...,|ht+1|<M

∏
ω∈{0,1}t+1

a(m+ ω · (h1, . . . , ht+1))

∫
X

∏
q∈Q′t

T q(m)ν1

∏
q∈Q†t

T q(m)ν1T
q(m+ht+1)ν1,

and we write F for the difference between this expression and E m∈[M ],
|h1|,...,|ht|<M

∏
ω∈{0,1}t+1 a(m+

ω · (h1, . . . , ht+1)). As in the example in Section 4, by Cauchy-Schwarz we have that F 2 is

bounded above by ‖ν2‖2
t+1

Ut+1(Z(2t+3)M ) times the average

Em,h1,...,ht+1∈[M ]

∏
ω∈{0,1}t+1

ν2(m+ ω · (h1, . . . , ht+1))(15)

×

∫
X

∏
q∈Q′t

T q(m)ν1

∏
q∈Q†t

T q(m)ν1T
q(m+ht+1)ν1 − 1


2

.

In order to use the extra condition on the last expression, we need to verify that no two

polynomials in Q†t ∪ Sht+1Q
†
t ∪ Q′t differ by constants. Again, since all these polynomials are

0 when evaluated at 0, it suffices to show that they are distinct. Before seeing this, let us

make some observations.

Claim 2. For any 0 ≤ s ≤ t, for any polynomials p ∈ Q†s and q ∈ Qs \ Q′s, p − q is not

constant in m.
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Proof of Claim 2: For s = 0 there is nothing to prove. Suppose the claim is true for s ≤ t−1.

Let p ∈ Q†s+1 and q ∈ Qs+1 \ Q′s+1. Write p = u− q(s+1) for u ∈ Q′s ∪ Q
†
s and q = v − q(s+1)

for v ∈ (Qs \ Q′s) ∪ Shs+1(Qs \ Q′s). It remains to see that u − v is not constant in m. If

u ∈ Q′s, then u is constant in m, but none of the polynomials in (Qs \Q′s)∪Shs+1(Qs \Q′s) are

constant in m. Suppose u ∈ Q†s. If v ∈ Qs \ Q′s then u− v is not constant in m by induction

hypothesis. If v ∈ Shs+1(Qs \Q′s), we write v(m) = w(m+hs+1) for some w ∈ Qs \Q′s. Then

u(m)− w(m+ hs+1) is not constant in m, since it is already not constant in m upon setting

hs+1 = 0. This proves Claim 2. �

Claim 3. For any 0 ≤ s ≤ t, the polynomials in Q†s are not constant in m.

Proof of Claim 3: Indeed, if s ≥ 1 then by definition we have

Q†s = (Q†s−1 − q
(s)) ∪ (Q′s−1 − q(s))

for some q(s) ∈ Qs \Q′s. Since the polynomials in Q′s−1 are constant in m, the polynomials in

Q′s−1−q(s) are not constant in m. From Claim 2, we know that the polynomials in Q†s−1−q(s)

are not constant in m. �

From Claim 1 we know that the polynomials in Q†t ∪ Q′t are distinct. The polynomials in

Sht+1Q
†
t have a new variable, namely ht+1. From Claim 3 we know that they are not constant

in hs+1, hence distinct from Q†t ∪Q′t.
It is also easy to see that the total degrees of the polynomials appearing in this process are

not increased, so they are always at most d0. Also, all of their coefficients can be bounded

by a constant C times the maximum of the absolute values of the coefficients of the original

polynomials (namely Pi(Wm)/W ), where C depends only on P1, . . . , Pk. It follows that all

polynomial expressions in (15) satisfy the hypotheses of the extra condition. As in Section 4,

expanding out the expression in (15) and using the extra condition to see that it equals o(1)

concludes the proof of Proposition 1. �

7. Concluding remarks

Our proof actually gives a lower bound for the number of desired configurations. More

precisely, it shows that the number of pairs (n, p) ∈ [N ]× [M ] for which n+P1(p−1), . . . , n+

Pk(p − 1) and p are all prime is at least cNM/(logN)k+1, as long as M grows like a power

of N that is at most N1/2d0 . Just as in [11], this follows from the proof of Theorem 4 since

we can choose w to be arbitrarily slowly growing (see also the more detailed discussion at

the start of [5, Section 11]). This is of the correct order of magnitude if one assumes the

Bateman-Horn conjecture.

One can also see that Proposition 1 remains true if we apply it to functions fi satisfying

|fi| ≤ 1 instead of |fi| ≤ ν. Indeed, under this condition, the proof of Proposition 1 is even

more straightforward: at each step, in place of the factor
(∫

X

∏
q∈Q′i

T qν1

)
= 1 + o(1), one

simply has a constant 1. Thus, taking f1 = . . . = fk to be the characteristic functions of a
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set A ⊆ [N ] of density δ and using the uniform Bergelson-Leibman theorem [11, Theorem

3.2], one actually obtains a slightly different proof of Theorem 3. It is, of course, in the same

spirit as [3, Theorem 1.2], but has the advantage that it gives a lower bound on the number

of configurations. Moreover, an inspection of the proof of [11, Theorem 3.2] shows that it is

valid as long as M goes to infinity with N . In particular, we do not have to require M to be

as big as a small power of N . Of course, the constant c(δ) now has to depend on the growth

of M . More precisely, we have the following result.

Proposition 4. Let F (N) be any function that goes to infinity with N . Suppose F (N) <

M < N1/2d0. Then for any δ > 0, there is a constant c(F, δ) > 0 such that the following

holds. Let A be any subset of [N ] of density δ. Then A contains at least c(F, δ)NM/ logM

configurations of the form a+ P1(p− 1), . . . , a+ Pk(p− 1), where p ≤M is a prime.

This bound does not follow from [3]. On the other hand, the proof of Frantzikinakis, Host

and Kra shows that if A ⊂ Z and d(A) > 0, then

d(A ∩ (A− P1(p− 1)) · · · ∩ (A− Pk(p− 1))) > 0

for p in a set of positive relative density in the primes.

Appendix: The generalized correlation estimate

In this appendix we point out the modifications that need to be made to the proof of [11,

Proposition 10.1] to obtain Proposition 3 (correcting some misprints from [11] in the process).

Recall that we had ν1 = νW,b1 and ν2 = νW,b2 and two disjoint indexing sets J1, J2 ⊂ N,

J = J1 ∪ J2. For j ∈ J , we have polynomials Pj ∈ Z[x1, . . . , xD] of degree at most d. The

convex body Ω ⊂ RD was assumed to have inradius at least R4|J |+1. We denoted by Pb the

set of primes w ≤ p ≤ RlogR which are bad with respect to ((WPj + b1)j∈J1 , (WPj + b2)j∈J2),

and assumed that there are no terrible primes in the same range.

Proof of Proposition 3: We wish to estimate

Ex∈Ω∩ZD

∏
j∈J1

ν1(Pj(x))
∏
j∈J2

ν2(Pj(x)).

Expanding this out in terms of the definitions of ν1, ν2, we find that

(
φ(W )

W
logR

)|J |∑
j∈J

∑
mj ,m′j≥1

∏
j∈J

µ(mj)µ(m′j)χ

(
logmj

logR

)
χ

(
logm′j
logR

)
(16)

Ex∈Ω∩ZD

∏
j∈J1

1lcm(mj ,m′j)|WPj(x)+b1

∏
j∈J2

1lcm(mj ,m′j)|WPj(x)+b2 ,
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where lcm(a, b) denotes the least common multiple of two integers a and b. Setting M =

lcm((mj)j∈J , (m
′
j)j∈J), we observe that M can be assumed to be square-free (due to the pres-

ence of the Möbius function) and of size at most R2|J | (due to the restrictions on each mj ,m
′
j

imposed by the cutoff χ). Each function x 7→ 1lcm(mj ,m′j)|WPj(x)+b1 , x 7→ 1lcm(mj ,m′j)|WPj(x)+b2

is periodic with respect to M · ZD, and can therefore be defined on ZDM . By [11, Corollary

C.3], we have

Ex∈Ω∩ZD

∏
i=1,2

∏
j∈Ji

1lcm(mj ,m′j)|WPj(x)+bi

=
(

1 +O
(
R−2|J |−1

))
Ey∈Ω∩ZD

M

∏
i=1,2

∏
j∈Ji

1lcm(mj ,m′j)|WPj(y)+bi ,

where the O error term is easily seen to result in an additive o(1) error, and will therefore be

negligible. Setting

α(aj)j∈J = Ey∈ZD
lcm((aj)j∈J )

∏
i=1,2

∏
j∈Ji

1aj |WPj(y)+bi ,

it therefore suffices to show that

(
φ(W )

W
logR

)|J |∑
j∈J

∑
mj ,m′j≥1

∏
j∈J

µ(mj)µ(m′j)χ

(
logmj

logR

)
χ

(
logm′j
logR

)α(lcm(mj ,m′j))j∈J

(17)

= 1 + oD,J,d(1) +OD,J,d

Exp

OD,J,d
∑
p∈Pb

1

p

 .

By the Chinese remainder theorem α is multiplicative in the sense that if lcm(mj ,m
′
j) =∏

p p
rj(p), then

α(lcm(mj ,m′j))j∈J =
∏
p

α
(prj(p))j∈J

,

where the latter is a finite product. Since the mj are assumed to be squarefree, rj(p) is either

0 or 1 for each j and each p, and we obtain

α(lcm(mj ,m′j))j∈J =
∏
p

cp((WPj + b1)j∈J1,rj(p)=1, (WPj + b2)j∈J2,rj(p)=1),

where the local factor cp(P1, . . . , Pk) is defined by

cp(P1, . . . , Pk) = Ey∈FD
p

∏
j∈J

1Pj(y)≡0(p).
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So the left-hand side of (17) becomes(
φ(W )

W
logR

)|J |∑
j∈J

∑
mj ,m′j≥1

∏
j∈J

µ(mj)µ(m′j)χ

(
logmj

logR

)
χ

(
logm′j
logR

)(18)

∏
p≤RlogR

cp((WPj + b1)j∈J1,rj(p)=1, (WPj + b2)j∈J2,rj(p)=1),

where we were able to restrict the product to primes less than RlogR because each mj is

bounded by R.

We can now replace χ by terms which are multiplicative in mj ,m
′
j , using the Fourier

expansion

χ(x) = e−x
∫ ∞
−∞

φ(ξ)e−ixξdξ

for a smooth and rapidly decaying function φ. We have

χ

(
logmj

logR

)
=

∫ ∞
−∞

φ(ξj)m
−zj
j dξ , where zj =

1 + iξj
logR

.

Setting up the corresponding notation involving m′j , z
′
j and ξ′j , (18) becomes

(
φ(W )

W
logR

)|J |∑
j∈J

∑
mj ,m′j≥1

∫ ∞
−∞

. . .

∫ ∞
−∞

∏
j∈J

µ(mj)µ(m′j)m
−zj
j m

′−z′j
j φ(ξj)φ(ξ′j)dξjdξ

′
j


(19)

∏
p≤RlogR

cp((WPj + b1)j∈J1,rj(p)=1, (WPj + b2)j∈J2,rj(p)=1),

which can be rewritten in the form(
φ(W )

W
logR

)|J | ∫ ∞
−∞

. . .

∫ ∞
−∞

∏
p≤RlogR

Ep

(∏
i∈J

φ(ξj)φ(ξ′j)dξjdξ
′
j

)
,

where

Ep =
∑
j∈J

∑
mj ,m′j∈{1,p}

∏
j∈J

µ(mj)µ(m′j)m
−zj
j m

′−z′j
j

 cp((WPj+b1)j∈J1,rj(p)=1, (WPj+b2)j∈J2,rj(p)=1).

One now approximates the Euler factor Ep by

E′p =
∏
j∈J

(1− p−(1+zj))(1− p−(1+z′j))

1− p−(1+zj+z′j)

using a series of claims for different types of primes p, whose proofs we shall postpone until

the end of the section.
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Claim 4 (Small primes). ∏
p<w

Ep
E′p

=

(
W

φ(W )

)|J |
(1 + o(1))

Claim 5 (Bad but not terrible primes).

∏
w<p≤RlogR

p bad but not terrible

Ep
E′p

= 1 +O

Exp

O
∑
p∈Pb

p−1



Claim 6 (Good primes). ∏
w<p≤RlogR

p good

Ep
E′p

= 1 + o(1)

Together Claims 4, 5 and 6 imply that if there are no terrible primes > w, then

∏
w<p≤RlogR

Ep
E′p

=

(
W

φ(W )

)|J |1 + o(1) +O

Exp

O
∑
p∈Pb

p−1

 .

The proof of Proposition 3 is now completed, exactly as in [11, Proposition 10.1], using some

elementary theory of the Riemann ζ function, as well as the rapid decay of φ. �

Finally, for completeness, we give the proofs of Claims 4, 5 and 6. They rely on the

rather elementary [11, Lemma 9.5], which itself is proved with the help of a combinatorial

Nullstellensatz [11, Appendix D].

Proof of Claim 4: If p < w, then for all j ∈ Ji we have WPj + bi ≡ bi 6≡ 0(p), so for such p

the local factor cp((WPj + b1)j∈J1,rj(p)=1, (WPj + b2)j∈J2,rj(p)=1) is equal to 0 unless the set

{j ∈ J : rj(p) = 1} is the empty set, in which case it equals 1. The former case happens

if and only if all mj are equal to 1, so that Ep = 1. A direct computation, using the fact

that w goes to infinity much more slowly than R, shows that E′p = (1 − p−1)|J | + o(1). The

estimate for the product over all primes p < w of Ep/E
′
p then follows from the fact that∏

p<w(1− p−1)−1 = W/φ(W ). �

Proof of Claim 5: If p > w is bad but not terrible, then [11, Lemma 9.5 (b)] implies that

the local factor cp of any non-trivial family is O(p−1). Hence the sum defining Ep has a

contribution of 1 from mj = m′j = 1 for all j ∈ J , and a contribution of O(p−1) from all other

terms, so that Ep = 1 +O(p−1). Also, we find by Taylor expanding that

(20) E′p = 1− 1

p

∑
j∈[J ]

(
1

pzj
+

1

pz
′
j

)
+

1

p

∑
j∈[J ]

1

pzj+z′j
+O

(
1

p2

)
= 1 +O

(
1

p

)
,
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where the last inequality follows from the fact that zj , z
′
j have real part 1/ logR > 0. It

follows that∏
w<p≤RlogR

p bad but not terrible

Ep
E′p

=
∏

w<p≤RlogR

p bad but not terrible

(
1 +O

(
1

p

))
=

∏
w<p≤RlogR

p bad but not terrible

exp

(
O

(
1

p

))
,

which equals

exp

O
∑
p∈Pb

p−1

 = 1 +O

Exp

O
∑
p∈Pb

p−1

 .

�

Proof of Claim 6: If p > w is good, then by [11, Lemma 9.5 (c)] the local factor cp of a

non-trivial family consisting of precisely 1 polynomial is p−1 + O(p−2). Such a non-trivial

family arises in the case when mj = 1,m′j = p or mj = p,m′j = 1 or mj = p,m′j = p for

exactly one j ∈ [J ]. In all remaining cases, cp = O(p−2) by [11, Lemma 9.5 (d)]. This implies

that

Ep = 1−
(

1

p
+O

(
1

p2

)) ∑
j∈[J ]

(
1

pzj
+

1

pz
′
j

)
+

(
1

p
+O

(
1

p2

)) ∑
j∈[J ]

1

pzj+z′j
+O

(
1

p2

)
,

so that by (20) for good primes p,

Ep
E′p

= 1 +O

(
1

p2

)
.

The statement in Claim 6 now follows from the fact that the product
∏
p(1 + O(p−2)) is

convergent and w tends to infinity. �
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