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Abstract. A theorem of Glasner says that if X is an infinite subset of the torus T, then for
any ε > 0, there exists an integer n such that the dilation nX = {nx : x ∈ T} is ε-dense (i.e,
it intersects any interval of length 2ε in T). Alon and Peres provided a general framework for
this problem, and showed quantitatively that one can restrict the dilation to be of the form
f(n)X where f ∈ Z[x] is not constant. Building upon the work of Alon and Peres, we study
this phenomenon in higher dimensions. Let A(x) be an L × N matrix whose entries are in
Z[x], and X be an infinite subset of TN . Contrarily to the case N = L = 1, it’s not always
true that there is an integer n such that A(n)X is ε-dense in a translate of a subtorus of TL.
We give a necessary and sufficient condition for matrices A for which this is true. We also
prove an effective version of the result.

1. Introduction

Let T = R/Z. A subset X ⊂ T is called ε-dense in T if it intersects every interval of length
2ε in T. A dilation of X is a set of the form nX = {nx : x ∈ X} ⊂ T. The following theorem
of Glasner [6] is the basis for our investigation.

Theorem I (Glasner). Let X be an infinite subset of T and ε > 0, then there exists a positive
integer n such that the dilation nX is ε-dense in T.

Theorem I can be made effective in the sense that every sufficiently large subset X has an
ε-dense dilation of the form nX for some positive integer n, and ‘sufficiently large’ can be
quantified. The first result in this direction was obtained by Berend and Peres in [4]. Given
ε > 0, let k(ε) be the minimal integer k such that for any set X ⊂ T of cardinality at least k,
some dilation nX is ε-dense in T. Berend and Peres showed that

c/ε2 ≤ k(ε) ≤ (c1/ε)
c2/ε (1)

where c, c1, c2 are absolute constants.
The question of determining the correct order of magnitude of k(ε) was further studied in

depth by Alon and Peres [1], who gave the bound

k(ε)�δ

(
1

ε

)2+δ

(2)

for any δ > 0. This is almost best possible in view of (1). Actually, they gave a more precise
bound

k(ε)�
(

1

ε

)2+ 3
log log(1/ε)

. (3)
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In [1], Alon and Peres provided two different approaches to this problem. On the one hand,
the probabilistic approach gives more information about the dilation, such as its discrepancy.
On the other hand, the second approach, using harmonic analysis, is particular suited when
one is interested in dilating the set X by a sequence of arithmetic nature, such as the primes
or the squares. They proved

Theorem II (Alon-Peres). (i) For any δ > 0, every set X in T of cardinality

k �δ
1

ε2+δ
,

has an ε-dense dilation pX with p prime.
(ii) Let f be a polynomial of degree L > 1 with integer coefficients and let δ > 0. Then any

set X in T of cardinality

k �δ,f

(
1

ε

)2L+δ

,

has an ε-dense dilation of the form f(n)X, for some n ∈ Z.

It is shown in [7] that in part (ii) of the above theorem there is an ε-dense dilation of the
form f(p)X where p is a prime number.

In this paper we investigate high dimensional analogues of Glasner’s theorem and the above
results of Alon and Peres using Alon-Peres’ harmonic analysis approach. One problem that
comes to mind is that of determining the natural analogue of “dilating by n” in the one-
dimensional case. Any continuous endomorphism of T is represented this way, so we may
regard the dilation as the action by a continuous endomorphism. When considering higher
dimensional generalizations of the above theorems we need not restrict ourselves from maps of
a torus into itself. We will instead consider maps between tori of possibly different dimension.
A continuous homomorphism between TN and TL is represented by left multiplication of an
L ×N matrix with entries in Z. This will be our analogue of dilation. We say that a subset
of TL is ε-dense in TL if it intersects any box of side length 2ε.

Our first theorem is a high dimensional analogue of Glasner’s theorem.

Theorem 1. For any ε > 0 and any infinite subset X ⊂ TN there exists a continuous
homomorphism T : TN → TL such that TX is ε-dense in TL.

The proof of this result is similar to the proof of (2). Our main investigation, however, is an
analogue of the fact that if X ⊂ T is infinite, then there is a dilation of the form f(n)X that is
ε-dense, where f(x) is a non-constant polynomial with integral coefficients. Let us introduce
the set-up to this problem and lay out some of the complications that arise when moving to
high dimensions. In this paper, a subtorus of TN is defined to be a non-trivial closed and
connected Lie subgroup.

Let A(x) ∈ ML×N (Z[x]) be non-constant and let D be the positive integer representing the
largest of the degrees of the entries of A(x). Then there are A0, ..., AD ∈ ML×N (Z) such that

A(x) = A0 + xA1 + · · ·+ xDAD = A0 + A∗(x)

where A∗(x) is the non-constant part of A(x). We wish to consider dilations of subsets
X ⊂ TN of the form A(n)X.
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Simple examples show that, unlike Theorem 1, there are configurations of A(x) and X for

which A(n)X is never ε-dense in the full torus. Take, for instance, A(n) =

(
n 0
0 n

)
and X to

live in a proper subtorus, then A(n)X is also in the same subtorus, for every n. Furthermore,
if we take X to be in a translate of a subtorus, then A(n)X is also in a translate of a subtorus
(where the translate depends of n). So the best one can hope for in this situation is to achieve
an ε-dense dilation in a translate of a subtorus. Before stating our results, we give some
examples to show that even this restriction is not always achieved.

Example 1. If A(n) =

(
n 0
0 0

)
and X = {(0, x) : |x| ≤ 1/4}, then there is no value of n such

that A(n)X is 1/4-dense in a translate of a subtorus. Basically, this is because the matrix A∗
is degenerate in a sense so that A(n)X doesn’t “move X around.”

Example 2. If A(n) =

(
n 0
0 n+ 1

)
and X = {(1/j, 1/j) : j = 1, 2, . . .}, then clearly A(n)X

is not 1/4-dense in any translate of the diagonal. On the other hand, one can show that for
any n, for any subtorus T of T2 that is different from the diagonal, A(n)X is not ε-dense
in any translate of T (since the set of dot products of elements of A(n)X with (−1 1) has
only one accumulation point). The reason of such a failure can be attributed to the lack of a
compromise between the constant part and the non-constant part of A.

Our main result says that the only obstructions to ε-dense dilations are the ones described
in Examples 1 and 2.

Theorem 2. Let A(x) ∈ ML×N (Z[x]). The following are equivalent:

(1) For any infinite subset X ⊂ TN there exists a subtorus T = T (X,A) of TL such that
for any ε > 0 there exists an integer n such that A(n)X = {A(n)x : x ∈ X} is ε-dense
in a translate of T .

(2) (a) The columns of A∗(x) are Q-linearly independent, and
(b) If there are v ∈ QL and w ∈ QN satisfying

v ·Adw = 0 for each d = 1, ..., D, (4)

then v ·A0w = 0.

Remarks 1.

• Theorem 2 shows one how to construct matrices A(n) such that the conclusion (1)
holds. The condition (2a) tells us how to choose the non-constant part A∗(n), and the
condition (2b) tells us that the constant part A0 has to behave accordingly.
• In the case N = L = 1, (2) is automatically satisfied if A is not constant, which

explains why in Theorem II (ii) we can take f to be any non-constant polynomial.
• If we replace Q with C in (2b), then by Hilbert’s Nullstellensatz, it would imply that
A0 is a linear combination of A1, . . . , AD. It would be interesting to construct examples
of A satisfying (2b) without A0 being a linear combination of A1, . . . , AD.

We also prove an effective form of this result. Define k(ε;L,N,A) to be the largest in-
teger k such that there exist k distinct points X = {x1, ...,xk} ⊂ TN such that A(n)X =
{A(n)x1, ...,A(n)xk} is not ε-dense in any translate of any subtorus for any n = 1, 2, 3, ....
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Theorem 3. Let A(x) be of degree at most D and satisfy (2a) and (2b) from Theorem 2.
Then there are constants c1(N,L,D) and c2(N,L,D) such that

k(ε;L,N,A)�N,L,D ‖A∗‖c1(N,L,D)
∞

(
1

ε

)c2(N,L,D)

. (5)

where ‖A∗‖∞ is the max of the heights1 of the entries of A∗.

Remark 1. Theorem 2 would be a mere consequence of Theorem 3, if not for the fact that the
subtorus T is independent of ε in the conclusion of Theorem 2.

The exponents c1 and c2 can be given explicitly. We do not try to find the best possible
exponents, since these are not known even in the case N = L = 1, though our values can
certainly be improved. Finally, we remark that it is straightforward to prove a version of
Theorem 3 in the spirit of [7], with bounds of the same quality, for dilations of the form
A(p)X where p is prime. Indeed, the proof would proceed exactly the same way, albeit with
an appropriate modification of Lemma 2. We leave the details to the interested reader.

The paper is organized as follows. In Section 2 we gather some useful facts that we need in
our proofs, including Alon-Peres’ machinery. In Section 3 we prove Theorem 2, and in Section
4 we prove Theorem 3. In Section 5 we prove (a variant of) a quantitative version of Theorem
1. Finally, in Section 6 we discuss some applications of our results.

Acknowledgements. We would like to thank Professor Noga Alon for a discussion regarding
Proposition 1 and Professor Jeffrey Vaaler for helpful comments during our investigation and
during the preparation of this paper.

2. Notation and preliminaries

2.1. Notation. Throughout this paper, we will use Vinogradov’s symbols � and �. For
two quantities A,B, we write A � B, or B � A if there is a positive constant c such that
|A| ≤ cB. If the constant c depends on another quantity t, then we indicate this dependence
as A �t B. The numbers N,L,D are fixed throughout this paper, so dependence on these
quantities is implicitly understood.

Given a vector v, we denote by ‖v‖∞ its usual sup norm. Given a matrix A, let us denote
by ‖A‖∞ the maximal of the absolute values of its entries. Finally, for a matrix A(x) =
A0 + xA1 + · · · + xDAD whose entries a polynomials in x, we define ‖A‖∞ = max{‖Ad‖∞ :
d = 0, 1, . . . , D}. While we use the same symbol for slightly different objects, the use should
be clear from the context.

For x ∈ R, we denote by ‖x‖ the distance from x to the nearest integer. For x =
(x1, . . . , x`) ∈ R`, let ‖x‖ = maxi=1,...,` ‖xi‖. In other words, ‖x‖ denotes the distance from x
to the nearest integer lattice point under ‖ · ‖∞.

Throughout the paper, we always identify a point in a torus T` with its unique representative
in [0, 1)`. This point of view is important, since it enables us to define subtori in terms of
equations.

1Recall that the height of a polynomial is the maximum of the absolute values of its coefficients.
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2.2. Preliminaries. Let {x1, ..., xk} be a set of k distinct numbers in T. Define

hm = # {(i, j) : 1 ≤ i, j ≤ k and m(xi − xj) ∈ Z} (6)

and Hm = h1 + · · ·+hm. The quantities hi, Hm certainly depend on the sequence {x1, ..., xk},
but we always specify the sequence we are working with. The numbers hm and Hm appear
in several of the arguments in [1] and they will make an appearance in the proof of our main
results. We will need the following simple estimate:

Proposition 1. Hm ≤ km2.

Proof. Observe that for fixed i and m, there are at most m values of j such that m(xi−xj) ∈ Z.
Thus for fixed i, the number of couples (j,m) such that m(xi−xj) ∈ Z is at most 1+· · ·+M ≤
M2. Summing this up over all i gives the desired estimate. �

Remark 2. Since we are not concerned with optimal exponents, this estimate will suffice for our
purposes, but we note that it is shown in [1] that the (essentially sharp) boundHm �γ (mk)1+γ

holds for any γ > 0.

Corollary 1. If s2, s3, ... is a sequence of positive integers such that Sb = s2 + · · ·+ sb ≤ Hb

and Sb ≤ k2, then
∞∑
b=2

sbb
−1/D �D k2−1/(2D). (7)

Proof. We follow the proof of a similar estimate in [1]. For b ≥
√
k use the bound Sb ≤ k2 and

if b >
√
k use Sb ≤ Hb � kb2 so we have by summation by parts

∞∑
b=2

Sb

(
b−1/D − (b+ 1)−1/D

)
� k2k−1/(2D) + k

√
k∑

b=2

b2b−1/D−1.

But √
k∑

b=2

b1−1/D �D k1−1/(2D).

�

The following Lemma is a high dimensional analogue of an inequality used in the several
of the results in [1]. It may be regarded as a general principle which connects the lack of
ε-denseness to exponential sums.

Proposition 2. Let A(1), A(2), ... be a sequence of linear transformations taking TN to T`
and assume X = {x1, ...,xk} is a subset of TN of cardinality k such that A(n)X is not ε-dense
in T` for any n ∈ Z. Then for any ε > 0 there is an integer 0 ≤M �` ε

−1 such that

k2 �`
1

ε`

∑
0<‖m‖∞≤M

m∈Z`

k∑
i=1

k∑
j=1

lim
R→∞

1

R

R∑
r=1

em

(
A(r)(xi − xj)

)
(8)

where em(t) = exp(2πim · t).
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Alon-Peres proved the one-dimensional version of Lemma 2 using a classical result of Denjoy
and Carleman, and obtained the same inequality with M � (1/ε) log2(1/ε). Their method
can be extended in a straightforward manner to higher dimensions. As pointed out to us by
Vaaler, one could as well use the machinery developed by Barton-Montgomery-Vaaler [3] to
improve this to M � 1/ε. We will follow the latter approach in our proof of Proposition 2
since it gives us a cleaner value for M , though this is inconsequential. Indeed, even in the
case N = L = 1, this improved value of M does not lead to any improvement on Alon-Peres’
bound (3).

We first recall the following consequence of [3, Corollary 2]:

Lemma 1. Let 0 < ε ≤ 1/2. Let ξ1, . . . , ξk ∈ R` be such that ‖ξi‖ ≥ ε for any i = 1, . . . , `.
Then we have

k

3
≤

∑
m∈Z`

0<‖m‖∞≤[ `ε ]

∣∣∣∣∣
k∑
i=1

em(ξi)

∣∣∣∣∣
Proof of Lemma 2. For any r, since A(r)X is not ε-dense in T`, there exists αr ∈ R` such
that ‖αr −A(r)xi‖ ≥ ε for any i = 1, . . . , k. Let M =

[
`
ε

]
. By Lemma 1, we have

k

3
≤

∑
m∈Z`

0<‖m‖∞≤M

∣∣∣∣∣
k∑
i=1

em(αr −A(r)xi)

∣∣∣∣∣
By Cauchy-Schwarz, we have

k2 �` M `
∑
m∈Z`

0<‖m‖∞≤M

∣∣∣∣∣
k∑
i=1

em(αr −A(r)xi)

∣∣∣∣∣
2

�`
1

ε`

∑
m∈Z`

0<‖m‖∞≤M

k∑
i=1

k∑
i=1

em(A(r)(xi − xj))

This is true for any r so by taking the average of the right hand side over 1 ≤ r ≤ R, we have

k2 �`
1

ε`

∑
0<‖m‖∞≤M

m∈Z`

k∑
i=1

k∑
j=1

1

R

R∑
r=1

em

(
A(r)(xi − xj)

)

Letting R→∞ we have the desired inequality. �

We also recall the following classical estimate due to Hua [5, 8]:

Lemma 2 (Hua). Suppose f(x) = adx
d + · · · a1x+ a0 ∈ Z[x] and q is a positive integer such

that gcd(a1, ..., ad, q) = 1. Then ∣∣∣∣∣
q∑
r=1

e2πif(r)/q

∣∣∣∣∣�d q
1−1/d.
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3. The infinite version

Of the two implications, the implication (1) ⇒ (2) is the more difficult so let us begin by
quickly proving the implication (2) ⇒ (1). We will need the following lemma in the proof of
the necessity of (2b). The assertion of the lemma is that by taking the dot product with a
vector v, an ε-dense subset of a torus becomes an ε̃-dense set in T where ε̃ is comparable to ε,
as long as v is not orthogonal to the original torus.

Lemma 3. Let ε > 0, b ∈ RL, V a proper subspace of RL, v ∈ ZL,v 6∈ V ⊥, and

X ⊂ S =
{
b + x + ZL : x ∈ V

}
⊂ TL.

If X is ε-dense in S, then {v · x + Z : x ∈ X} is L‖v‖∞ε-dense in T.

Proof. Let t ∈ T. We want to find a x ∈ X such that v ·x is contained in an interval of length
2L‖v‖∞ε in T centered at t. That is we wish to show the existence of an x ∈ X such that
‖v · x− t‖ ≤ L‖v‖∞ε.

Since v 6∈ V ⊥ we may write t = v · a for some a ∈ V . And since X is ε-dense in S there
exists an x ∈ X ∩ S and a w ∈ ZL such that ‖x− a−w‖∞ ≤ ε. But since v ·w ∈ Z we have

‖v · x− t‖ = ‖v · (x− a−w)‖ ≤ |v · (x− a−w)| ≤ L‖v‖∞ε.
�

Proof of necessity of (2a). Suppose, by way of contradiction, that the columns of A∗(x) are
not Q−linearly independent. Then there is a nonzero m ∈ QN such that

A∗m = 0.

If
X = {m/j : j = 1, 2, ....} ,

then A(n)X = A0X = {xj = A0m/j : j = 1, 2, ....} which is not ε-dense in a translate of a
subtorus for any sufficiently small ε > 0. �

Proof of necessity of (2b). Suppose that there are vectors v ∈ ZL and w ∈ ZN such that

v ·Adw = 0 for each d = 1, ..., D

but v · A0w = t 6= 0. In particular v 6= 0 and w 6= 0. Let X = {w/j : j = 1, 2, ...} ⊂ TN .
Note that X is an infinite set. It then follows that

v ·A(n)xj = t/j ↘ 0 for each n = 1, 2, ... (9)

Suppose for a contradiction that there is a subtorus S of TL such that for any ε > 0,
there exists n such that A(n)X is dense in a translate of S. Suppose S is given by S ={
b + a + ZL : a ∈ V

}
where V is a proper subspace of RL and b ∈ RL. Let ε > 0 be sufficiently

small and suppose there is a subset Y ⊂ X ∩S, an integer n such that A(n)Y is ε-dense in S.
We have two possibilities:

• If v ∈ V ⊥, then v ·A(n)y is a constant (namely v · b) for any y ∈ Y , which is not
true in view of (9).
• If v 6∈ V ⊥, then by Lemma 3 we have v ·A(n)Y is L‖v‖∞ε-dense in T. Again, in view

of (9), this is impossible if ε > 0 is sufficiently small.

�
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In the remainder of the paper we will say the rank (corank) of A(x) is the rank of the
Z-module generated by the rows (columns) of A(x). First we describe briefly the ideas of the
proof of the implication (2) ⇒ (1). Observe that we can’t expect A(n)X to be ε-dense in the
whole of TL since there may be some linear dependencies between the rows of A. If A(n)X
fails to be ε-dense in the “natural” subtorus defined by these linear dependencies for every n,
then we use Proposition 2 to conclude that X has structure, in the sense that it has an infinite
intersection with a translate of a subtorus of TN . This enables us to perform induction on N .
Let us now introduce some preparatory lemmas.

Lemma 4. Let A(x) ∈ ML×N (Z[x]) be of rank ` and satisfy condition (2b) from Theorem 2.
Then there exist matrices T ∈ ML×`(Q), B(x) ∈ M`×L(Z[x]) such that

(i) A(x) = TB(x),
(ii) B∗(x) has full rank, and

(iii) There is a positive integer q such that qT is integral and ‖qT‖∞ �` ‖A∗‖`∞.

Proof. Without loss of generality we my assume the first ` rows of A∗(x) are Q-linearly
independent. Then there is an L × ` matrix T with entries in Q such that A∗ = TB∗
where B∗ = B∗(x) ∈ M`×N (Z[x]) is the block of the first ` rows of A∗(x). We claim that
condition (b) guarantees that A0 = TB0 for some ` × N integral matrix B0. First we show
ker
(
T t
)
⊂ ker

(
At0
)
.

Suppose v ∈ ker(T t). Then At
∗v = Bt

∗T
tv = 0, which implies v ·A∗w = 0 for any w ∈ QN.

But by condition (b) this implies that v · A0w = 0 for each w ∈ QN, which implies At0v = 0.
That is, v ∈ ker(At0).

Therefore there exists B0 ∈ M`×N (Q) such that A0 = TB0. But the uppermost ` × `
block of T is the identity. Thus B0 is none other than the uppermost `×N block of A0, and
consequently B0 is integral. Upon putting B = B∗ +B0, we have B is integral and A = TB.

Let A be the L × DN matrix given by A = [A1 · · ·AD] and B be the ` × DN matrix
given by B = [B1 · · ·BD]. Since Ad = TBd for each d = 1, ..., D, we have A = TB. B must
have rank ` since B∗(x) does, so there is an invertible ` × ` minor B′ of B. Let A′ be the
corresponding minor of A and observe we have the equality A′(B′)−1 = T . Let q = detB′ 6= 0
and C = q−1(B′)−1 be the adjugate of B′. We then have the inequality

‖qT‖∞ = ‖A′C‖∞ �` ‖A′‖∞‖C‖∞ �` ‖A∗‖`∞
as required. Clearly we may assume q to be positive. �

Our crucial tool is the following consequence of Proposition 2. We regard it as some sort of
inverse result since it tells about the structure of X if dilations of X fail to be ε-dense. In this
respect our use of Proposition 2 is rather different from Alon-Peres. It is perhaps no surprise
that our proof of Proposition 3 involves Ramsey’s theorem.

Proposition 3. Suppose ε > 0, X is an infinite subset of TN , and B(x) ∈ M`×N (Z[x]) such
that B∗(x) has full rank. If B(r)X is not ε-dense in T` for any r ∈ Z, then there exists a
point y0 ∈ X, an integer J , and nonzero w ∈ ZN such that w · (y − y0) = J for infinitely
many y ∈ X.

Note that the last equation is an equality in R rather than in T, by our identification of
points in TN with their representatives in [0, 1)N .
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Proof. We create a complete graph whose vertex set is X and whose edges (x,y) are colored
w ∈ ZN (0 < ‖w‖∞ ≤M`‖B∗‖∞) if w · (x−y) ∈ Z and2 colored ω otherwise. By the infinite
version of Ramsey’s theorem there exists an infinite complete monochromatic subgraph whose
vertex set is Y ⊂ X. We now would like to show that this graph cannot be ω-colored.

Suppose, by way of contradiction, that the graph is ω−colored. For any distinct x1, ...,xk
in Y and R > 0 we have, by Proposition 2:

k2 �`
1

ε`

∑
0<‖m‖∞≤M

m∈Z`

k∑
i=1

k∑
j=1

lim
R→∞

1

R

R∑
r=1

em
(
B(r)(xi − xj)

)

=
1

ε`

∑
0<‖m‖∞≤M

m∈Z`

k∑
i=1

k∑
j=1

lim
R→∞

1

R

R∑
r=1

em

(
D∑
d=0

rdBd(xi − xj)

)

=
1

ε`

∑
0<‖m‖∞≤M

m∈Z`

k∑
i=1

k∑
j=1

lim
R→∞

1

R

R∑
r=1

e

(
D∑
d=1

rdBt
dm · (xi − xj)

)

�`
M `

ε`

k∑
i=1

k∑
j=1

lim
R→∞

1

R

R∑
r=1

e

(
D∑
d=1

rdBt
dm · (xi − xj)

)
(10)

where m is the lattice point which maximizes the last sum. Let d̃ be the largest index such
that Bt

d̃
m 6= 0. Then d̃ > 0 because Bt

∗(x) has Q-linearly independent columns, which implies

Bt
dm is not zero for some d = 1, . . . , D. For any i 6= j, since (xi,xj) is ω-colored under our

coloring and ‖Bt
d̃
m‖ ≤M`‖B∗‖∞, we have

Bt
d̃
m · (xi − xj) 6= 0 (11)

Therefore, if i 6= j, the polynomial

Φij(r) = m ·B∗(r)(xi − xj) =

D∑
d=1

rdBt
dm · (xi − xj)

has degree d̃. By Weyl’s equidistribution theorem and Hua’s bound (Lemma 2), we have:

lim
R→∞

1

R

R∑
r=1

e (Φij(r)) =

{
0, if Φij has at least one irrational coefficient

�D b−1/d̃ ≤ b−1/D, if Φij(x) ∈ Q[x],

where in the second case b = b(i, j) is the least positive integer such that b(m·B∗(x)(xi−xj)) ∈
Z[x].

For each b > 1 we define

Sb =
{

(i, j) : 1 ≤ i, j ≤ k, b is the smallest positive integer

such that b(m ·B∗(x)(xi − xj)) ∈ Z[x]
}
.

2Observe we are allowing multiple colors per edge.



10 MICHAEL KELLY AND THÁI HOÀNG LÊ

Let sb = #Sb and Sb = s2 + · · ·+ sb. Let xi = Bt
d̃
m · xi for any i = 1, . . . , k, then the xi are

distinct in T in view of (11). We notice that if (i, j) ∈ Sb then b(xi − xj) ∈ Z. Consequently,
Sb ≤ Hb where Hb = h1 + · · · + hb and hm is the quantity defined by (6) for the sequence
x1, . . . , xk. We also have the trivial bound Sb ≤ k2 for any b, since for each couple (i, j) we
associate at most one b. Therefore

k2 �l,D
M `

ε`

(
k +

∞∑
b=2

sbb
−1/D

)
Combining this with Corollary 1 we have

k2 �D,ε,` k
2−1/(2D) (12)

which is a contradiction.
Therefore there is an infinite complete monochromatic subgraph whose color is w for some

w ∈ ZN and 0 < ‖w‖∞ ≤M`‖B∗‖∞. More specifically we find that there is an infinite subset
Y ⊂ X such that w · (y − y′) ∈ Z for any y,y′ ∈ Y . Now fix an element y0 ∈ Y . Upon
noticing that the map y 7→ w · (y − y0) has a finite image (since y,y0 ∈ [0, 1)N ) and Y is
infinite, there exists an integer J such that w · (y − y0) = J for infinitely many y ∈ Y . �

We are now in a position to finish the proof of Theorem 2.

Proof of sufficiency of (2a) and (2b). First we will provide a proof when N = 1 and then pro-
ceed by induction on N .

Let X ⊂ T be an infinite subset, 0 < ` ≤ L be the rank of A(x), and B(x) and T be given
by Lemma 4. We claim that for any ε > 0 there is an integer n such that B(n)X is ε-dense
in T`. Assume, by way of contradiction, that there exists an ε0 > 0 such that B(n)X is not
ε0-dense in T` for any n ∈ Z. By Proposition 3 there exists an integer m 6= 0, a point y0 ∈ X,
an integer J such that m(y − y0) = J for infinitely many y ∈ X. This is clearly impossible
(recall that this is an equality in R). Therefore for every ε > 0 there exists an integer n such
that B(n)X is ε-dense in T`. Let T = Im(T )/ZL where Im(T ) ⊂ RL is the image of T . Let q
be given by Lemma 4. Then qT is integral and well-defined when considered as a map from T`
to T . Letting X/q =

{
x/q : x ∈ [0, 1)N and x ∈ X

}
we find that A(n)X = (qT )B(n)(X/q).

Therefore for any ε > 0 there exists an integer n such that A(n)X is ε-dense in T .
Now we assume the theorem holds for each integer up to N − 1. Again, by Lemma 4 there

exist an L× ` matrix T with entries in Q, an `×N matrix B = B(x) with entries in Z[x], a
positive integer such that

A = TB

and the rows of B∗ are Q-linearly independent. Define

X/q =
{
x/q : x ∈ [0, 1)N and x ∈ X

}
.

and T = Im(T )/ZL, so that qT is integral and well-defined as a map from TN−1 to T . We
have two possibilities:

(i) Either for every ε > 0 there exists an integer n such that B(n)(X/q) is ε-dense in T`.
This implies that A(n)X = (qT )B(n)(X/q) is ε̃-dense in T ⊂ TL, where ε̃� ε‖qT‖∞.

(ii) Or there exists an ε0 > 0 such that B(n)(X/q) is not ε0-dense in T` for any n ∈ Z .
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If we are in the first case, then we are done. We suppose (ii), and rename X/q as X. Proposi-
tion 3 tells us that there is a nonzero w ∈ ZN and an infinite subset Y ⊂ X such that y 7→ w·y
is constant on Y . We can assume w · y = 0 for each y ∈ Y since this amounts to translating
X by a fixed θ ∈ TN . Let the subtorus T of TN be defined by T =

{
t ∈ [0, 1)N : w · t = 0

}
.

Then there is an N × (N − 1) matrix H with full rank and integral entries such that

Im(H)/ZN = T (13)

Since the mapping t 7→ Ht + ZN ∈ T is surjective, there is an infinite subset Z ⊂ TN−1 such
that HZ = Y .

Let C(x) = A(x)H, then C is an `×(N−1) matrix. Let us verify that C satisfies conditions
(2a) and (2b). Suppose there is q ∈ QN−1 such that C∗q = 0. Then A∗(x)Hq = 0. Since
A satisfies (2a), it follows that Hq = 0. Since H has a trivial kernel, this implies that q = 0
and C satisfies condition (2a). To see that C satisfies condition (2b), let vectors v ∈ Q` and
w ∈ QN−1 be such that v · C∗(x)w = 0 identically. Upon setting w̃ = Hw ∈ QN , we find
that v ·A∗(x)w̃ = 0 is the zero polynomial. Since A(x) satisfies condition (2b), it follows that
0 = v ·A0w̃ = v ·A0Hw = v ·C(0)w.

Let us now invoke the inductive hypothesis for C. It follows that there is a subtorus T
such that for every ε > 0 there exists n such that C(n)Z is ε-dense in a translate of T . But
A(n)Y = C(n)Z, so we are done. �

Remarks 2. It may not be clear from the proof why conditions (2a), (2b) are the correct ones.
At first sight, it would seem that the only conditions we need in order to make the proof work
are the weaker ones:

• T 6= 0, which is equivalent to A 6= 0.
• Ker(T t) ⊂ Ker(At0), which is equivalent to Ker(At

∗) ⊂ Ker(At0).

But we want to maintain these requirements throughout our inductive process. Recall that
our matrix A is changed after each step, so keeping these requirements at each step ultimately
leads to conditions (2a) and (2b).

4. The finite version

In order to make the proof of Theorem 2 effective, we need to keep track of all the quantities
involved when we move from one dimension to the next. The main obstacle in the proof of
Theorem 3 is finding an effective version of Proposition 3. One could use the finite version of
Ramsey’s theorem, but currently we don’t have a sensible bound for Ramsey numbers which
involve more than two colors. We can get past this, by noticing that the graph we used in
Proposition 3 is a very special graph. The following lemma is an effective form of Proposition
3.

Proposition 4. Let B(x) ∈ M`×N (Z[x]) have full rank and let X = {x1, ...,xk} ⊂ TN be a
set of k distinct points. If B(n)X is not ε-dense in T` for any n = 1, 2, ... then there exists a
subset Y ⊂ X, y0 ∈ X, w ∈ ZN , and J ∈ Z such that

w · (y − y0) = J for each y ∈ Y , (14)

‖w‖∞ �`,N ‖B∗‖∞ε−1, and (15)

ε`+1k1/4D‖B∗‖−1
∞ �`,N,D |Y |. (16)
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Note that again, (14) is an equality in R.

Proof. By Proposition 2 we have a constant M �` ε
−1 such that

k2 �`
1

ε`

∑
0<‖m‖∞≤M

m∈Z`

∑
x∈X

∑
y∈X

lim
R→∞

1

R

R∑
r=1

e

(
D∑
d=0

rdBt
dm · (x− y)

)
(17)

where e(t) = exp(2πit) and M �` ε
−2. By an abuse of notation, let m ∈ Z` (with 0 <

‖m‖∞ ≤M) be the lattice point which maximizes the first sum. Then

k2 �`
M `

ε`

∑
x∈X

∑
y∈X

ω(x,y) (18)

where ω(x,y) is the weight given by

ω(x,y) =

∣∣∣∣∣ lim
R→∞

1

R

R∑
r=1

e

(
D∑
d=1

rdBt
dm(x− y)

)∣∣∣∣∣
Let d be the largest integer such that Bt

dm 6= 0, then d > 1 since B∗ has full rank. We partition
X into equivalence classes R1, ..., Rs, with |Ri| = ci, where x ∼ y if Bt

dm · (x− y) ∈ Z.
Define

Φi,j(r) = m ·B∗(r)(xi − xj) =

D∑
d=1

rdBt
dm(x− y)

then Φ has degree d. We use Weyl’s equidistribution theorem and Hua’s bound to obtain

ω(xi,xj) ≤


1 if x ∼ y

b−1/d if x 6∼ y and Φij(x) ∈ Q[x]

0 if Φij has at least one irrational coefficient.

(19)

where in the second case b = b(i, j) is the smallest positive integer such that bΦij(x) ∈ Z[x].
Let y1, ..., ys ∈ T be given by yi = Bt

dm · xi for some xi ∈ Ri. Then by the way we define
equivalence classes, y1, ..., ys are distinct in T. By substituting the bound (19) into (18), we
have:

k2 �`

(
M

ε

)` s∑
i=1

s∑
j=1

∑
xi∈Ri

∑
xj∈Rj

ω(xi,xj)

≤
(
M

ε

)`
s∑
i=1

c2
i +

s∑
i=1

s∑
j=1

i 6=j

∑
xi∈Ri

∑
xj∈Rj

ω(xi,xj)


≤

(
M

ε

)`{ s∑
i=1

c2
i + c2

∞∑
b=2

sbb
−1/d

}
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where

sb = #{(i, j) : 1 ≤ i, j ≤ s, b is the smallest positive integer

such that bΦij(x) ∈ Z[x]}
and c = max {c1, ..., cs}. Clearly the sequence sb satisfies the conditions of Corollary 1. Upon
writing c1 + · · ·+ cs = k and noticing s ≤ k, we have

k2 �D,`

(
1

ε

)` {
kc+ c2s2−1/(2D)

}
�D,` ε

−2`c2k2−1/(2D).

That is,
ε`k1/4D �`,D c.

Now let Y ′ be equal to one of the equivalence classes R1, ..., Rs whose cardinality is c, and
w = Bt

dm. Then w ·(x−y) ∈ Z for each x,y ∈ Y ′. But seeing that |w ·(x−y)| ≤ N‖w‖∞, we
are guaranteed the existence of an integer |J | ≤ N‖w‖∞ and y0 ∈ Y ′ such that w·(y−y0) = J
for at least c/N‖w‖∞ elements y of Y ′. But

‖w‖∞ �N,` ‖B∗‖∞M �N,` ‖B∗‖∞ε−1

Combining this with the above we have the existence of a subset Y ⊂ Y ′ ⊂ X such that

ε`+1k1/4D‖B∗‖−1
∞ �`,N,D |Y |

as desired. �

We also need to estimate the entries of the matrix H introduced in (13).

Lemma 5. Let w ∈ ZN be nonzero and w⊥ =
{
v ∈ RN : v ·w = 0

}
. There exists an (N −

1)×N integral matrix H whose image is w⊥ and ‖H‖∞ = ‖w‖∞.

Proof. Since w = (w1, ..., wN ) is nonzero we may assume without loss of generality that
wN 6= 0. Let

vj = wNej − wjeN .
where (e1, . . . , eN ) is the standard basis of RN . Then vj ∈ w⊥ because

vj ·w = wNej ·w − wjeN ·w = 0.

Clearly v1, ...,vN−1 are linearly independent and therefore form a basis for w⊥. Letting H be
the N × (N − 1) matrix whose columns are v1, ...,vN−1 gives the result. �

We are now in a position to prove Theorem 3.

Proof of Theorem 3. Let us proceed by induction.

Base case: Let N = 1 and A(x) be an L × 1 matrix with entries in Z[x], having rank `,
degree at most D, and satisfy conditions (2a) and (2b) of Theorem 2. Let X = {x1, ..., xk} be
a set of k distinct points in T such that there does not exist a subtorus T such that A(n)X
is not ε-dense in a translate of T for any n = 1, 2, . . ..

By Lemma 4, there exist an ` × N matrix B(x) whose rows are rows of A(x), an L × `
matrix T with entries in Q such that B∗(x) has full rank and A(x) = TB(x). Furthermore,
there is a positive integer q such that qT is integral and ‖qT‖∞ �` ‖A∗‖`∞. Define

X/q = {x/q + Z : x ∈ [0, 1) and x ∈ X}
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then X/q also has cardinality k, and (qT )B(n)(X/q) = A(n)X is not ε-dense in any translate
of T = Im(T )/ZL. This implies that B(n)(X/q) is not ε1 dense in T` for any n = 1, 2, . . .,
where ε1 �L ε/‖qT‖∞. Therefore by Proposition 4, there exists a subset Y ⊂ X/q, y0 ∈ T,
integers J and w such that

w(y − y0) = J for each y ∈ Y, (20)

ε`+1
1 k1/4D‖B∗‖−1

∞ �L,D |Y |, (21)

But (20) cannot happen for more than one value of y (recall that it’s an equality in R),
Combining this with (21), we have

k �L,D ‖B∗‖4D∞
(

1

ε1

)4D(`+1)

≤ ‖B∗‖4D∞
(

1

ε1

)4D(L+1)

(22)

Recall that ε1 �L ε/‖qT‖ �L ε‖A∗‖−`∞ ≥ ε‖A∗‖−L∞ . We also trivially have ‖B∗‖∞ ≤ ‖A∗‖∞
(since the rows of B are the rows of A by construction) so

k �L,D ‖A∗‖4D(L(L+1)+1)
∞

(
1

ε

)4D(L+1)

(23)

which shows that k(ε;L, 1,A) exists and can be bounded by the right hand side.

Inductive step. Now we assume that for each C ∈ ML×n(Z[x]) having degree D and
that satisfies conditions (2a) and (2b) of Theorem 2, there exist constants c1(n,L,D) and
c2(n,L,D) such that

k(ε;L, n,C)�N,L,D ‖C∗‖c1(n,L,D)
∞

(
1

ε

)c2(n,L,D)

. (24)

for n = 1, 2, ..., N − 1.
Let A(x) ∈ ML×N (Z[x]) have degree at most D and satisfy conditions (2a) and (2b) from

Theorem 2. Suppose that X = {x1, ...,xk} is a set of k distinct points in TN such that there
does not exist a subtorus T of TL such that A(n)X is ε-dense in a translate of T for any
n = 1, 2, .... Suppose A(x) has rank `. Again, let B(x) ∈ M`×N (Z[x]), T ∈ ML×`(Q) and
q ∈ Z be given by Proposition 4, and let X/q =

{
x/q : x ∈ [0, 1)N and x ∈ X

}
. As before we

see that B(n)(X/q) cannot be ε1 � ε/‖qT‖−dense in TL for any n = 1, 2, . . .. Therefore by
Lemma 4 then there exists a subset Y ⊂ X/q, y0 ∈ TN , J ∈ Z and a w ∈ ZN such that

w · (y − y0) = J for each y ∈ Y, (25)

ε`+1
1 k1/(4D)‖B∗‖−1

∞ �N,L,D |Y |, and (26)

0 < ‖w‖∞ �L,N ‖B∗‖∞ε−1
1 . (27)

Clearly Y lies in a translate of the torus T =
{
x + ZN : x ∈ [0, 1)N ,x ·w = 0

}
⊂ TN . By

Lemma 5, there is a matrix H ∈ MN×(N−1)(Z) of rank N − 1 such that the range of H is

w⊥ and ‖H‖∞ = ‖w‖∞. H is surjective as a map from TN−1 to T so there is a set Z of
cardinality |Z| = |Y | points in TN−1 such that HZ = Y . By the definition of the function
k(ε;L,N,A), we have that

|Y | = |Z| ≤ k(ε1;L,N − 1,AH). (28)



UNIFORM DILATIONS IN HIGHER DIMENSIONS 15

Note that the degree of AH is at most D, so by the inductive hypothesis and (26) we have

εL+1
1 k1/(4D)‖B∗‖−1

∞ �N,L,D ‖(AH)∗‖c1(N−1,L,D)
∞

(
1

ε1

)c2(N−1,L,D)

(29)

But

‖(AH)∗‖∞ �N,L ‖A∗‖∞‖H‖∞ = ‖A∗‖∞‖w‖∞ � ‖A∗‖∞ε−1
1

and ‖B∗‖∞ ≤ ‖A∗‖∞. Therefore,

k1/(4D) �N,L,D ‖A∗‖1+c1(N−1,L,D)
∞

(
1

ε1

)c1(N−1,L,D)+c2(N−1,L,D)+L+1

Recalling that ε1 �N,L ε‖qT‖−1
∞ � ε‖A∗‖−L∞ , we have

k �N,L,D ‖A∗‖c1(N,L,D)
∞

(
1

ε

)c2(N,L,D)

(30)

where

c2(N,L,D) = 4D
(
c1(N − 1, L,D) + c2(N − 1, L,D) + L+ 1

)
and

c1(N,L,D) = Lc2(N,L,D) + 4D
(

1 + c1(N − 1, L,D)
)

This shows that k(ε;L,N,A) exists, and establishes a bound of the desired form for k(ε;L, n,A).
�

Remark 3. As we noted in the introduction, we do not attempt to find the optimal values of
the exponents c1 and c2 and the values that we achieve can be improved. We found in the
base step that c1(1, L,D) = 4D(L(L+1)+1) and c2(1, L,D) = 4D(L+1). It is not difficult to
show that c1(N,L,D) ≤ (CD)NLN+1 and c2(N,L,D) ≤ (CDL)N for N,D,L ≥ 1, and C is
a positive constant with C ≤ 20. It would be interesting to know the true order of magnitude
for the optimal exponents, even for fixed values of N,L, and D. When N ≥ L and X = XN

m

where Xm is the Farey sequence of order m = 2/ε, no dilation nPX, where P is projection
onto the first L components, contains a point in the cube (0, ε)L. But #X = Ω(ε−2N ) which
implies that the optimal choice for c2(N,L, 1) is at least 2N when N ≥ L. This is how the
lower bound for k is obtained in [4] when N = L = 1 and it is nearly sharp in this case.

5. The High Dimensional Glasner Theorem

In this section we prove a stronger result than Theorem 1. The proof of Theorem 1 follows
along the same lines of the proof of [1, Proposition 6.1]. Without any extra effort effort, we
can add the extra requirement that the entries of T be relatively prime. This is reminiscent
of Theorem II (i) though perhaps any resemblance stops here. We have the following:

Theorem 4. For any ε > 0 and any subset X ⊂ TN of cardinality at least k �L ε
−3LN there

exists a matrix T ∈ ML×N (Z) with relatively prime entries such that TX is ε-dense in TL.

We note that the exponents we obtain can be easily improved, but we opt for cruder bounds
for the sake of brevity.
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Proof. Let ε > 0 and Let X ⊂ TN have cardinality k and let Xj ⊂ T be the projection

of X onto the jth coordinate axis for j = 1, 2, ..., N . The projection homomorphism Pj is

represented by inner product with the vector (0, ..., 1, ..., 0) where the 1 is in the jth entry.
Clearly

k = #X ≤
N∏
j=1

#Xj . (31)

Consequently there is a projection Xi for which #Xi ≥ k1/N . Let Y be a subset of X such
that its projection on the ith coordinate Yi ⊂ T has cardinality at least K = dk1/Ne. Now if
we can find a primitive vector a ∈ ZL such that aYi is ε-dense in TL we are done once setting
T equal to the composition of Pi and the homomorphism induced by multiplication by a. We
will show that we can choose a to be of the following form

a = a(n) = (q1n, q2n+ 1, q3n, ..., qLn)

where we choose q` = (M + 1)`−1 for n ≥ 1 where M = [L/ε]. Note that a is primitive since
(n, q2n+ 1) = 1.

Suppose, by way of contradiction, that there is no n for which aY = a(n)Y is ε-dense in
TL. Then we have by Proposition 2

K2 �L
1

εL

∑
0<‖m‖∞≤M

m∈ZL

∑
x∈Yi

∑
y∈Yi

lim
R→∞

1

R

R∑
r=1

e
(
m · a(r)(x− y)

)
. (32)

By abuse of notation, let m be the lattice point which maximizes the first sum. Then

K2 �L
ML

εL

∑
x∈Yi

∑
y∈Yi

lim
R→∞

1

R

R∑
r=1

e
(
m · a(r)(x− y)

)
.

But

lim
R→∞

1

R

R∑
r=1

e
(
m · a(r)(x− y)

)
= lim

R→∞

1

R

R∑
r=1

e

(
r(x− y)

L∑
`=1

m`q`

)

=

1 if (x− y)

L∑
`=1

m`q` ∈ Z

0 otherwise.

Hence,
K2 �L ε

−2L#{(x, y) : x, y ∈ Yi, Q(x− y) ∈ Z}

where Q =
L∑
`=1

m`q`. Our choices of q1, ..., qL guarantee that Q is non-zero. The right hand side

of the above inequality can be trivially be bounded (by the same reasoning as in Proposition
1) by

ε−2LKQ� ε−2LKML � ε−3LK

Recalling K = dk1/Ne gives

k �L ε
−3LN .
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�

6. Concluding Remarks

We conclude with a few remarks concerning our main results. For example, it is obvious by
Theorem 1 that if X ⊂ TN is an infinite subset then the union ∪TTX over all T ∈ ML×N (Z)
is dense in TL. Moreover, if X is invariant under the action of ML×N (Z), then X is dense in
TL. Similarly, a simple compactness argument implies the following corollary Theorem 2.

Corollary 2. Let A(x) ∈ ML×N (Z[x]) satisfy conditions (2a) and (2b) of Theorem 2. If
X ⊂ TN is an infinite subset, then the closure of ∪nA(n)X contains a translate of a subtorus
T .

In particular, if X is infinite and X ⊂ A(n)X for each n, then the closure of X contains a
translate of a subtorus T .

It would be interesting to see what kind of generalizations can be made of Theorem 1. That
is, what conditions on an infinite topological group G1 and a metric group G2 guarantee that
for any infinite subset X ⊂ G1, and ε > 0, there exists a continuous homomorphism ϕ : G1 →
G2 such that ϕ(X) is ε-dense in G2? An interesting special case of this question occurs when
G1 is a compact (or locally compact) Abelian group and G2 = U(1) = {z ∈ C : |z| = 1}, the
problem is to find a unitary character ϕ of G1 which distributes a prescribed set of points
evenly throughout U(1).

One necessary condition on G1 is that for each ε > 0 there must exist a characters ϕ
for which ϕ(G1) is ε-dense in U(1). Even though this condition is inherently necessary, it
cannot be dismissed as a triviality. For instance, if G1 = F∞2 with the metric d(x, y) =∑∞

i=1
|xi−yi|

2i
, then the group of all (continuous) characters of G1 is Fω2 = {x = (x1, x2 . . .) :

xi 6= 0 for finitely many i} via x(y) = (−1)x·y for all x ∈ Fω2 , y ∈ F∞2 (note that the dot
product is well defined). But the image of the whole of G1 under any x is the set {−1, 1} and
can’t be ε-dense.

As noted in the introduction, Alon and Peres are able to estimate the discrepancy of dilations
of the form nX using the probabilistic method (see Theorem 1.2 from [1]). It would be
interesting to see an analogous result in higher dimensions.

Baker [2] has proven a quantitative lemma about dilations of the form nX where X ⊂ TN ,
though his hypotheses and conclusion differ from our results. His proof makes use of Lemma
1 as well.
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