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Abstract. Let A be a subset of the polynomials of degree less than N over a finite field Fq. Let r
be any non-zero element of Fq. We show that if the difference set A−A does not contain elements

of the form P + r, where P is a monic, irreducible polynomial, then |A| ≤ Cq
N−c N

log N , where C and
c are constants depending only on q.

1. Introduction

In a series of papers, Sárközy [9, 10, 11] investigated the set of differences of a set of positive
density in the integers. He proved the following theorem in [11]:

Theorem 1. If A is a subset of positive density of the integers, then there exist two distinct elements
a, a′ of A such that a− a′ = p− 1 for some prime p.

Actually, he showed that if A ⊂ {1, . . . , N} is such that the difference set A−A does not contain
elements of the form p− 1, where p is prime, then

|A| � N
(log3N)3 log4N

(log2N)2
,

where logiN denotes i iterations of the log function. To date, the current record upper bound on
|A| is due to Ruzsa and Sanders, who showed in [8] that:

|A| � N exp(−c 4
√

logN)

for some constant c > 0. In view of the many analogies between the integers and the ring Fq[t] of
polynomials over a finite field Fq, it is natural to ask for the analog of Sárközy’s theorem in the
setting of Fq[t]. Let us fix a field Fq of q elements. Let GN be the set of all polynomials in Fq[t] of
degree less than N . In this paper, we prove the following:

Theorem 2. Let r be a fixed element of F×q . Let A be a subset of size δqN of GN such that the
difference set A− A does not contain elements of the form P + r, where P is a monic, irreducible
polynomial. Then we have

δ ≤ Cq−c
N

logN

for some constants C and c depending only on q.
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2 THÁI HOÀNG LÊ AND CRAIG V. SPENCER

Note that in the Fq[t] setting, qN plays the role of N in the integer setting. Thus, Ruzsa and

Sanders’s bound corresponds to a bound on δ of the form Cq−c
4√N in the Fq[t] case, which is weaker

than our bound. It is possible to adapt Kamae and Mendès France’s [3] or Furstenberg’s [1, 2]
approaches to Theorem 1 in the Fq[t] setting, but these methods are not quantitative (i.e., not
giving explicit dependence of δ on N). Our arguments run in parallel with Ruzsa and Sanders’s
approach. We are able to obtain better bounds than in the integer case due to better error terms in
the exponential sum estimates, which in turn comes from the validity of the Generalized Riemann
Hypothesis for Fq[t].

In another direction, Ruzsa constructed in [7] an example of a subset of {1, . . . , N} whose dif-
ference set does not contain elements of the form p − 1 (where p is prime), and whose size is

� exp
((

log 2
2 + o(1)

)
logN

log logN

)
. A straightforward adaptation of Ruzsa’s construction gives the

following lower bound of the same type in the Fq[t] setting, of which we will omit the proof:

Proposition 3. For all integers N > 1, there is a set A ⊂ GN such that |A| ≥ q

(
log q
q(q−1)

+o(1)
)

N
logN

and A−A does not contain P + x, for all (not necessarily monic) irreducible polynomial P and all
x ∈ F×q .

If we merely require P to be monic, then we can do much better if q > 3. Indeed, if q > 3, then
let A be the set of all polynomials in GN whose coefficients are in R, where R is a subset of Fq
whose difference set does not contain 1. Then, all the differences in A are not monic, and A is of
size qcN . It may be interesting for one to study the maximal size of a subset of GN whose difference
set avoids the monic polynomials.

It should be mentioned that the conclusions of Theorem 1 remain true if we replace {p − 1 :
p prime} by the set of the squares. We plan to treat the Fq[t] analog for the squares (and more
generally, k-th powers) in a future paper.

Acknowledgments. We would like to thank Tom Sanders and Terence Tao for helpful dis-
cussions. This research was started while the second author was a member of the Institute for
Advanced Study, and he would like to thank the School of Mathematics for their hospitality.

2. Notation and preliminaries

2.1. Notation. For k ∈ N, let f(k) and g(k) be functions of k. If g(k) is positive and there exists
a constant c > 0 such that |f(k)| ≤ cg(k) for all k ∈ N, we write f(k)� g(k). In this paper, all the
implicit constants depend only on q. The value of r is also fixed throughout the paper.

Let K = Fq(t) be the field of fractions of Fq[t], and let K∞ = Fq((1/t)) be the completion of
K at ∞. Each element α ∈ K∞ may be written in the form α =

∑
i≤w ait

i for some w ∈ Z and

ai = ai(α) ∈ Fq (i ≤ w). If aw 6= 0, we say that ordα = w, and we write 〈α〉 for qordα. We adopt
the conventions that ord 0 = −∞ and 〈0〉 = 0. We write ‖α‖ for

∑
i≤min{w,−1} ait

i. Also, it is often

convenient to refer to a−1 as being the residue of α, denoted by resα. For a real number N , we

let N̂ denote qN . Hence, if x is a polynomial in Fq[t], then 〈x〉 < N̂ if and only if the degree of x

is strictly less than N . Recall that GN =
{
x ∈ Fq[t] | 〈x〉 < N̂

}
, and let PN denote the set of all

monic, irreducible polynomials in GN .
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We define the Fq[t]-analogue of the von-Mangoldt function Λ : Fq[t]→ Z by

Λ(x) =

{
ord$, if $k = x, where $ is a monic, irreducible polynomial,

0, otherwise.

Let us also define

λm(y) = λm(y;N) =

{
ord (my + r), if my + r is monic, irreducible, and of degree less than N ,

0, otherwise.

For a polynomial g, let φ(g) denote the Euler totient function of g, i.e. the number of units in
the ring Fq[t]/(m). It is easy to see that for every ε > 0, φ(g)�ε 〈g〉1−ε.

2.2. The circle method in Fq[t]. Consider the compact additive subgroup T of K∞ defined by
T =

{
α ∈ K∞ : 〈α〉 < 1

}
. Given a Haar measure dα on K∞, we normalize it so that

∫
T 1 dα = 1.

Thus, if N is the subset of K∞ defined by N =
{
α ∈ K∞

∣∣ ordα < −N
}
, where N is an integer,

then the measure of N, mes(N) =
∫
α∈N dα, is equal to N̂−1.

We are now able to define the exponential function on Fq[t]. Suppose that the characteristic of
Fq is p. Let e(z) denote e2πiz, and let tr : Fq → Fp denote the familiar trace map. There is a
non-trivial additive character eq : Fq → C× defined for each a ∈ Fq by taking eq(a) = e(tr(a)/p).
This character induces a map e : K∞ → C× by defining, for each element α ∈ K∞, the value of e(α)
to be eq(resα). The orthogonality relation underlying the Fourier analysis of Fq[t], established in
[4, Lemma 1], takes the shape ∫

T
e(hα) dα =

{
1, if h = 0,

0, if h ∈ Fq[t] \ {0}.
(1)

For a function f defined on Fq[t], of compact support, let us define its Fourier transform by

f̂(α) =
∑

x∈Fq [t]

e(αx)f(x).

For a monic polynomial m ∈ Fq[t], we define the weighted exponential sum over the irreducible
polynomials in arithmetic progression by

hm(α) = hm(α;N) =
∑

y∈Fq [t]

λm(y;N)e(αy).

Thus for any set A ⊂ GN , by (1), we have∫
T
|1̂A(α)|2hm(α) dα =

∑
x1∈A

∑
x2∈A

∑
y∈Fq [t],
x1−x2=y

λm(y) .

For a, g ∈ Fq[t] with 〈a〉 < 〈g〉, where g is a monic polynomial, we write

Ma,g,η =
{
α ∈ T | 〈α− a/g〉 < η

}
.
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We also write

Mg,η =
⋃
〈a〉<〈g〉

Ma,g,η

and

M∗g,η =
⋃
〈a〉<〈g〉
(a,g)=1

Ma,g,η.

3. Major and minor arc estimates for hm(α)

In this section, we obtain the necessary major and minor arc estimates for hm(α) that are needed
in the proof of Theorem 2. Before doing this, we will need to establish additional notation. Let
PR denote the set of monic irreducible polynomials of ordR, and let SR denote the set of monic
polynomials of ordR. For β ∈ T, let τR(β) = τ(β;R) =

∑
x∈SR e(β).

3.1. Minor arc estimates. We now recall [5, Lemma 23], which will be used to derive our minor
arc estimate.

Lemma 4. Let m ∈ Fq[t] be a monic polynomial, and let b ∈ Fq[t] with 〈b〉 < 〈m〉 and (b,m) = 1. Let

a, g ∈ Fq[t] with g monic, 〈a〉 < 〈g〉, and (a, g) = 1. Suppose that 〈m〉 ≤ q−2N̂2/5N , 〈g〉 ≤ q−1N̂〈m〉,
and α ∈Ma,g,〈g〉−2 . Then, we have∑

y∈GN
y≡b (mod m)

Λ(y)e(αy)� N̂4/5〈m〉N4 + 〈g〉N3 + N̂N9/2〈m〉1/2〈g〉−1/2 + N̂1/2N9/2〈m〉1/2〈g〉1/2.

Lemma 5. Let m ∈ Fq[t] be a monic polynomial with 〈m〉 ≤ q−2N̂2/5N , and let Q be a positive

real number. Let a, g ∈ Fq[t] with g monic, 〈a〉 < 〈g〉 ≤ Q̂ ≤ q−1N̂〈m〉, and (a, g) = 1. Suppose that
α ∈M

a,g,Q̂−1〈g〉−1 . Then, we have

hm(α;N)� N̂4/5〈m〉N4 + Q̂〈m〉N3 + N̂N9/2〈m〉1/2〈g〉−1/2 + N̂1/2N9/2〈m〉Q̂1/2.

Proof. We have

hm(α;N) =
∑

y∈GN−ordm
my+r∈PN

(
ord (my + r)

)
e(αy)

= e(−αr/m)
∑
z∈GN

z≡r (modm)

Λ(z)e(αz/m)

+O

( ∑
$monic irred
〈$〉2<N̂

ord$ +
∑

$monic irred
〈$〉3<N̂

ord$ + · · ·
)

�
∣∣∣∣ ∑

z∈GN
z≡r (modm)

Λ(z)e(αz/m)

∣∣∣∣+ N̂1/2N.

(2)
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By the Dirichlet approximation theorem, there exist a′, g′ ∈ Fq[t] with g′ monic, (a′, g′) = 1,

〈g′〉 ≤ 〈m〉Q̂, and 〈α/m− a′/g′〉 < 〈m〉−1Q̂−1〈g′〉−1. Then,〈a′
g′
− a

mg

〉
≤ max

{〈a′
g′
− α

m

〉
,
〈 α
m
− a

mg

〉}
< max{〈m〉−1Q̂−1〈g′〉−1, 〈m〉−1Q̂−1〈g〉−1}.

¿From the above inequality, we may deduce that

〈a′mg − ag′〉 < max{Q̂−1〈g〉, Q̂−1〈g′〉−1}.

Suppose for the moment that 〈g′〉 < 〈g〉 ≤ Q̂. We then have 〈a′mg − ag′〉 < 1, implying that
a′mg = ag′. Since (g, a) = 1, it follows that g|g′, and we may deduce that 〈g〉 ≤ 〈g′〉, which provides
a contradiction. Hence, we have 〈g〉 ≤ 〈g′〉. Applying Lemma 4 with the approximation a′/g′ to
α/m, we find that∑

z∈GN
z≡r (mod m)

Λ(z)e(αz/m)� N̂4/5〈m〉N4 + 〈g′〉N3 + N̂N9/2〈m〉1/2〈g′〉−1/2 + N̂1/2N9/2〈m〉1/2〈g′〉1/2

� N̂4/5〈m〉N4 + Q̂〈m〉N3 + N̂N9/2〈m〉1/2〈g〉−1/2 + N̂1/2N9/2〈m〉Q̂1/2.
(3)

The lemma now follows by combining (2) and (3). �

3.2. Major arc estimates.

Lemma 6. Let m ∈ Fq[t] be a monic polynomial, and let r ∈ Fq[t] with 〈r〉 < 〈m〉 and (r,m) = 1.

Let Q1 and Q2 be positive real numbers. Let a, g ∈ Fq[t] with g monic, 〈a〉 < 〈g〉 ≤ Q̂2, and
(a, g) = 1. Let α ∈M

a,g,〈g〉−1Q̂−1
1
. Let M ∈ N with M ≥ Q2. Then, we have

∑
y∈SM

my+r∈PM+ordm

e(αy) =


µ(g)〈m〉e

(
−arm̄
g

)
φ(m)φ(g)(M+ordm)τM (α− a/g) +O

(
M̂3/2〈m〉1/2(M+ordm)2

min
(
M̂/Q̂2, Q̂1

) )
, if (m, g) = 1,

O
(
M̂3/2〈m〉1/2(M+ordm)2

min
(
M̂/Q̂2, Q̂1

) )
, otherwise.

Here, m̄ denotes the multiplicative inverse of m modulo g.

Proof. This lemma follows from the proofs of [5, Lemmas 7-11] upon redefining L to be min([M −
Q2], [Q1]) and Ma,g to be M

a,g,〈g〉−1Q̂−1
1

. �

Lemma 7. Let m ∈ Fq[t] be a monic polynomial, and r ∈ Fq[t] with 〈r〉 < 〈m〉 and (r,m) = 1. Let

Q1 and Q2 be positive real numbers. Let a, g ∈ Fq[t] with g monic, 〈a〉 < 〈g〉 ≤ Q̂2, and (a, g) = 1.
Let α ∈M

a,g,〈g〉−1Q̂−1
1
. Then, we have

hm(α;N) =


µ(g)〈m〉e

(
−arm̄
g

)
φ(m)φ(g)

∑
x∈GN−ordm
xmonic

e
(
(α− a/g)x

)
+O

(
f(N,Q1, Q2;m)

)
, if (m, g) = 1,

O
(
f(N,Q1, Q2;m)

)
, otherwise,

where

f(N,Q1, Q2;m) = N̂1/2N3Q̂2 + N̂3/2N3〈m〉−1Q̂−1
1 .
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Proof. Note that

hm(α;N) =
∑

y∈GN−ordm
my+r∈PN

(
ord (my + r)

)
e(αy)

=
N−ordm−1∑

X=0

(
(X + ordm)

∑
z∈SX

mz+r∈PX+ordm

e(αz)

)
+O(1)

=

N−ordm−1∑
X=dQ2e

(
(X + ordm)

∑
z∈SX

mz+r∈PX+ordm

e(αz)

)
+O

(
Q̂2〈m〉φ(m)−1

)
.

By applying Lemma 6, we deduce that

hm(α;N) =


µ(g)〈m〉e

(
−arm̄
g

)
φ(m)φ(g)

∑
x∈GN−ordm
xmonic

e
(
(α− a/g)x

)
+O

(
f(N,Q1, Q2;m)

)
, if (m, g) = 1,

O
(
f(N,Q1, Q2;m)

)
, otherwise,

where

f(N,Q1, Q2;m) = N̂1/2N2Q̂2 + N̂3/2N2〈m〉−1Q̂−1
1 .

This completes the proof of the lemma. �

4. Energy Increments

In this section, we will establish lemmas concerning energy increments. These are analogous to
those found in [8, Section 7].

Lemma 8. Suppose that L ∈ N and m, r ∈ Fq[t] with m 6= 0. Also, suppose that A ⊆ GN with

|A| = δN̂ . Let B = {ml + r | 〈l〉 < L̂}. Furthermore, suppose that∑
x∈Fq [t]

(
(1A − δ1GN

) ∗ 1B
)2

(x) ≥ cδ2N̂L̂2.

Then, there exists x′ ∈ Fq[t] such that

1A ∗ 1B(x′) ≥ (1 + c)δL̂+O(N̂−1〈m〉L̂2).

Proof. Note that∑
x∈Fq [t]

(
(1A ∗ 1B)(1GN

∗ 1B)
)
(x) =

∑
x∈Fq [t]

1A(x)
(
1GN

∗ 1−B ∗ 1B
)
(x)

= δN̂L̂2 +O(δ〈m〉L̂3).

(4)

Also, we have ∑
x∈Fq [t]

(
1GN

∗ 1B
)2

(x) = N̂L̂2 +O(〈m〉L̂3). (5)
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Since ∑
x∈Fq [t]

(
(1A − δ1GN

) ∗ 1B
)2

(x) ≥ cδ2N̂L̂2,

we may deduce from (4) and (5) that∑
x∈Fq [t]

(
1A ∗ 1B

)2
(x) ≥ cδ2N̂L̂2 + 2δ

∑
x∈Fq [t]

(
(1A ∗ 1B)(1GN

∗ 1B)
)
(x)− δ2

∑
x∈Fq [t]

(
1GN

∗ 1B
)2

(x)

= cδ2N̂L̂2 + 2δ2N̂L̂2 − δ2N̂L̂2 +O(δ〈m〉L̂3)

= (1 + c)δ2N̂L̂2 +O(δ〈m〉L̂3).
(6)

By the triangle inequality, we have∑
x∈Fq [t]

(
1A ∗ 1B

)2
(x) ≤ sup

x′∈Fq [t]

(
1A ∗ 1B

)
(x′)

∑
x∈Fq [t]

(
1A ∗ 1B

)
(x) = δN̂L̂ sup

x′∈Fq [t]

(
1A ∗ 1B

)
(x′). (7)

The lemma now follows by combining (6) and (7). �

Lemma 9. Suppose that η > 0, N ∈ N, and g ∈ Fq[t] \ {0}. Suppose that A ⊆ GN with |A| = δN̂ .
Write

EA,g,η = δ−2N̂−1

∫
Mg,η

∣∣(1A − δ1GN

)∧
(α)
∣∣2 dα.

Then, there exist L ∈ N with L̂ � 〈g〉−1 min{η−1, EA,g,η|A|} and r ∈ Fq[t] such that for B =

{lg + r | 〈l〉 < L̂}, we have |A ∩B| ≥ δ(1 + EA,g,η/2)L̂.

Proof. Let L ∈ N be a parameter to be chosen later with L̂ ≤ η−1〈g〉−1, and let D = {gl | 〈l〉 < L̂}.
For x ∈ D and α ∈ Ma,g,η, we have 〈(α − a/g)x〉 < η〈g〉q−1L̂ ≤ q−1, which implies that e(αx) =
e(ax/g). Hence, for α ∈Ma,g,η, we have

|1̂D(α)| =
∣∣∣∑
x∈D

e(αx)
∣∣∣ =

∣∣∣ ∑
〈x〉∈D

e(ax/g)
∣∣∣ =

∣∣∣ ∑
〈l〉<L̂

e(al)
∣∣∣ = L̂.

It follows from the triangle inequality that

δ2N̂L̂2EA,g,η ≤
∫
Mg,η

∣∣(1A − δ1GN

)∧
(α)
∣∣2|1∧D(α)|2 dα

≤
∫
T

∣∣(1A − δ1GN

)∧
(α)
∣∣2|1∧D(α)|2 dα

=
∑

x∈Fq [t]

(
(1A − δ1GN

) ∗ 1D
)2

(x).

By Lemma 8, there exists x′ ∈ Fq[t] such that

1A ∗ 1D(x′) ≥ (1 + EA,g,η)δL̂+O(N̂−1〈g〉L̂2).

Thus, there is a choice of L ∈ N for which L̂� 〈g〉−1 min
(
η−1, EA,g,η|A|

)
and

1A ∗ 1D(x′) ≥ δ
(

1 +
EA,g,η

2

)
L̂.

The lemma now follows. �
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Lemma 10. Suppose that η > 0, N ∈ N, and g ∈ Fq[t]\{0}. Suppose that A ⊆ GN with |A| = δN̂ .
Write

E∗A,g,η = δ−2N̂−1

∫
M∗g,η

∣∣(1A − δ1GN

)∧
(α)
∣∣2 dα.

Suppose that for K ∈ N, we have ∑
1≤〈g〉≤K̂
gmonic

1

φ(g)
E∗A,g,η ≥ c.

Then, there exist g, r ∈ Fq[t] with 1 ≤ 〈g〉 ≤ K̂ and L ∈ N with L̂� 〈g〉−1 min{η−1, δcN̂} such that

for B = {lg + r | 〈l〉 < L̂}, we have |A ∩ B| ≥ δ(1 + c1c)L̂, where c1 = c1(q) is a positive constant
depending at most on q.

Proof. Define EA,g,η as in Lemma 9, and write

IA,a,g,η = δ−2N̂−1

∫
Ma,g,η

∣∣(1A − δ1GN

)∧
(α)
∣∣2 dα.

Note that ∑
1≤〈g〉≤K̂
gmonic

〈g〉
φ(g)

EA,g,η =
∑

1≤〈g〉≤K̂
gmonic

〈g〉
φ(g)

∑
〈r〉<〈g〉

IA,r,g,η

=
∑

1≤〈g〉≤K̂
gmonic

〈g〉
φ(g)

∑
g′h=g
g′monic

∑
〈r′〉<〈g′〉
(r′,g′)=1

IA,r′h,g′h,η

=
∑

1≤〈g〉≤K̂
gmonic

〈g〉
φ(g)

∑
g′h=g
g′monic

E∗A,g′,η

=
∑

1≤〈g′〉≤K̂
g′monic

E∗A,g′,η
∑

1≤〈h〉≤K̂/〈g′〉
hmonic

〈g′h〉
φ(g′h)

.

Also, we have ∑
1≤〈h〉≤K̂/〈g′〉

hmonic

〈g′h〉
φ(g′h)

≥ 〈g
′〉

φ(g′)

∑
1≤〈h〉≤K̂/〈g′〉

hmonic

1 ≥ K̂

φ(g′)
.

Therefore, we have ∑
1≤〈g〉≤K̂
gmonic

〈g〉
φ(g)

EA,g,η ≥ K̂
∑

1≤〈g′〉≤K̂
g′monic

1

φ(g′)
E∗A,g′,η ≥ K̂c (8)

by the hypothesis. Also, we have∑
1≤〈g〉≤K̂
gmonic

〈g〉
φ(g)

=
∑

1≤〈g〉≤K̂
gmonic

∑
d|g

dmonic

µ(d)2

φ(d)
=

∑
1≤〈d〉≤K̂
dmonic

µ(d)2

φ(d)

∑
1≤〈g〉≤K̂/〈d〉

gmonic

1� K̂
∑

1≤〈d〉≤K̂
dmonic

1

〈d〉φ(d)
� K̂. (9)
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By (8) and (9), there exists a monic polynomial g with 1 ≤ 〈g〉 ≤ K̂ and EA,g,η � c. The result
now follows from Lemma 9. �

5. An iteration and the proof of Theorem 2

In this section, we first prove the following lemma.

Lemma 11. Suppose that N̂ ≥ C0, A ⊂ GN , |A| = δN̂ , δ−1 ≤ N̂κ, and 〈m〉 ≤ N̂κ, where κ is a
small, absolute constant. If the difference set A − A does not contain elements of the form P+r

m ,
where P is monic, irreducible, then there exists an integer N ′, a set A′ ⊂ GN ′ of density δ′ in GN ′,
and a monic polynomial m′ such that the following hold:

(1) δ′ ≥ (1 + C1)δ,
(2) 〈m′〉 ≤ C2δ

−2〈m〉,
(3) N̂ ′ ≥ C3

(
δ

N〈m〉

)9
N̂ ,

(4) (A′ −A′) ∩ {P+r
m′ : P monic, irreducible} = ∅,

where C0, C1, C2, and C3 are constants depending at most on q.

Proof. Let fA = 1A − δ1GN
, the balanced function of A. Note that

∫
T |f̂A(α)|2dα = (δ − δ2)N̂ . Let

us consider the expression

I =

∫
T
|f̂A(α)|2hm(α;N)dα.

Let us first compute I explicitly. We have

I =
∑

x∈A,y∈GN

A(x+ y)A(x)λm(y) + δ2
∑

x∈GN ,y∈GN

GN (x+ y)GN (x)λm(y)

− δ
∑

x∈GN ,y∈GN

GN (x+ y)A(x)λm(y)− δ
∑

x∈GN ,y∈GN

GN (x)A(x+ y)λm(y)

= −δ2N̂
∑
y

λm(y), (10)

since by hypothesis the first term is zero.

Let Q̂1 = cδ2 N̂
N9〈m〉4 , Q̂2 = c−1δ−2N9〈m〉3, where c is a sufficiently small constant to be chosen

later. By the Dirichlet approximation theorem, the sets M
a,g,〈g〉−1Q̂−1 , where (a, g) = 1, g is monic,

and 〈a〉 < 〈g〉 ≤ Q̂1, are disjoint and form a partition of T. Let us define the major arcs

M =
⋃

〈a〉<〈g〉, (a,g)=1

〈g〉≤Q̂2, g monic

M
a,g,〈g〉−1Q̂1

−1

and the minor arcs

m =
⋃

〈a〉<〈g〉, (a,g)=1

Q̂2<〈g〉≤Q̂1
g monic

M
a,g,〈g〉−1Q̂1

−1
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so that T = M
⋃
m.

Claim 1. The contribution from the minor arcs in I is small. Indeed, by Lemma 5 we have

sup
α∈m
|hm(α;N)| � N̂4/5〈m〉N4 + Q̂1〈m〉N3 + N̂N9/2〈m〉1/2Q̂2

−1/2
+ N̂1/2N9/2〈m〉Q̂1/2

1 .

By our choices of Q̂1 and Q̂2, all the four terms are dominated by δ N̂
〈m〉 . Thus,∣∣∣∣∫

m
|fA(α)|2hm(α;N)dα

∣∣∣∣� δ
N̂

〈m〉

∫
T
|fA(α)|2dα� δ2 N̂

2

〈m〉
.

By Lemma 7, we see that
∑
y

λm(y) ≥ 1

2

N̂

φ(m)
≥ 1

2

N̂

〈m〉
if 〈m〉 ≤ Nκ and N is sufficiently large.

Thus, for an appropriate choice of c, we have that for all sufficiently large N ,∣∣∣∣∫
m
|fA(α)|2hm(α,N)dα

∣∣∣∣ ≤ 1

2
δ2N̂

∑
y

λm(y).

Now let Q̂3 = c′δ−2, where c′ is a sufficiently large positive constant to be chosen later, and let us
split the major arcs M into two parts, M = M1

⋃
M2, where

M1 =
⋃

〈a〉<〈g〉, (a,g)=1

〈g〉≤Q̂3, g monic

M
a,g,〈g〉−1Q̂1

−1

and

M2 =
⋃

〈a〉<〈g〉, (a,g)=1

Q̂3<〈g〉≤Q̂2
g monic

M
a,g,〈g〉−1Q̂1

−1 .

Claim 2. The contribution from M2 in I is small. Indeed, for α ∈ M
a,g,〈g〉−1Q̂1

−1 , where Q̂3 <

〈g〉 ≤ Q̂2, Lemma 5 implies that

hm(α;N)� N̂

φ(g)φ(m)
� N̂

〈g〉1/2φ(m)
≤ N̂

Q̂
1/2
3 φ(m)

� δ
∑
y

λm(y).

Therefore, ∣∣∣∣∫
M2

|fA(α)|2hm(α,N)dα

∣∣∣∣� δ

∫
T
|fA(α)|2dα

∑
y

λm(y) ≤ δ2N̂
∑
y

λm(y).

Thus, for an appropriate choice of c′, we have that for all sufficiently large N ,∣∣∣∣∫
M2

|fA(α)|2hm(α,N)dα

∣∣∣∣ ≤ 1

4
δ2N̂

∑
y

λm(y).

Therefore, for sufficiently large values of N , we have∣∣∣∣∫
M1

|fA(α)|2hm(α;N)dα

∣∣∣∣ ≥ 1

4
δ2N̂

∑
y

λm(y).
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For α ∈ M
a,g,〈g〉−1Q̂1

−1 , where 〈g〉 ≤ Q̂3, we have hm(α;N) � 1
φ(g)

∑
y

λm(y). We conclude that

there exists a positive constant c̃ satisfying∑
〈g〉≤Q̂3
g monic

1

φ(g)

∑
〈a〉<〈g〉
(a,g)=1

∫
M
a,g,〈g〉−1Q̂1

−1

|fA(α)|2dα ≥ c̃δ2N̂

for all sufficiently large values of N .

We can now apply Lemma 10 for K̂ = Q̂3 and η = Q̂−1
1 , with the observation that⋃

〈a〉<〈g〉
(a,g)=1

M
a,g,〈g〉−1Q̂1

−1 ⊂M∗g,η.

We can thus find g, s ∈ Fq[t] with 1 ≤ 〈g〉 ≤ Q̂3 = c′δ−2 and L with

L̂� 〈g〉−1 min(Q̂1, c̃δN̂)� δ2Q̂1 = cδ4 N̂

N9〈m〉4

such that A ∩ {gl + s : 〈l〉 < L̂} ≥ δ(1 + c1c̃)L̂, where c1 is the constant in Lemma 10.

Let us now set N1 = L, A′ = {l : 〈l〉 < L̂, gl + s ∈ A}, and m′ = gm. Clearly, if A − A avoids
{P+r

m : P monic, irreducible}, then A′ −A′ avoids {P+r
m′ : P monic, irreducible}. �

Proof of Theorem 2. Suppose for a contradiction, A−A does not contain elements of the form P+r,
where P is a monic, irreducible polynomial. We use Lemma 11 to successively construct a sequence

of quadruples (Ni, Ai, δi,mi) such that Ai ⊂ GNi , |Ai| = δiN̂i, and the following hold for every i:

(1) (N0, A0, δ0,m0) = (N,A, δ, 1),
(2) δi+1 ≥ (1 + C1)δi,
(3) 〈mi+1〉 ≤ C2δ

−2
i 〈mi〉,

(4) N̂i+1 ≥ C3

(
δi

Ni〈mi〉

)9
N̂i,

(5) (Ai −Ai) ∩ {P+r
mi

: P monic, irreducible} = ∅.

We claim that if N is sufficiently large depending on δ, we can construct a sequence of Z =
bC4

(
log 1

δ + 1
)
c quadruples, where C4 is a sufficiently large constant to be chosen later, at which

point we have a contradiction since δZ > 1. Once we have (Ni, Ai, δi,mi), we can produce

(Ni+1, Ai+1, δi+1,mi+1) as long as the hypothesis of Lemma 11 is satisfied, i.e. N̂i ≥ C0, δ−1 ≤ N̂κ
i ,

and 〈mi〉 ≤ N̂κ
i . Since the sequence (Ni) is decreasing and the sequence (〈mi〉) is increasing, it

suffices to show that for N sufficiently large, for any sequence of triples (Ni, δi,mi)
Z
i=0 satisfying the

recursive relations (1),(2),(3) above, we have

• N̂Z ≥ C0,

• 〈mZ〉 ≤ N̂κ,

• δ−1 ≤ N̂κ.

By induction it is easy to see that for every i ∈ {0, . . . , Z},
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• δi ≥ (1 + C1)iδ,

• 〈mi〉 ≤ Ci2(1 + C1)−i(i−1)δ−2i.

Therefore, for every i = {0, . . . , Z},

N̂i+1 ≥
C3

N9

(
(1 + C1)iδ

Ci2(1 + C1)−i(i−1)δ−2i

)9

N̂i ≥
C3

N9
(C−i2 (1 + C1)i

2
δ2i+1)9N̂i.

Consequently,

N̂Z ≥ N̂
CZ3
N9Z

(
C−Z

2

2 (1 + C1)Z
3/6δZ

2
)9
.

Let us verify that the conditions of Lemma 11 hold for i = Z, that is, N̂Z ≥ C0, δ−1 ≤ N̂κ
Z , and

〈mZ〉 ≤ N̂κ
Z . Notice that since Z = bC4

(
log 1

δ + 1
)
c, for an appropriate value of C4, we have(

C−Z
2

2 (1 + C1)Z
3/6δZ

2
)9
≥
(
CZ2 (1 + C1)−Z(Z−1)δ−2Z

)1/κ
≥ 〈mZ〉1/κ.

Thus, N̂Z ≥ 〈mZ〉1/κ if N̂
CZ3
N9Z ≥ 1, which holds if N

logN ≥ C5 (log(1/δ) + 1), where C5 is a large

constant. If we choose C5 large enough, then we also have N̂Z ≥ C0 and N̂Z ≥ δ−1/κ as well, thus
completing the proof of Theorem 2. �

We have a few concluding remarks. An inspection of the proof of Lemma 11 shows that, in order to
have a density increment on GN ′ , it suffices to have few solutions to a1−a2 = P+r

m , where a1, a2 ∈ A
and P is a monic, irreducible polynomial (as opposed to none at all). Incorporating this observation
into the iteration, we have a contradiction even if the number of solutions to a1 − a2 = P + r is
small enough (as opposed to none at all). Thus, we can actually give a lower bound for the number
of such solutions. Precisely, let

Rm(A) =
∑
y

]{a1 − a2 = y : a1, a2 ∈ A}λm(y;N)

be the number of weighted solutions. Then, we have

R(A) = R1(A) ≥ C(δ)
N̂2

N c(δ)
,

where C(δ) and c(δ) are constants depending on q and δ. This bound falls short of the expected order

of magnitude N̂2. It is possible to use alternative methods to show that the number of (weighted)

solutions is indeed of order N̂2 (see e.g. [12, Section 10.2]). Obtaining the optimal dependence of
C(δ) on δ, however, is yet another interesting problem.
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